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1

Introduction

This thesis presents a new method that can be used in seismic data process-
ing. The method aims to eliminate surface effects from seismic land data,
without disturbing the desired reflection information. Elastic reciprocity is
used for this purpose. This thesis discusses the implementation and practical
aspects of the method.

This introductory chapter serves three purposes. First, it gives a short
description of some of the basic terms used in seismic exploration. Second, it
discusses the problems we address in this thesis, and gives a summary of the
currently available techniques used to address these problems. Third, and
final, it gives an outline of this thesis.
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1.1 General description of seismic exploration

The main goal of seismic exploration is to make an image of the subsurface,
and to find its medium parameters. Preferably, this information is obtained
without making disruptions in the subsurface. The use of seismic (or sound)
waves is one example of such a non-destructive method. Traditional seismic
exploration aims at finding hydro-carbons such as oil and gas. Often, these
resources are located in reservoirs several kilometers deep in the earth. In
recent years, however, there were developments where the focus of seismic
exploration became the shallow subsurface, typically no more than 100 meters
deep. The main applications for this target area lie in subsurface engineering
(Steeples and Miller [1990]; Swinnen et al. [1998]), environmental issues and
archaeological investigations.

But how do we make an image of the subsurface by using seismic waves?
The following description is meant for those who are not familiar with seis-
mology, and will describe the basic terms.

We focus our attention on land seismic experiments only (as opposed to
marine seismics). In these experiments, the seismic waves we mentioned are
generated by a source at or just below the surface. This source can be dyna-
mite or, when we want the source to be more controlled, a vibrator source.
A special type of vibrator source, when we want to generate shear waves
(see Chapter 2), is the horizontal vibrator (Ghose et al. [1996]). The gener-
ated wave propagates into the subsurface. When it comes at a place where
the material properties of the subsurface change (i.e. when the wave encoun-
ters a layer interface or an object), part of the wave will be reflected, and
part of the wave will travel deeper into the subsurface, where it will (prob-
ably) encounter other changes. When the reflected part of the wave reaches
the surface, the resulting vibrations are detected by receivers, which we call
geophones. Figure 1.1 shows a graphical representation of the description
above. Such a configuration is also called a shot (i.e. one source, and several
recording receivers), and the resulting recorded data is subsequently called a
shot record, or equivalently, a common source gather. Generally, many shot
records are needed to obtain an adequate image of the subsurface.

The arrival time of a reflected wave tells us something about the velocity
with which it traveled through the subsurface, and therefore also about the
depth of the reflecting layer. Its amplitude is related to the spatial changes of
the medium properties. Therefore, the seismic data can be used to make an
image of the Earth’s subsurface. More information about processing seismic
data is found in for example Yilmaz [1987].
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Figure 1.1: Geometry for one shot record of a land seismic experiment. The arcs
indicate possible wave fronts of the generated waves, the triangles represent the geo-
phones.

1.2 Problem statement

1.2.1 Defining the problem

The difference between seismic experiments on land and marine seismic ex-
periments lies in the physical characteristics of the top layer. On land, the
top layer consists of an elastic medium, whereas in the marine case, it consists
of water, which is an acoustic medium. This difference results in different
types of surface related wave phenomena.

There are two types of waves that can propagate through an elastic
medium: compressional waves (P-waves) and shear waves (S-waves)1. The
velocity of shear waves is always lower than that of P-waves (we review the
proof for this in Chapter 2).

Shear waves are also divided into two types: waves polarized in a vertical
plane (SV-waves) and horizontally polarized waves (SH-waves). In many
cases, SH-waves are decoupled from the other two wave types, or, in other
words, they propagate independently. Since they have a lower velocity than

1In an acoustic medium, there is only one wave type, which is equivalent to a P-wave.
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P-waves, it is possible to have a higher resolution and more detail in the data
with the same frequency content. Also, in air- or gas-filled media, P-waves
are often severely scattered, while S-waves are hardly affected. These are the
reasons why a seismic SH-wave reflection experiment is an adequate and cost
effective method to image the shallow subsurface (Deidda and Balia [2001]).

