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Abstract

We present a method for automatic detection and classification of seismic events from
continuous ambient-noise (AN) recordings using an unsupervised machine-learning (ML)
approach. We combine classic and recently developed array-processing techniques with
ML enabling the use of unsupervised techniques in the routine processing of continuous
data. We test our method on a dataset from a large-number (large-N) array, which was
deployed over the Kylylahti underground mine (Finland), and show the potential to auto-
matically process and cluster the volumes of AN data. Automatic sorting of detected
events into different classes allows faster data analysis and facilitates the selection of
desired parts of the wavefield for imaging (e.g., using seismic interferometry) and mon-
itoring. First, using array-processing techniques, we obtain directivity, location, velocity,
and frequency representations of AN data. Next, we transform these representations into
vector-shaped matrices. The transformed data are input into a clustering algorithm (called
k-means) to define groups of similar events, and optimization methods are used to obtain
the optimal number of clusters (called elbow and silhouette tests). We use these tech-
niques to obtain the optimal number of classes that characterize the AN recordings
and consequently assign the proper class membership (cluster) to each data sample.
For the Kylylahti AN, the unsupervised clustering produced 40 clusters. After visual
inspection of events belonging to different clusters that were quality controlled by
the silhouette method, we confirm the reliability of 10 clusters with a prediction accuracy
higher than 90%. The obtained division into separate seismic-event classes proves the
feasibility of the unsupervised ML approach to advance the automation of processing
and the utilization of array AN data. Our workflow is very flexible and can be easily
adapted for other input features and classification algorithms.
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Introduction wavefield. Because AN is recorded and stored during every

Arrays with ever-increasing station counts are fundamental in
seismology (Rost and Thomas, 2002). Developments of the
nodal technology to acquire seismic data by the oil and gas
industry brought the concept of large-number (large-N) arrays
to academia (Hand, 2014). Their applications include struc-
tural imaging, studies of seismicity, and monitoring (e.g.,
Lin et al., 2013; Ben-Zion et al., 2015; Quiros et al., 2015;
Karplus and Schmandt, 2018). Large-N arrays are often com-
bined with long recording times, which facilitates seismic
ambient-noise (AN) recordings (Karplus and Schmandt,
2018). AN is generally defined as a complex wavefield com-
posed of the superposition of signals from natural and
anthropogenic sources that are not generated specifically for
the purpose of a study. Here, we address the issue of character-
izing the AN content by developing automatic detection and
classification of the various seismic events in the recorded
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regular continuous acquisition campaign (in particular, using
nodal systems; Dean et al., 2015), our methodology is a step
forward to maximize the information from passive recordings.

The key technique using AN is called seismic interferometry
(SI; Schuster et al, 2004; Wapenaar and Fokkema, 2006;
Draganov et al., 2007; Wapenaar et al., 2008; Schuster, 2009).
SI allows the retrieval of virtual-source records by correlating
noise recordings between pairs of receivers. SI is considered a
cost-effective alternative for controlled-source operations, es-
pecially when terrain access is an issue. Successful applications
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of AN SI can provide the velocity and structural information at
the exploration scale (Draganov et al., 2009), and at the crustal
scale (Ruigrok et al., 2010).

Imaging and monitoring of the shallow crust require high-
frequency data, that is, high-frequency sources recorded with
high sampling rate (Niu and Yamaoka, 2018). Moreover, dense
geophone arrays deployed in areas of abundant noise activity
such as operating mine sites or volcanoes enable unaliased spa-
tial sampling of the noise-source distribution characteristic for
such high-seismicity areas (Rost and Thomas, 2002). For such
continuous event-rich AN recordings, the preferred processing
approach should be automatic and require minimum human
interaction (Hansen and Schmandt, 2015). At the same time,
most conventional array-processing techniques require high sig-
nal coherency across the array, implying important constraints
on the array geometry, spatial extent, and data quality
(Almendros et al., 1999). Therefore, for an existing dataset,
the main interest is to optimize the processing time (including
tuning array-processing parameters), especially in cases where
months of human work could be necessary.

Detection and classification of seismic signals using machine-
learning (ML) already has a well-established history (Dowla et al.,
1990; Dysart and Pulli, 1990; Wang and Teng, 1995; Del Pezzo
et al., 2003; Wiszniowski et al., 2014). These studies were a step
toward developing effective ML techniques for distinguishing
tremors and earthquakes (Nakano et al., 2019), geyser-eruption
signals detection (Yuan et al., 2019), earthquake early warning
(Li, Meier, et al., 2018; Kong et al, 2019), and many automatic
approaches for accurate earthquake-parameter estimation (Bose
et al., 2008; Meier et al., 2015; Cuéllar et al., 2018; Ochoa et al.,
2018), including the almost separate branch of accurate phase-
picking methods (Chen, 2018; Zhu and Beroza, 2018).

From the previously mentioned applications of seismic
arrays, imaging studies (Araya-Polo et al, 2018), monitoring
volcanic tremors (Malfante et al, 2018), and earthquake early
warning (Kong et al., 2016; Li, Meier, et al., 2018) are a few of
the most interesting and challenging areas for employing ML
techniques. An inherent processing part related to some of the
ML applications in seismology is the detection and classifica-
tion of specific event types (Rouet-Leduc et al, 2017; Zhou
et al., 2019), for example, signals (tremors) in volcano moni-
toring (Bhatti et al., 2016), specific precursors observed in the
seismograms in earthquake early warning (Minson et al., 2018),
and body- or surface-wave events for AN SI imaging studies
(Nakata et al., 2016). For some of these signals such as the vol-
canic tremors or body-wave events, the sole detection might not
suffice because the waveforms of the different event types are
similar to each other in the time domain. They might be differ-
entiated only by minor features when transformed using signal
representations (i.e., transformed to other domains) such as
Fourier transform, envelope, autocorrelation, and kurtosis to
name just a few from the long list of signal transformations used
in the ML detection context (see the review in Malfante et al.,
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2018). These applications demand more detailed classification
and assessment of AN event types performed in real time.
Such processing appears to be a good target for combined ML
and array-processing techniques. A hybrid approach that com-
bines ML and array processing is an emphasized and anticipated
development in seismology (Kong et al, 2018; Bergen
et al., 2019).