Unfortunately, reflected waves are not the only type of waves that are
recorded. Seismic data are almost always polluted with surface related wave
phenomena. Surface waves are considered unwanted noise, because they carry
little or no subsurface information data. In the case of SH-waves, these sur-
face waves are called Love waves (so called because they were first described
by Love [1926]), and they often pose a large problem in the data process-
ing (Miller et al. [2001]). For an extended discussion on Love waves, see for
example Aki and Richards [1980].

Due to several reasons, it is difficult to remove surface waves, like Love
waves, from seismic data. One problem is that, since they propagate solely
along the surface, they attenuate slowly, and therefore they make up most of
the energy in a shot record, obscuring the reflection data from shallow layers.
Another problem, is that surface waves like Love waves and Rayleigh waves
have a group velocity that is almost equal to the shear wave velocity. This is
especially true for soft soils. This makes it hard to remove surface waves from
seismic data with conventional methods based on velocity discrimination,
such as (f, k)-domain filtering. A third problem is that many surface waves
are dispersive. This means that their phase velocity is frequency dependent.
It is yet another difficulty when we try to apply velocity based filtering.

1.2.2 Existing methods for removing surface effects

One of the earliest methods to suppress surface waves from seismic data is
the application of geophone arrays (Holtzman [1963]; Morse and Hildebrandt
[1989]). In this method, groups of geophones are placed in such a way that,
after summing their responses, they attenuate certain wavenumbers, hence
this resembles a moving-average filter. However, as this method is applied in
the field, before processing, it requires some a priori information of the sub-
surface. We have to know which wavenumbers will contain the surface waves
(which generally have shorter apparent wavelengths), and which wavenum-
bers will contain the desired reflection data (which generally have longer
apparent wavelengths), and design the geophone array with this information.

A processing method for removing dispersive events was developed for ex-
ample by Ernst and Herman [1998] or Blonk [1995]. They developed methods
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in which they estimate a model of the near subsurface, calculate the response,
and subtract that response from the data, thus leaving the deeper reflections
intact. However, these methods, as stated, require that a great amount of
time is spent in developing a model for the immediate subsurface, whereas
generally, the main focus of a seismic experiment is the structure of the deeper
layers.

Nguyen et al. [1999] propose a method where they use a combination
of filter techniques to remove dispersive surface waves. But a part of their
method uses the polarization characteristics of Rayleigh waves, and therefore
needs multi-component seismic data, whereas the main focus of this thesis
lies with single-component SH-wave data. Their method can therefore not
be used for removing Love waves from SH-wave data.

Saatçilar and Canitez [1994] developed a technique with the help of a
lattice filter. In addition to removing the surface waves, it also works as
a spiking/predictive deconvolution. But since this is a trace-by-trace filter
technique, it could damage the relative amplitudes of events in a record.
This is something we would like to avoid, in case the data is used in further
amplitude versus offset (AVO) studies.

1.2.3 Our approach

The ideal filter should be able to completely remove all effects caused by
the presence of the surface, but should simultaneously not disturb the effects
caused by the actual subsurface structure. Furthermore, it should not be
dependent on a priori information of the subsurface structure, since this
subsurface structure is the goal of the seismic experiment.

Our approach is similar to that of van Borselen et al. [1996]. They used
Rayleigh’s acoustic field reciprocity to remove surface related water layer
multiples from marine seismic data. The relevant difference between Love
waves and water layer multiples is that multiples are propagating waves,
whereas Love waves occur primarily in the evanescent regime. Van Borselen
et al. arrive at an iterative procedure, a so-called Neumann series expansion,
where the nth iteration removes the nth order multiple. A similar iterative
procedure was developed by Verschuur et al. [1992]. The difference is that
they first made a forward modeling scheme based on physical arguments,
and then inverted this scheme to arrive at an expression for the multiple-free
wavefield in terms of the wavefield containing surface multiples.