Motivation
Here, we focus on the performance of ML for detecting and
assessing different categories of seismic events present in con-
tinuous AN recordings. We rely on the fact that the appearance
of AN in seismic records differs in amplitude and frequency and
that the various kinds of signal transformations derived there-
from provide varying characteristics (Bormann, 1998). We aim
for evaluation of the feasibility of unsupervised clustering meth-
ods using these differences to track down various AN events
without the need to know their exact representation in different
domains. These characteristics can be retrieved using array-
processing techniques (Rost and Thomas, 2002). This idea is
applied to data recorded using a large-N array above the
Kylylahti active underground mine in eastern Finland for testing
AN SI for mineral exploration. The same dataset has already
been used to demonstrate extraction of body-wave events
using supervised ML (support-vector machine) in combination
with a two-step wavefield evaluation and detection method
(Chamarczuk et al, 2019). With this hybrid approach, the
authors made a binary classification to discriminate between
body- and surface-wave events. They applied two-step wavefield
evaluation and detection method on a small portion of the AN
recordings to obtain labels (in this study, label is the type of
recorded seismic event) and then used the labels as input to a
support-vector machine to classify the remaining part of the
data. In our study, we do not provide input labels and aim
to discriminate between several (>2) classes of seismic events
and thus provide a more detailed description of the recorded
AN data. In addition to the lack of labels, typical for unsuper-
vised clustering, we treat the number of clusters as an unknown
parameter to be established (we refer to this approach as “blind
clustering”). In blind clustering, we estimate the range of opti-
mal number of clusters by comparing the results of k-means for
a broad range of clusters (1-81) and input-parameter subset
sizes (1-81). The upper limit of evaluated range of clusters
and parameter subsets is related to the discretization of input
features used in this study. Then, in the “constrained clustering,”
we use a computationally heavier optimization method, which is
expected to give us better prediction accuracy, in the already
narrowed range of input parameters (provided by the blind clus-
tering) to find an optimal value of the number of clusters.
The article is organized as follows. In the Method section,
we introduce the hybrid workflow combining array processing
and unsupervised clustering of continuous recordings. We also
explain the motivation behind each processing step and briefly
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describe the array-processing and ML techniques we propose
in our workflow (for more detailed technique explanation, see
Appendices A and B). In the Dataset section, we describe the
Kylylahti array (shown in Fig. 1) we use to benchmark our
methodology. The Results section describes the outcome of
applying our methodology to the Kylylahti dataset. The sub-
sections in this section are named in the same way as the
processing steps in our workflow. We focus on the key process-
ing steps related to the ML module of our workflow. The
results from the array-processing module and temporal cluster
analysis (supporting processing step in the ML analysis
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Figure 1. Layout of the Kylylahti array. Receiver stations are
denoted with red dots; dashed black lines show the mine and city
area. (Inset) The study area in a map of Europe. The color version
of this figure is available only in the electronic edition.

module) are described in the Appendices C and D, respectively.
In the Discussion section, we focus on the flexibility of our
workflow and explain the possibility to test various other
array-processing techniques, and unsupervised clustering
techniques. We mention also other datasets and applications
Volume 91 « Number 1 .
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suitable to test our methodology. In the Conclusions section,
we summarize our experiences from applying unsupervised
clustering in automatic detection and classification of seismic
events recorded by Kylylahti array, and conclude with general
statement about feasibility of this approach.

Method

Hybrid workflow

Our hybrid methodology consists of two parts: (1) array
processing and (2) ML analysis (see workflow summary in
Fig. 2). The array processing provides input to the ML part.

Outputs of individual array-processing techniques are
directly related to the measurable characteristics of AN data.
Thus, following ML community we refer to these as input fea-
tures (Bishop, 2006). To highlight individual values forming
the entire output of a given processing technique, we use
the term input parameter.

After having acquired the data, the first fundamental step is
Input-Feature Selection, in which the decision is made about
input features representing the AN data and, consequently, the
array-processing techniques to be used for extracting those fea-
tures. In the Data Preprocessing step, the continuous data are
separated into shorter segments (noise panels) and processed
using conventional AN preprocessing techniques (see e.g.,
Bensen et al, 2007) to apply array-processing techniques
selected in the previous step. Subsequently, input features
are extracted from the data (Input-Feature Extraction step).
Next, in the Data Augmentation step, we adjust the output
of array-processing techniques to be used in unsupervised clus-
tering (see Fig. 3 for input-feature extraction and data augmen-
tation scheme for location input feature).

The key step in the ML analysis module is the unsupervised
clustering. It consists of two parts: (1) the blind clustering and
(2) constrained clustering. In the blind clustering step, we use
k-means to estimate the range of optimal number of clusters
and size of input-parameter subset. Then, in the multicluster
feature selection (MCEFS; Cai et al, 2010) processing step, we
use the MCFS method to determine which input parameters
should be selected for creating the input-parameter subset.
The values estimated in the blind clustering are used to per-
form constrained clustering. In the constrained clustering step,
we apply the k-means method again, but this time by providing
the single optimal number of clusters using the subset of input
features indicated by MCEFS. Finally, cluster quality control
(QC) is performed using visual inspection and silhouette mea-
sure. In Figure A1, we show the expanded version of the work-
flow with details on the selected parameters.

Array-processing and ML techniques used in this
study

Here, we briefly describe the array-processing techniques and
ML tools employed in our hybrid workflow (see Appendix A
Number 1
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Figure 2. Sketch of the array-processing and unsupervised-clus-
tering hybrid workflow. The color version of this figure is avail-
able only in the electronic edition.

for a more detailed description of selected array-processing
techniques).

Seismic AN can be described by its dominant features: fre-
quency, velocity, directionality, and energy (Bormann, 1998). To
quantify these characteristics, we select the following array-
processing techniques: beamforming for determining azimuth
and velocity, InterLoc (Dales et al., 2017) for location, and power
spectral density (PSD) for frequency and energy. We use the
conventional delay-and-sum beamforming (Johnson and
Dudgeon, 1993) which is based on summing the signal ampli-
tudes along assumed travel paths for determining azimuths
related to the strongest sources. PSD is defined as Fourier trans-
form of the signal autocorrelation function and provides the
energy of the signal at each frequency component. InterLoc
is a spatiotemporal tool similar to beamforming, but instead
of scanning azimuth and velocities, it scans the different location
points and the input comprises cross-correlated waveforms
instead of signals in the time domain (see Fig. A3 for the output
of all three techniques calculated for one day of recordings).

Our basic tool for dividing the AN data into clusters is the
k-means algorithm (Lloyd, 1982). The k-means is a tool for
partitioning data points into predetermined number of clusters
by assigning each sample to its closest cluster center (defined as
mean value of all the points within a cluster). In the blind clus-
tering step, we address the issue of estimating the number of clus-
ters which needs to be predetermined. We find this optimal value
of clusters by running the k-means algorithm multiple times and
finding the best solution (this approach is called elbow test). In
the constrained clustering step, we additionally provide (1) num-
ber of clusters, (2) size of input-parameter subspace, and (3) selec-
tion of those parameters. For assessment of the clustering results,
in the cluster QC step, we apply the silhouette method, which is
a visual tool for QC of individual clusters (Kaufman and
Rousseeuw, 1990). More detailed description of the ML tech-
niques used in our workflow is provided in Appendix B.
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Dataset

The Kylylahti large-N array (see Fig. 1 for the layout) was
deployed in the vicinity of the polymetallic underground
Kylylahti mine in Polvijérvi (eastern Finland) as a part of the
Cost-effective Geophysical Imaging Techniques for supporting
Ongoing MINeral exploration in Europe (COGITO-MIN)
project. Its primary purpose was to advance the development

of AN SI imaging techniques for mineral exploration and pro-
vide a baseline for testing novel array-processing techniques.
The Kylylahti array was formed by 994 receiver stations distrib-
uted regularly over the 3.5 x 3 km area with 200 m line spacing
and 50 m receiver interval. Surface conditions varied from
exposed bedrock to swamps. Each receiver station consisted
of a Geospace seismic recorder and 6 x 10 Hz geophones
bunched together and buried whenever possible, was recording
at a 2 ms sample rate for about 20 hr per day for about 30 days.
As a result, more than 600 hr of AN data per each receiver were
recorded.

Results

Blind clustering
In this section, we estimate the range of optimal cluster num-
ber and determine the content of input-parameter subset.

K-means processing. In the blind clustering step, we apply
the k-means to the Kylylahti-array data. The clustering perfor-
mance is evaluated by automatically running the k-means pro-
cedure with an initial number of clusters ranging from 1 to 81,
using randomly generated input-parameter subsets (see
Appendix D for the details on subset generation) with sizes
ranging from 1 to 81 (maximum number of input parameters
for each input-feature domain). We separately analyze the best
number of clusters for each input-feature domain (beamform-
ing, location, and PSD) depending on the number of input
parameters. The results for this exercise are shown in Figure 4.

From the results shown in Figure 4, we obtain a limited range
of optimal numbers of clusters (k) and numbers of input
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Figure 3. Input-feature extraction and data augmentation scheme
for the location feature domain. The color version of this figure is
available only in the electronic edition.

parameters to investigate. The k-means processing in blind
unsupervised step provides us the reasonable range of k-values
to inspect and, potentially, the optimal sizes of the input-param-
eter subsets. In general, choosing different numbers of input
parameters affects the retrieved number of clusters (e.g., for four
input parameters the optimal cluster number is 20, and for 11
input parameters it is 39; see Fig. 4b). Thanks to the blind clus-
tering analysis summarized in Figure 4, we did not further have
to test all of them but only the limited range that provides stable
results (between 25 and 81 input parameters). Apart from this
observation, analysis of Figure 4 indicates that, depending on the
selected subset of input features, different numbers of clusters
are indicated as optimal, but most of the subsets provide a num-
ber of clusters close to the average value of all evaluations. This
average value (from hereafter referred to as optimal) of number
of clusters quickly reaches the stable level (the values between
the dashed lines in Fig. 4) of ~40 for every input feature. The
convergence to around 40 clusters is reached at 25 input param-
eters, and interestingly this trend appears for every input feature
(compare plots in Fig. 4a—c). The fact that we can observe con-
vergence to the optimal k-values for relatively small numbers of
input parameters suggests that the computational effort of unsu-
pervised clustering can be reduced using only 25 instead of 81
input parameters. These numbers might differ when other steps
(e.g., different input features are used) are adapted. The analysis
of input parameters derived from input features we use in this
study (see Appendices B and C; for the detailed comparison
of input features used in this study) indicated that PSD does
not provide sufficient differentiation of seismic events in the
Kylylahti area. Basing on the temporal changes of the input-
parameter values (see Fig. A3), and cluster membership (see
Fig. Cl1), for further analysis we use only the location and
beamforming feature domains.
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MCFS processing. From Figure 4, we can see that for the
majority of the tested input-parameter numbers the difference
between the resulting k-numbers is small, that is, we end up
having ~40 different clusters regardless of using 25 or 80 input
parameters. This observation might be biased because we have
still not evaluated all possible combinations of input parame-
ters. To select the best subset of input features from the two
input-feature domains (location and beamforming) and 162
total input parameters, we used the MCFS technique. The pro-
cedure of MCFS processing is described in Appendix C. In
Figure 5, we show the most significant input parameters
(results of the MCEFS processing step) projected from the
downsampled grid (see Fig. C2b for location of input param-
eters on a resampled grid) on feature maps. Figure 5a shows
location input parameters with the highest significance
mapped on a nonresampled grid. The maxima (warm colors)
occur at the mine and city areas (gray lines); however, we can
also see the presence of high-significance grid points in areas
not related to the currently known AN sources. The beam-
forming plot (Fig. 5b) shows significant parameters at angles
consistent with the location of AN sources visible in the location
map. Apparent velocities related to seismic energy from these
directions cover a wide range (~2-10 km/s). Again, in addition
to the known, expected sources of noise, Figure 5b indicates the
presence of energy with velocities of ~3 km/s coming from the
southwest direction and very low-velocity events indicated by
the high-amplitude edges of the beamforming map. The latter
is intuitive because beamforming with a plane-wave assumption
means averaging the wavefield along straight azimuthal paths
Number 1 www.srl-online.org
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Figure 4. Optimal number of clusters for different number of input
parameters obtained from (a) location, (b) beamforming, and
(c) power spectral density feature domains. Gray dots represent
the mean results from the elbow test run on 20 random com-
binations of input parameters. Vertical gray intervals indicate the
range of results obtained from 20 tests. Dashed lines denote the
range of input-parameter subsets selected for further analysis.
The transparent gray rectangle in (a) indicates the result for which
we show the procedure of random input parameter selection in
Figure D1. The color version of this figure is available only in the
electronic edition.

(Rost and Thomas, 2002), thus it might enhance recorded
plane-wave events (usually having low frequency) traveling with
velocities determined by the near-surface layers. The results
confirm the fidelity of MCFS processing and indicate that unsu-
pervised clustering can detect AN seismic events related to dom-
inant noise sources.

Constrained clustering

In this step, we obtain the final cluster membership (i.e., opti-
mal number of clusters) by performing the k-means analysis
using parameters indicated in blind clustering step. As input
to the constrained clustering step, we use a subset of 40 param-
eters of the highest significance derived from both the location
and beamforming domains (38 parameters with the highest
significance and two parameters with hits oscillating around
30; see Fig. C2a). To establish the final, optimal k-number
for our study, we use silhouette analysis and highlight the best
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k-number using average silhouette values calculated for
11 k-numbers ranging from 35 to 45. For further analysis, we
select k = 40 because it exhibits the highest average silhouette
value. Figure 6a shows the silhouette plot for k = 40.