We use the Betti-Rayleigh elastic field reciprocity theorem and elasto-
dynamic wave theory. Reciprocity is a mathematical concept by which two
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different states are related to each other. In our case, the two states are
wavefields in an elastic medium. One state is defined as the actual state,
where a (stress-free) surface is present, the other state is the desired state,
that differs only from the actual state (i.e. the physical reality) by the ab-
sence of this surface. The result is an integral equation of the second kind,
from which we can find the wavefield without surface effects (especially the
Love waves) from the wavefield which includes those effects.

1.3 Outline of this thesis

Chapter 2 starts with the derivation of the elastodynamic equations. It intro-
duces the basic quantities that are used throughout this thesis. With these
elastodynamic equations, we show that the wavefield decouples into three dif-
ferent wave types (P-waves, SV-waves and SH-waves) in a homogeneous and
unbounded elastic medium. Also, this chapter derives the Betti-Rayleigh
reciprocity theorem, a mathematical tool to relate two states in an elastic
medium to each other. This is the starting point for the derivation of the
Love-wave suppression method.

Chapter 3 applies the Betti-Rayleigh reciprocity theorem on the decou-
pled case of SH-waves to arrive at an expression which relates the wavefields
of an actual state and a desired state to each other. The actual state has a
stress-free surface, as is the case in the field, while the desired state differs
only in the sense that it lacks a surface. The resulting expression is an inte-
gral equation of the second kind, which, after discretization, can be written as
a matrix equation. This matrix equation is solved with for example a direct
matrix inversion. Instead of just in the space domain, the matrix equation
can also be solved in the horizontal slowness domain. If we then assume
a horizontally layered medium, the kernel of the matrix equation becomes
diagonal, and an efficient algebraic expression is obtained. The chapter is
concluded with some examples of the method working on synthetic data.

In Chapter 4, a sensitivity study is performed on the method. We test
the method for deviations in the input parameters and for distorted input
data. A third test will be the sensitivity to the source wavelet, which is an
input vector of the method.

Chapter 5 follows the same strategy as Chapter 3, but applies the reci-
procity theorem on coupled P- and SV-wave systems. With this approach,
the aim is to remove Rayleigh waves from seismic data. Since P- and SV-
wave systems are coupled, the resulting removal equations are coupled too.
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For reasons of simplicity, we limit our analysis to horizontally layered config-
urations only, and we give one example where we remove the Rayleigh wave
from a homogeneous halfspace.

Finally, Chapter 6 concludes this thesis with a summary of the most
important conclusions and observations.
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Basic elastodynamic theory

In this chapter, we derive the linearized elastodynamic equations that de-
scribe the elastic wavefield in term of its relevant quantities: the stress and the
particle velocity, due to volume source densities of force, and volume source
densities of deformation rate. It is shown that three different wave types
exist in an elastic medium: compressional waves (P-waves), shear waves po-
larized in a vertical plane (SV-waves) and horizontally polarized shear waves
(SH-waves). Furthermore, it is shown that in a homogeneous and isotropic
medium, the SH-waves are decoupled from the other wave types.

Using the elastodynamic equations, we derive the Betti-Rayleigh reci-
procity theorem. This theorem provides a means to relate the elastodynamic
wavefields of two states in an elastic medium to each other. This reciprocity
theorem is the starting point of our analysis in Chapter 3.
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2.1 Mathematical considerations

A location in the 3-dimensional Euclidian space is denoted by a vector x =
{x1, x2, x3}, where a right-handed Cartesian coordinate system is used, set up
by three orthonormal base vectors {i1, i2, i3}, such that x = x1i1+x2i2+x3i3.
The i3 vector points vertically downward.

Where applicable, the Einstein summation convention for repeated indices
is employed, i.e. aibi stands for

∑3
i=1 aibi = a1b1 + a2b2 + a3b3.