Cluster QC
Silhouette analysis. The general overview of cluster quality

and their size can be analyzed on the silhouette plot and bar plot
showing cluster sizes (Fig. 6a and 6b, respectively). The cluster
sizes on the bar plot (Fig. 6b) are reflected in the width of the
silhouette results (Fig. 6a) for each cluster. To obtain more
insight into the clustering behavior with time, in Figure 6c
we show which clusters are appearing at which time instances
(hours of recorded AN).

The plots in Figure 6 allow us to draw first conclusions about
the cluster structure exhibited by the Kylylahti data. First, the
cluster size indicates whether we deal with a common event type
expected in the recording area (surface-activity events) or
unusual events related to specific activities (e.g., underground
blasts or active seismic shooting). Second, the silhouette plot
provides the consistency of each cluster. Higher silhouettes indi-
cate a similarity of events from the same cluster, which are thus
more likely related to repetitive sources. The plot in Figure 6¢
visualizes how many different clusters appear at each hour,
which may allow relating specific event types with a priori
knowledge about AN sources in the recording area. For the
Kylylahti-array data, the silhouette values are relatively low
(Rousseeuw, 1987; maxima ~0.4), and we accordingly use the
presence of negative silhouette scores as the threshold criterion.
From the 40 clusters, we select 10 clusters with positive silhouette
values only, denoted with dark colors in Figure 6a. The selected
clusters are shown on the bar plot (darker bars in Fig. 6b) and
marked with bold roman numbers in Figure 6¢. A representative
event for each evaluated cluster is shown in Figure 7.

376 Seismological Research Letters

Downloaded from https://pups.geoscienceworld.org/ssa/srl/article-pdf/91/1/370/4910542/srl-2019063.1.pdf
bv Instvtut Nauk-Geoloaicznveh user

0
3500

~

ide

Amplitud
Slowness Y (s/m

0 .
-0.5-0.4 -0.3-0.2-0.1 0 0.1 02 0.3 04 05
Slowness X (s/m)

Figure 5. Multicluster feature selection results for location and
beamforming feature domains. Result of 2D interpolation of
values shown in Figure C2b on (a) location and (b) beamforming
plots. The color version of this figure is available only in the
electronic edition.

Visual inspection. The final step of the ML module is the
visual inspection of the cluster content. We visually inspect
the content of clusters whether the events present in one cluster
represent the same type. These events can be further described
in terms of human perception. For the clusters with only pos-
itive silhouette values the detection accuracy is ~90%, whereas
for the clusters with negative silhouettes the score accuracy
varies between 70% and 85%. By accuracy, we mean the ratio
of the number of events that match the same type to the size of
a cluster. After verifying the content of the clusters with only
positive silhouettes, we can refer to them as event types.

Final output
AN events related to clusters I-V are mainly surface waves.
Clusters IV and V contain the majority of the events and are
the most common type of seismic events in the Kylylahti area.
Cluster IV represents random noise without coherent energy.
Cluster V mostly contains events related to surface waves gen-
erated by the persistent activity of mine ventilation, manifested
as very strong air waves. A similar type of event was reported in
other AN studies (e.g., Cheraghi et al., 2015). Surprisingly, this
event occurs more frequently than the incoherent noise (clus-
ter IV), which indicates the dominant influence of mine-
related noise in the Kylylahti area. The events in cluster VI are
plane surface waves likely coming from a distant open-pit
mine. Cluster VII contains events from active shots, and clus-
ters VIII-X contain body-wave events due to underground
Volume 91 « Number 1 .
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mine activity. Events from clusters VIII-X exhibit similar
hyperbolic moveout but differ in the number of visible phases
and apparent velocities. Based on these results, clusters VIII-X
are preferred for SI reflection imaging (possibly also for direct
reverse vertical seismic profiling, see e.g., Quiros et al., 2017).
Clusters related to surface sources (excluding noise generated
by the mine) would be a useful input for AN surface-wave
tomography. Events from cluster V could be used as an input
for adaptive filters to suppress repetitive noise, which is other-
wise difficult to remove in the frequency-wavenumber domain
(Roots et al., 2017).

Discussion

The hybrid workflow presented in this study is a generic method
for detection and classification of seismic events in the continu-
ous recordings. Here, we discuss the potential modifications in
terms of applying different processing techniques and indicate
other targets datasets feasible to apply our methodology.

Streamlining the hybrid workflow

Processing steps indicated in Figure 2 can be easily modified: in
the array-processing module, alternative input features and
array-processing techniques might be considered; and in the ML
analysis module: the unsupervised clustering algorithms and
their parameterization as well as cluster QC tools might be
replaced.

The scope of this study is not related to the comparison of
the performance of different techniques, as our goal was to
investigate the general feasibility of unsupervised clustering in
AN events classification. However, we indicate other solutions
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Figure 6. Quality-control plots for the constrained unsupervised
clustering. (a) Silhouette result for the k-means clustering using
k = 40; darker colors denote clusters with only positive silhou-
ette values. (b) The number of ambient-noise (AN) events for the
determined clusters; clusters selected for visual inspection are
denoted with darker bars. (c) The number of clusters (shown with
gray dots) and their incidence for every time point of recorded
data for one day; clusters selected for evaluation are denoted
with bold roman numbers. The gray dashed line connecting
number of cluster values reflects the change of AN wavefield
diversity in the recording area.

which might improve the detection and classification rate of
our workflow; in particular, to adapt it for other datasets. For
further discussion on this, please see Appendix E.

We expect that biggest improvement of our methodology
might be related to the selection of clustering technique in blind
and constrained clustering steps. As indicated in Appendix B,
the characteristic features of k-means are (1) the necessity for
providing the initial number of clusters, (2) using mean value
to obtain the centroids, and (3) using specified distance metric.
Exemplary unsupervised techniques which might be considered
as replacement for k-means are (a) k-medians, (b) mean-shift
clustering, and (c) hierarchical clustering. See Appendix E
for more elaborate discussion about difference between these
algorithms. Here, we mention some unsupervised clustering
algorithms which propose other solutions and may provide dif-
ferent clustering results.

As indicated by comparison of time complexity of unsuper-
vised algorithms (see Appendix E), all of these techniques are
much more computationally heavy as compared to k-means
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(Steinbach et al., 2004). K-median exhibits the same time com-
plexity as k-means; however, because computing the median
involves sorting the data points in each iteration it is still more
time consuming than k-means. The computational time supe-
riority of k-means algorithm makes it the natural candidate to
evaluate the general performance of unsupervised approach for
large seismic datasets (assuming we consider the unsupervised
clustering as a robust tool for initial characterization of data,
prior to more detailed evaluations). On the other hand, when
the accurate events catalog serving as input labels for super-
vised studies is needed, then the aforementioned methods
might be tried. Another solution is to combine two different
algorithms into single workflow. Such approach allows to
account for limitations of different algorithms. For instance,
k-means can be applied for initial data clustering (as in blind
clustering step in our workflow) and then mean-shift cluster-
ing can be performed on reduced dataset (using only the data
points being cluster centers indicated by k-means). By such
approach, the risks of (1) choosing wrong initial cluster num-
ber in k-means (by merging the surplus clusters with mean-
shift), and (2) producing small uncertain clusters (k-means
indicates cluster with high number of data points) are reduced.
Toward adapting the unsupervised clustering of AN events as
the routine seismological processing workflow, a study com-
paring the performance of different clustering methods should
be undertaken.

Potential applications

The primary potential application of the approach we pro-
posed here is for arrays deployed in areas where little or no
prior knowledge is available about the AN content, for exam-
ple, during site-assessment recordings (Wilmore, 1979), AN SI
imaging studies in remote areas (Draganov et al., 2013), or
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Figure 7. Representative events for the clusters indicated darker
bars in Figure 6b. The color version of this figure is available only
in the electronic edition.

extraterrestrial terrains (Nishitsuji et al, 2016). In such cases,
assumptions in terms of data processing and detection thresh-
olds need to be limited to a minimum, and the detection proc-
ess must be based on data-driven differences between event
representations in preselected transformed domains.

A second application is for volumes of AN recordings that
require careful inspection of continuous recordings segmented
into many short time windows (e.g., very-long continuous
recordings coming from areas with an abundance of seismic
activity; Hansen and Schmandt, 2015). Several successful stud-
ies have already shown the potential of ML techniques in such
a context, with convolutional neural networks being the most
promising technique (e.g., Perol et al., 2018; Woollam et al.,
2019; Wu et al., 2019). However, most of these studies required
initial knowledge about the AN event types present in the
recording area to use as labels in supervised ML. When such
knowledge is unavailable, unsupervised ML should be consid-
ered primarily as a tool that provides labels (analyzing a small
portion of the data) that support the more detailed supervised
ML techniques. We aim for a methodology that is easily adapt-
able to different types of seismic arrays, with sparser spacing,
less recording nodes, and deployment in less noisy or even
remote areas. Regional-scale seismological arrays would be
the next candidate to use to test our method.

Conclusions
In this study, we presented a hybrid-approach methodology for
unsupervised clustering of AN events recorded by a large-N
Volume 91 « Number 1 .
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array. The methodology allows the detection of multiple event
classes and selectively using the events for example, reflected
body-wave imaging or surface-wave tomography with seismic-
interferometry techniques. Our hybrid approach combines
(1) array-processing techniques that provide spatiotemporal
characterization of continuous AN data and (2) ML techniques
that rely on the array-processing outputs. We applied our
methodology to a subset (20 hr) of data that was acquired using
a large-N array deployed over the Kylylahti mine (eastern
Finland). Using array-processing techniques, we obtained
directivity, velocity, and frequency representations of the AN
data. Then, we transformed these representations to vector-
shaped matrices. The transformed data were input into unsu-
pervised ML methods applied in a step-by-step workflow:
elbow test, k-means, and silhouette. These methods estimated
the best number of classes characterizing the AN recordings
and consequently assigned the proper class membership (clus-
ter) to each data sample. The unsupervised clustering indicated
40 clusters. This number was derived from the elbow-test
analysis and was further reduced to 10 classes by visual inspec-
tion and silhouette QC. These 10 different classes represented
different seismic-event types with a detection accuracy of
~90%. We achieved the automatic detection without a priori
knowledge of AN wavefield and detection thresholds. We dem-
onstrated that large volumes of continuous AN data can be
easily classified, labeled, and turned into an event-oriented
database, which can further be used for various purposes
(imaging, monitoring, and so on).

Data and Resources

The Kylylahti-array data were acquired as a part of the ERA-MIN
Cost-effective Geophysical Imaging Techniques for supporting
Ongoing MINeral exploration in Europe (COGITO-MIN) project.
The data are embargoed until 31 December 2020 after which time
they will be available from the induced seismicity-European plate
observing system Anthropogenic Hazards (EPOS TCS AH) online
platform (https://tcs.ah-epos.eu). The multicluster feature selection
(MCEFS) method (Cai et al., 2010) source codes are freely available
at  http://www.cad.zju.edu.cn/home/dengcai/Data/MCFS.html.  All
websites were last accessed August 2019.
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Appendix A

Array-processing and machine-learning hybrid
workflow

Input-feature selection. Below, we describe the array-
processing techniques used in our study for the extraction
of input features.

Beamforming is a very effective tool for evaluating velocity
and direction using seismic arrays (e.g., Johnson and Dudgeon,
1993; Rost and Thomas, 2002; Gerstoft and Tanimoto, 2007;
Harmon et al., 2008; Draganov et al., 2013; Brenguier ef al., 2016).
In the simplest delay-sum form, it is based on summing the
recordings from N nodes by applying appropriate time delays 7;:

N

B = st + 1),

i=1

(A1)

in which s; is the sample of the seismogram from station i
recorded at time £. The time delay 7; is the arrival-time difference
of the wavefront between the seismometer at site i and the seis-
mometer at a reference site. Therefore, the beamforming output
calculated for each noise panel (time sample) contains output
being the function of the velocity and dominant direction of the
ambient-noise (AN) wavefield recorded at a given time instance.

Power spectral density (PSD) captures both the energy and
frequency of AN. It is used in global AN reference models
(Peterson, 1993). PSD is a suitable spectral representation of
seismic noise (Bormann, 1998), and it is commonly used as
AN data quality indicator (e.g., Lehujeur et al., 2018) and as
a part of a selection filter in extracting signals useful for
AN seismic interferometry (Draganov et al., 2013; Roots et al.,
2017). Based on the PSD values, it is easy to discern intense and
quiet periods of noise activity (Peterson, 1993); thus, PSD is a
suitable tool for detection of AN events. PSD can be defined as
the Fourier transform of the autocorrelation function

p(1) = (F()f (t + 7)), that is:

P(w) = / " p(0) expliwr)dr. (A2)
To account for the location of the AN sources, we select the
InterLoc method (Dales et al., 2017). This approach was
already verified in the setting dominated by the mine noise
(Dales et al., 2017), and is calculated in the cross-correlation
domain, therefore enhancing any potential AN event captured
in a given noise panel. The location L is calculated using the
following formula:
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(A3)

N N
L@ =) ) Ciri-1)

i=1 j=i+1

in which Cj; is the set of time-domain cross correlations
between every unique pair of receivers i and j, in which N
is the number of receivers and 1, is the travel time from loca-
tion vector g to receiver n.