The symbol ∂i will be used as a short-hand notation for the partial deriva-
tive with respect to the xi coordinate, and a differentiation with respect to
time is denoted as ∂t, where t is the time coordinate.

The Kronecker delta tensor is defined as: δi,j = 1 when i = j and 0
otherwise. The anti-symmetrical tensor of Levi-Civita is defined as: εi,j,k = 1
on an even permutation of 1, 2 and 3, εi,j,k = −1 on an odd permutation,
and εi,j,k = 0 otherwise.

2.2 Elastodynamic equations

For the course of this thesis, it is assumed that the changes in an elastic
medium due to wave propagation are small enough for the medium to behave
linearly. Here, we derive the basic equations that describe linearized elastic
wave propagation. Only a simple derivation is given, to introduce the basic
terms. For a more extensive discussion, we refer to de Hoop [1995] or Aki
and Richards [1980].

2.2.1 Equation of motion

Suppose we have an arbitrary elastic element, with volume V , bounded by
a closed surface S. External forces can be applied to it. They can cause the
element to move or to be deformed. The traction ti at a point on the surface
is defined as:

ti =
dFi,S

dA
, (dA) → 0, (2.1)

where dFi,S is the force in the xi direction on the surface, and dA is an
(infinitesimal small) piece of the surface. From there, we introduce the stress
tensor τi,j as:

ti = τi,jnj . (2.2)

Here, nj is the component in the xj direction of the unit normal vector on
the surface. So τi,j is the traction in the xi direction across a surface whose
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plane is perpendicular to the xj axis. From the linearized law of conservation
of angular momentum follows that the rate of change of angular momentum
is equal to the resultant moment of forces. De Hoop and Aki and Richards
show that this means that the stress tensor is symmetric: τi,j = τj,i.

From here, we go to Newtons equation of motion. This equation states
that the total of forces on the body (the surface forces ti and the volume
source density of body forces fi) causes a change in impulse:∮

S
tid2x +

∫
V

fid3x = ∂t

∫
V

ρvid3x. (2.3)

In this equation, ρ is the volume density of mass of the material, and vi is
the velocity of a particle within the material. The leftmost term of the left
side of this equation can, with the help of eq. (2.2) and Gauss’ divergence
theorem, be written as:∮

S
tid2x =

∮
S

τi,jnjd2x =
∫

V
∂jτi,jd3x. (2.4)

Now, we can put all the terms of eq. (2.3) under the integral:∫
V

[∂jτi,j + fi − ρ∂tvi] d3x = 0. (2.5)

Since this holds for any volume V , the integrand has to be zero, and we
obtain:

∂jτi,j − ρ∂tvi = −fi. (2.6)

This is the basic local form of the equation of motion.

2.2.2 Equation of deformation rate

Here we consider two particles in an elastic element, called P and Q, with
coordinates xP and xQ, respectively. As forces are acting on the body, each
particle will have a displacement, s(x, t), so that the particles will get a new
coordinate, x

′P = xP +s(xP , t) and x
′Q = xQ +s(xQ, t). This displacement

leads to a change in distance d(P, Q) =
√

(xQ
j − xP

j )(xQ
j − xP

j ) between the
two particles, which is approximately:{

d
(
P ′, Q′)}2 ≈ {d (P, Q)}2 + 2ep,q

(
xQ

p − xP
p

) (
xQ

q − xP
q

)
, (2.7)

in which:
ep,q = 1

2 (∂psq + ∂qsp + ∂psk∂qsk) , (2.8)
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and where d(P, Q) denotes the distance between P and Q. Usually however,
|∂psk| ¿ 1, so we can neglect higher order terms. Therefore, we can write
eq. (2.8) as:

ep,q = 1
2 (∂psq + ∂qsp) (2.9)

This tensor ep,q specifies the changes in distance between neighboring points,
due to forces acting on the body. It is called the strain tensor. This tensor
is by definition also symmetric: ep,q = eq,p.