Data preprocessing. In this section, the input raw continu-
ous recordings are passed through conventional AN processing
workflow using normalization techniques commonly applied
in the seismological community (see e.g., Bensen et al., 2007).

The input for the data preprocessing step in this study com-
prises 20 hr of continuous AN data, which was recorded during a
single day. We select a day with a variety of different activities,
including road traffic, mine operations (underground blasting
and surface drillings), and controlled-source shooting (Vibroseis
and explosives). We split the recordings into 10-second-long
noise panels with a 0.1 s overlap, which results in 7980 noise pan-
els for the entire day. Then, we apply band-pass filtering (5-10-
110-120 Hz). Assuming we have no a priori knowledge about the
frequency of seismic events in the Kylylahti area, we set up the
corner frequencies only to avoid spatial and frequency aliasing.
After filtering, we apply trace energy normalization (by dividing
each trace in each noise panel by its energy) and finally taper the
5% on each end of every trace using a Gaussian-shape window.

Input-feature extraction. The input-feature extraction step
for location features for the Kylylahti data consisted of (1) com-
puting the location for every noise panel using the InterLoc
method, (2) computing the PSD for every noise panel, and
(3) computing the beamforming for every noise panel using
the delay and sum beamforming algorithm.

Data augmentation. In the data augmentation step, we proc-
ess the input features represented by array-processing outputs
obtained in the Input-Feature Extraction step. As opposed to
the processing applied in the Data Preprocessing step, here we
apply normalization techniques commonly used in the machine-
learning community (this normalization is referred to as feature
scaling). In Figure A2, we show the example output of all
processing techniques used in this study, calculated for seven
consecutive noise panels.

In this study, the input to the data augmentation step consists
of input features obtained from the beamforming, InterLoc, and
PSD. To lower the computational effort, without losing informa-
tion about coherent events, the output of these array-processing
techniques is subjected to the following procedure: (1) smooth-
ing, (2) downsampling, and (3) vectorizing to obtain a vector
with 81 input parameters. The result of applying this procedure
on exemplary seven noise panels is shown in Figure A2. Then,
with feature scaling (Singh et al., 2015), we scale the data per
feature so that every input parameter of one feature over all
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panels (noise samples) is normalized having a mean value of 0.
Figure 3 illustrates the procedure of the data augmentation in
the location feature domain. For the more detailed parameters,
see comments in the Figure Al. For the location-parameter case,
each input parameter represents the value from a single grid
node. The previous procedure is repeated for every noise panel
and we thus obtained a vector of input parameters for each
recorded noise panel. A similar procedure is applied to obtain
input-parameter vectors for beamforming and PSD (see Fig. A2).
The data were processed such that the vectors with input param-
eters for each feature domain had an equal number of elements as
indicated in Figure A2.

Figure A3 shows the input parameters obtained for the
three input-feature domains for the entire day of recording,
represented by 7980 columns (noise panels; this totals to
20 hr). Each of the 81 rows in each of the three panels in
Figure A3 represents a single input parameter for all noise pan-
els. Temporal changes of the values presented in Figure A3 pro-
vide the first hints of the clustering preponderances of each
feature domain. Evaluating features from the three different
domains enables detection of different types of AN variations
(varying length of horizontal stripes of similar color). The beam-
forming input-feature domain (Fig. A3b) seems to change in
the slowest manner. The plot for the location input feature
(Fig. A3a) indicates relatively faster changes, although the
pattern of continuity remains visible. The location and the
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Figure A1. Extended version of the hybrid workflow sketch
showed in Figure 2. The parts of processing flow described in the
main body are denoted with “MB" and those in the Appendix A.
The asterisk denotes additional processing step for estimating the
influence of recording time on clustering results. The bold values
and terms are provided to indicate the processing details and
values selected especially for this study. AN, ambient noise;
ML, machine learning. The color version of this figure is available
only in the electronic edition.

beamforming domain seem to exhibit hourly changes, which
indicate periodicity. On the other hand, the PSD-feature domain
(Fig. A3c) exhibits a spiky character. In general, the beamform-
ing and location domains, due to their smooth variability and
the presence of repeatable patterns, appear to be more sensitive
to possible different source types. The high randomness of the
PSD feature indicates that it is very prone to random local noise
that affects only up to several neighboring receivers and is not
related to coherent events on the array scale. Location and
beamforming, due to their inherent spatial summation, suppress
the random local-noise fluctuations to some extent.

Appendix B
Unsupervised clustering techniques

K-means. Clustering (e.g., Singh et al., 2013) is a division
of data samples into groups of similar characteristics. This
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selection is often formulated as minimization of an objective
function (Ding and He, 2004). One of the most intuitive and
popular clustering algorithms is k-means clustering (Lloyd,
1982). The basic idea behind k-means clustering is to define
k clusters (groups) S = {S1, 82,83, ..., S} such that a given
dataset is classified through a predefined number of clusters
k. Mathematical expression of the core of k-means can be given
as minimization of an objective function defined as

k n
argmin E E
j=1 i=l1

in which ||xlg) - mj| |? is a distance measure between a given data
point x? and the cluster center m;, equal to the mean of points in
the given cluster S;. Thus, the cluster center (centroid) is the indi-
cator of the distance of the n data points from their respective
cluster centers. The practical measure of cluster compactness is
the within-cluster sum of squares (WSS), which is expressed as
total variance of clustering:

2
>

(B1)

xl(]) - m]

k
> 18| Vars,. (B2)
i=1
Generally, smaller values of WSS mean better clustering. The

minimization of the total variance in k-means is preformed
iteratively as follows:
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Figure A2. Data augmentation scheme for all array-processing
techniques analyzed in this study: location (top row), power
spectral density (PSD) (middle row), and beamforming (bottom
row). The color version of this figure is available only in the
electronic edition.

1. choose k-points mgl), o m,((l)

(centroids) in the space of the clustered objects;
2. assign each observation x, to the group §' with the
closest cluster center:

as initial cluster centers

S =il =i |2 <|lx,~m" Vi1 <j<k}  (B3)

in which ¢ denotes iteration number, ||x, — mft) [|? is the
Euclidean distance from the observation x, to the cluster
center m;, and Vj stands for every j;

3. after assigning all data points, recompute the centroids
for each cluster

> X (B4)

X GS?)

@y _ 1
’ 1571

4. repeat steps (2) and (3) until convergence is achieved,
that is, until the cluster centers stop changing.
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Similar to other clustering approaches, the convergence of
the k-means result does not assure finding the global-objective
function minimum (MacQueen, 1967). This is because k-means
is a data exploratory method. In other words, the algorithm
result is affected by the a priori chosen number of clusters.
To reduce such bias, several methods have been developed.
In this study, we adapt the elbow test (Thorndike, 1953) together
with the silhouette analysis (Rousseeuw, 1987).

Elbow test and Silhouette analysis. The elbow test
(Thorndike, 1953) measures the total WSS as a function of
the number of clusters, which is chosen such that adding
another cluster does not improve the total WSS. We run
the elbow test in an automatic way and measure the percentage
of variance explained by the currently tested number of clus-
ters. Out of all elbow-test evaluations, we select the one with
the highest percentage of data-variance explained. In addition
to testing k-numbers, we evaluated the elbow test on different
sizes of input-parameter subsets.

We use the elbow test as the main tool in our blind unsu-
pervised approach, that is, it allows scanning the range of
potential numbers of clusters instead of assuming one (possibly
wrong) k-value. The results obtained for adjacent cluster num-
bers could be similar. Therefore, the elbow test indicates the
range of optimal numbers of clusters. To further select the best
k-value, we use the silhouette value (Rousseeuw, 1987).
Number 1 www.srl-online.org
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Figure A3. Input parameters (after data augmentation step) cal-
culated for 20 hr of ambient-noise recordings. (a) Location,

(b) beamforming, and (c) PSD. Each of the 81 rows in every panel
represents a single input parameter for the entire day of
recording, and each column shows the entire input-parameter
vector for one noise panel. The color version of this figure is
available only in the electronic edition.

Silhouette analysis, on the other hand, is performed on the
already clustered data. This method graphically provides how
individual clusters are separated each other and how dense
samples per cluster are plotted. To explain the logic behind,
let us first assume that each data point x; belongs to the certain
cluster S; indicated by k-means procedure. Then, we introduce
the average distance between x; and the remaining data points
in the same cluster as

alx) = |S,|1_1 3 dx, %), (B5)

JEC,,i#]

in which d(x;, x;) is the distance between data points x; and x;
within the cluster S;. Thus, a(x;) measures the dissimilarity of
x; to all other points in cluster S;. Now we define the minimum
average distance of data x; to all data points in clusters other
than S;:
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b(x,) = rglnﬁ > e, x). (B6)
j€Ck
The value b(x;) gives the measure of dissimilarity of all clusters
to which x; does not belong. The cluster with the smallest b(x;)
value is called the neighboring cluster of data point x;. The
neighboring cluster would be the second-best choice for
accommodating x;, that is, the data point x; would be placed
there whenever cluster S; would be discarded.
Finally, the silhouette value is obtained by combing the
measures a(x;) and b(x;) as follows:

1 —% if a(x;) < b(x;),
si) =140 if a(x;) = b(x;), (B7)
% — if a(xi) > b(xi).
The value s(i) can be written in single formula as:
b(x;) — a(x;)
L) = . B
s(x;) max{(a(x;), b(x;)} (59

The value of s(x;) measures how well object x; has been clas-
sified. When s(x;) is close to 1, the dissimilarity of a(x;) is
much smaller than the dissimilarity b(x;), that is, the data point
x; has been assigned to the proper cluster. Conversely, when
s(x;) approaches —1, a(x;) is much larger than b(x;), so x; is
located closer to the neighboring cluster, that is, the object
was misclassified. After computing s(x;) for each data sample,
the silhouette graphical display can be constructed (see e.g.,
Fig. 6a). In the cluster QC step of our workflow, we use the pres-
ence of negative silhouette values as a key indicator of clusters
with probable low detection rate of seismic events.

To assess the clustering quality, we calculate not only visual
inspection of silhouette plots but also the average silhouette
value of individual clusters. In this approach, the average sil-
houette of observations for different k-values can be compared.
The optimal number of clusters k we eventually use is the one
that maximizes the average silhouette over a range of possible
k-values (Rousseeuw, 1987).

Appendix C

Temporal changes of cluster membership

To investigate the change of clustering behavior with time and
facilitate the selection of input-feature domains for further
study, we computed the average cluster membership for each
of the three evaluated input-feature domains (see Fig. C1). To
avoid averaging over different membership ranges, the averag-
ing was done only for the results obtained for the minimum
number of input parameters of 25 and the maximum of 81.
This plot does not provide the correct cluster memberships
(due to averaging over different memberships); rather, it indi-
cates the general behavior of event clustering with time and facil-
itates the comparison of input-feature selection on the obtained
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clustering. The cluster memberships for location and beam-
forming input features (Fig. Cla and Clb, respectively) tend
to change in a somewhat smooth way, which indicates that spe-
cific types of events appear in specific periods. The power spec-
tral density (PSD) input parameters provide sparse and irregular
membership (already expected from Fig. A3c) and the smallest
range of cluster memberships (25-40). Such clustering indicates
that even if the PSD input-feature domain might allow distin-
guishing between different clusters, the relatively small distance
between them creates the risk of producing artificial clusters that
do not represent the multiclass structure of AN from Kylylahti
(i.e., do not explain the variance of our data).

Recordings acquired in an area dominated by human-
induced AN such as a mine or road traffic would likely be rich
in seismic events of similar type that appear at time instances
covering a time span of a few noise panels. Therefore, collating
observations from Figures 4, A3, and Cl1, we decide to further
use only the location and beamforming domains in this study.

MCFS processing
The multicluster feature selection (MCFS) method is a tech-
nique for the unsupervised selection of input-parameter subset.
In this method, the combination of input parameters which
would maintain the high number of clusters provided minimum
input data are selected (for details, see Cai et al.,, 2010). In the
MCES processing step, we run MCEFS on the range of k-values
indicated by the initial blind clustering results shown in Figure 4.
We test different sizes n of those subsets and iterate through
them with 7 ranging from 20 to 59 (i.e., we run MCFS 40 times).
For each test, we retrieve a subset of input parameters with the
highest MCES score.

Then, we rank each input parameter by the number of times
it was included in the best subset. Figure C2a shows the number
of MCEFS hits for each input parameter. The plot is divided into
two sections by the dashed line separating the input parameters
obtained from the location and beamforming domains. We can
see that in general there are three main groups in terms of input-
parameter significance: (1) features of very low significance
(values of ~0-1), (2) moderate-significance features (1-30),
and (3) high-significance features (~40). The split of the most
significant parameters between beamforming and location is
relatively balanced. In terms of the most influential input
parameters, 22 come from location and 16 from beamforming
(significance parameters with values of 40 were selected as the
best subset in every iteration).