The stress and the strain are related to each other. If the elastic material
has the following properties:

• the material behaves linearly,

• the material is locally reacting,

• the material reacts instantaneously,

it is called a perfectly elastic material. We can write:

τi,j = Ci,j,p,qep,q, (2.10)

where Ci,j,p,q represents the 81 components of the stiffness tensor. From the
symmetry of the stress tensor follows: Ci,j,p,q = Cj,i,p,q, from the symmetry of
the strain tensor follows: Ci,j,p,q = Ci,j,q,p, and Dahlen and Tromp [1998] show
that if the occurring deformations are adiabatic, then Ci,j,p,q = Cp,q,i,j . Thus
the number of independent coefficients of the stiffness tensor are reduced to
21. If the material is isotropic, the number of independent coefficients reduces
to two, and we can write:

Ci,j,p,q = λδi,jδp,q + µ(δi,pδj,q + δi,qδj,p), (2.11)

The coefficients λ and µ are known as the Lamé coefficients.
When eq. (2.10) is differentiated with respect to time, we arrive at the

linearized equation of deformation rate:

∂tτi,j = Ci,j,p,q (∂pvq − hp,q) , (2.12)

where we made use of the property that the strain tensor is symmetric.
We also introduced an external part of the deformation rate, hp,q, that is
representative for the action of external sources that impress a deformation
rate to the solid. This hp,q is called the volume source density of deformation
rate.
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nj

S

D1

D2

Figure 2.1: Boundary S between two adjacent media.

2.2.3 Boundary conditions

At some points in the elastic medium, its material properties may show dis-
continuities. There, the elastic wavefield quantities are not continuously dif-
ferentiable, and eq. (2.6) and eq. (2.12) are no longer valid. At these points,
boundary conditions are needed to supplement these equations. It is assumed
that these discontinuities consist of a jump by a finite amount in the material
parameters, across a boundary surface S.

Let S be a surface between two adjacent media, D1 and D2, that have
different material properties. The vector nj is the normal to S, pointing away
from D1 (see Figure 2.1). Then the following conditions hold:

The particle velocity vi is continuous across S, (2.13)
The traction τi,jnj is continuous across S. (2.14)

A special but very important boundary condition is given when the me-
dium D2 consists of a vacuum. Then, the boundary S is a free surface, and
the following boundary condition holds:

The traction vanishes at S, i.e. τi,jnj = 0 at S. (2.15)
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2.3 Equations in the Laplace domain

We introduce the symmetrical unit tensor of rank four as:

∆+
i,j,p,q = 1

2 (δi,pδj,q + δj,pδi,q) . (2.16)

With this, eq. (2.6) and eq. (2.12) are rewritten in a slightly different form:

∆+
i,j,p,q∂jτp,q(x, t) − ρ(x)∂tvi(x, t) = −fi(x, t), (2.17)

∆+
i,j,p,q∂pvq(x, t) − Si,j,p,q(x)∂tτp,q(x, t) = hi,j(x, t), (2.18)

in which

τi,j(x, t) = elastic stress tensor [Pa],
vi(x, t) = particle velocity [m/s],
ρ(x) = volume density of mass [kg/m3],

Si,j,p,q(x) = compliance tensor [Pa−1],
fi(x, t) = volume source density of force [N/m3],
hi,j(x, t) = volume source density of deformation rate [s−1].

The compliance tensor is the inverse of the stiffness tensor, and has the same
symmetry relations. Specifically, the relation between them is:

Si,j,m,nCm,n,p,q = ∆+
i,j,p,q. (2.19)

We assume that before a certain time, called t = 0, the elastic medium is
in a state of equilibrium. The medium is then excited by the sources. Due
to causality, changes in the elastic wavefield properties can only occur after
this excitation. Under these circumstances, it is mathematically advanta-
geous to perform a Laplace transformation with respect to time on eq. (2.17)
and eq. (2.18), since this will eliminate the time coordinate. Taking into
account that ∂t → s, when performing a Laplace transformation (defined in
Appendix A.1), we find:

∆+
i,j,p,q∂j τ̂p,q(x, s) − sρ(x)v̂i(x, s) = −f̂i(x, s), (2.20)

∆+
i,j,p,q∂pv̂q(x, s) − sSi,j,p,q(x)τ̂p,q(x, s) = ĥi,j(x, s). (2.21)

This formulation is the most convenient one for deriving the Betti-Rayleigh
reciprocity theorem.
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2.4 Elastic waves in an unbounded homogeneous medium

This section derives a differential equation for the particle velocity in an
unbounded homogeneous elastic medium, induced by both volume sources
of force and volume sources of deformation rate. The stress components τ̂i,j

are eliminated by substituting eq. (2.21) into eq. (2.20) and using eq. (2.19).
This way, we obtain the two-way wave equation for the particle velocity
components v̂i:

∂jCi,j,p,q∂pv̂q − s2ρv̂i = ∂jCi,j,p,qĥp,q − sf̂i. (2.22)

When a homogeneous, isotropic medium is assumed, eq. (2.11) can be sub-
stituted. When we also divide by ρ, we obtain:

λ + 2µ

ρ
∂i∂pv̂p −

µ

ρ
∂i∂pv̂p +

µ

ρ
∂p∂pv̂i − s2v̂i = −Q̂i, (2.23)

where Q̂i = s
ρ f̂i − Ci,j,p,q

ρ ∂j ĥp,q describes the source terms. This last equation
can also be written as:

λ + 2µ

ρ
∂i∂pv̂p −

µ

ρ
εi,j,k∂j(εk,p,q∂pv̂q) − s2v̂i = −Q̂i. (2.24)

This is a wave equation, and it tells us, that the wavefield consists of a curl-
free part (since the curl of a gradient is zero) that travels with a velocity of√

(λ + 2µ)/ρ, and a divergence-free part (since the divergence of a curl is
zero) that travels with a velocity of

√
µ/ρ. The curl-free part relates to the

P-waves, and the divergence-free part to the S-waves. We then define the
P-wave velocity cp and the S-wave velocity cs as:

cp =

√
λ + 2µ

ρ
, (2.25)

cs =
√

µ

ρ
, (2.26)

and observe that in any elastic medium, the S-wave velocity is always lower
than the P-wave velocity.

It is customary to introduce a P-wave potential Φ and an S-wave potential
Ψk according to:

v̂i = ∂iΦ + εi,j,k∂jΨk. (2.27)
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Φ and Ψk are called Lamé potentials (Berkhout [1987]). These potentials are
four functions, that together describe the three components of the particle
velocity. Hence, without loss of generality, we can define Ψi to be divergence
free: ∂iΨi = 0. When we take into account the rule for double curls (which,
in tensor notation, reads εi,j,k∂j(εk,m,n∂mΨn) = ∂i∂jΨj − ∂j∂jΨi), eq. (2.24)
becomes:

c2
p∂i

(
∂p∂pΦ − s2

c2
p

Φ
)

+ c2
sεi,j,k∂j

(
∂p∂pΨk − s2

c2
s

Ψk

)
= −Q̂i. (2.28)

This equation demonstrates even more clearly the separation between P-
waves and S-waves, and shows that both wave types are governed by a
Helmholtz wave equation.

It is customary to distinghuish between S-waves polarized in a verti-
cal plane (called SV-waves) and horizontally polarized S-waves (called SH-
waves). Assume a wave propagating in the (x1, x3)-plane, then for a com-
pressional wave (whose particle motion is perpendicular to the wave front)
we can write:

v̂1 = ∂1Φ,

v̂2 = 0, (2.29)
v̂3 = ∂3Φ,

and for SV-waves:

v̂1 = −∂3Ψ2,

v̂2 = 0, (2.30)
v̂3 = ∂1Ψ2,

and finally, for SH-waves:

v̂1 = 0,

v̂2 = ∂3Ψ1 − ∂1Ψ3, (2.31)
v̂3 = 0.