Each input parameter represents a single grid node either in
the location or beamforming output. This means that the input
parameters as the specific characteristics describe the noise
panels (location, slowness, and angle of incidence). Figure C2b
shows the most significant parameters located on the resampled
grid for the location (left panel) and beamforming (right panel).
In addition, we use a 2D linear interpolation to project the most
significant input parameters on feature maps shown in Figure 6.
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Figure C1. Average cluster membership for every noise panel
recorded for one day obtained from (a) location, (b) beamform-
ing, and (c) power spectral density feature domains. Averaging
was performed over k-results obtained for input-parameter
numbers between 25 and 81. Gray dots represent the cluster
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membership for a given data sample and dashed blue line is the
polynomial fit visualizing the time behavior of cluster variability.
The color version of this figure is available only in the electronic
edition.
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Figure C2. Multicluster feature selection (MCFS) results for the
location and beamforming feature domains. (a) The number of
selections for the best input-parameter subset for each param-
eter, (b) the most significant input parameters projected on a
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resampled output of location (left panel) and beamforming (right
panel). The color version of this figure is available only in the
electronic edition.
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Appendix D

Random input-parameter subsets for elbow-test
analysis

Here, we describe the processing step which assures avoiding of
sampling the same input parameters in every iteration of k-
means in the blind clustering step. To this end, we randomize
the experiment: for each tested number of input parameters,
we run elbow tests on 20 different randomly selected subsets
of input parameters (see the whiskers plot in Fig. 4); the aver-
age values obtained from these 20 tests are denoted with gray
circles in Figure 4. The procedure of selecting subsets with ran-
dom input parameters is shown in Figure DI.

Appendix E

Workflow, other clustering methods, and
computational comparison

Input-feature selection, data preprocessing, and
input-feature extraction. As our methodology is aimed
for events recorded by arrays (of any size), the minimum cri-
terion requires that selected input-feature domain (in the input-
feature selection step) accounts for travel time and coherency of
the events. Therefore, it is logical to use any signal transforma-
tions after which we preserve or enhance this characteristics of
data. Such information can be also retrieved using single trace
operations by simultaneous analysis of data recorded by several
sensors (such as power spectral density in this study). Apart from
domains selected in this work, one could consider other domains,
for example, tau-p (Diebold and Stoffa, 1981), velocity spectral
analysis (Davies et al., 1971), frequency-wavenumber, curvlets
(Hennenfent and Herrmann, 2006), and skewness (or kurtosis).
These domains, not necessarily but might provide better repre-
sentation of events. However, comparisons of different domains
or finding the best combination is out of our scope. In this study,
we used beamforming as one of input features into the workflow.
However, we find that beamforming has useful aspect when even
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Figure D1. Procedure of generating random input-parameter
subsets for the case of 10 input parameters. The average cluster
membership evaluated for this case is denoted with the trans-
parent gray rectangle in Figure 4.

its performance is not superior because of plane-wave propaga-
tion assumption and the Nyquist wavenumber imposed by the
used array geometry.

For extraction of single input feature (for the input-feature
extraction step), usually more than one array-processing tech-
nique can be used (e.g., Rost and Thomas, 2009). Thus, the
selection of array-processing technique is more ambivalent
than selection of input feature. This means that the choice
of specific technique basically depends on two factors as fol-
lows. In the first place, it depends on the selected input-feature
domain. Meaning is that if we choose to replace the frequency
input-feature domain with the coherency of events, then for
example the array processing measuring semblance can be used
(Neidell and Taner, 1971). In the second place, the choice of spe-
cific technique depends on the array parameters and type of AN
in the recording area. It means that all processing techniques we
chose to extract the input features for this study might be
replaced. For instance, instead of InterLoc, the recently developed
local similarity check (Li, Peng, et al., 2018) developed for large-
number (large-N) arrays could be used. This method allows to
maximize the number of detected events and thus more detailed
event catalog.

Data preprocessing step involves applying a sequence
of processing techniques belonging to conventional routines
applied in seismological studies (see e.g., Bensen et al., 2007).
Their application aims to accentuate any seismic events
present in the recordings. Thanks to this, we increase proba-
bility of detecting more events, and consequently obtaining a
more comprehensive catalog of seismic events (high number of
Volume 91 « Number 1 .
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clusters populated with seismic events). Depending on the type
of background noise in the recording area, the most suitable
processing for enhancing the coherent events may vary (e.g.,
high-pass filtering for rejecting surface-wave content, or
low-pass filtering to suppress AN caused by urban activities),
and should be adjusted accordingly into our processing flow.

Other clustering methods. Clustering methods are mainly
categorized either of nonhierarchical (or called partitional
optimization) method (e.g., k-means) or hierarchical method.
In general, nonhierarchical method is known to perform better
than hierarchical method especially when we deal with large
amount of data (Kaufman and Rousseeuw, 1990). In addition
to k-means, there are other nonhierarchical methods such as
k-medians method (Jain and Dubes, 1988). This method uses
median (defined as value in the center of all sorted data points)
to compute the cluster centers. Median value as opposed to
mean is less influenced by outliers, and thus k-medians algo-
rithm results in clustering less affected by values not represent-
ing any class.

As for the hierarchical clustering, a number of methods exist
such as the Ward (1963) method, group average method (Sokal
and Michener, 1958), single linkage method (Florek et al, 1951),
and complete linkage method (Lance and Williams, 1967).
Because the hierarchical clustering is generally considered to
be not suitable for large dataset (Kaufman and Rousseeuw,
1990), we do not introduce their details here.
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The choice of an appropriate method is extremely difficult
in practice to determine a priori because one consequently
need to evaluate all approaches with different test (score) based
on different metric (e.g., euclidean, cityblock, minkowski, can-
bella, cosine, and so on). Our primary goal is a hybrid auto-
mation of seismic processing rather than which clustering
method gives best outcomes.

Computational efficiency comparison. To express it
quantitatively, we us the big O notation used in computer sci-
ence as an algorithmic efficiency measure and allows to express
the upper bound of maximum number of operations specific for
the given type of algorithm. In this study, #n denotes number of
data points. For the simplest case of linear complexity of algo-
rithms it can be written as O(#n), which means that runtime of
algorithm grows proportionally to #. For the unsupervised clus-
tering algorithms mentioned earlier, the runtime algorithm
complexities are k-means O(1),; mean-shift clustering O(n?),;
and hierarchical clustering O(n?). It means that the runtime
of k-means algorithm exhibit linear proportionality to number
of data points, for the mean-shift—is proportional to the
squared number of points, and cubically for hierarchical cluster-
ing (assuming standard implementations for all of them).
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