We have now distinguished three different wave types, which in an un-
bounded, homogeneous, isotropic and source-free medium propagate fully
independently. When a medium is layered (but independent of the x2-
direction), P-waves and SV-waves will interact at the boundaries of these
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layers. SH-waves, however, have a different polarization, and do not interact
with the P- and SV-waves at such boundaries.

Of course, in general inhomogeneous media, SV- and SH-waves cannot
be distinguished, and all three wave types are coupled. For the scope of
this thesis, however, we assume that SH-waves are decoupled from P- and
SV-waves. Most generally, this is the case when a medium is invariant in
the crossline (x2) direction, when we use point-sources and when we look at
the waves propagating in the (x1, x3)-plane. But it is also true when we use
line-sources in such a medium.

2.5 The Betti-Rayleigh reciprocity theorem

Reciprocity, in general terms, is a mathematical tool to relate two non-
identical states in the same spatial domain V to each other. Here, these
states are wavefields in elastic media. The two states are labeled with super-
scripts A and B. Thus, for state A we have:

∆+
i,j,p,q∂j τ̂

A
p,q(x, s) − sρA(x)v̂A

i (x, s) = −f̂A
i (x, s), (2.32)

∆+
i,j,p,q∂pv̂

A
q (x, s) − sSA

i,j,p,q(x)τ̂A
p,q(x, s) = ĥA

i,j(x, s), (2.33)

and for state B we have:

∆+
i,j,p,q∂j τ̂

B
p,q(x, s) − sρB(x)v̂B

i (x, s) = −f̂B
i (x, s), (2.34)

∆+
i,j,p,q∂pv̂

B
q (x, s) − sSB

i,j,p,q(x)τ̂B
p,q(x, s) = ĥB

i,j(x, s). (2.35)

In case of discontinuities in the material parameters, boundary conditions,
such as discussed in Section 2.2.3, are needed. As one can see, one elastic
state is actually a combination of three states: the field state (τ̂i,j and v̂i),
the material state (ρ and Si,j,p,q) and the source state (f̂i and ĥi,j). Instead
of giving eqs. (2.32)—(2.35) each time, the states can be summarized in a
reciprocity table, such as Table 2.1.

For simplicity, we drop the (x, s)-dependence in the notation. We define
the scalar interaction quantity between the two states as:

∆+
i,j,p,q∂i

(
τ̂A
p,qv̂

B
j − τ̂B

p,qv̂
A
j

)
=

v̂B
j ∆+

i,j,p,q∂iτ̂
A
p,q + τ̂A

p,q∆
+
i,j,p,q∂iv̂

B
j − v̂A

j ∆+
i,j,p,q∂iτ̂

B
p,q − τ̂B

p,q∆
+
i,j,p,q∂iv̂

A
j .

(2.36)
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Table 2.1: States in the elastodynamic reciprocity theorem.

State A State B

Field state
{

τ̂A
i,j , v̂

A
i

}
(x, s)

{
τ̂B
i,j , v̂

B
i

}
(x, s)

Material state
{

ρA, SA
i,j,p,q

}
(x)

{
ρB, SB

i,j,p,q

}
(x)

Source state
{

ĥA
p,q, f̂

A
i

}
(x, s)

{
ĥB

p,q, f̂
B
i

}
(x, s)

Domain V

Substituting eqs. (2.32)—(2.35) into this last equation and using the symme-

V

nj

∂V

Figure 2.2: Configuration of domain V for the application of the reciprocity theorem.
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try properties of the stress tensor to eliminate the ∆+
i,j,p,q tensor, we obtain:

∂j

(
τ̂A
i,j v̂

B
i − τ̂B

i,j v̂
A
i

)
=

s
(
SB

i,j,p,q − SA
p,q,i,j

)
τ̂A
i,j τ̂

B
p,q − s

(
ρB − ρA

)
v̂A
i v̂B

i

+f̂B
i v̂A

i + ĥB
i,j τ̂

A
i,j − f̂A

i v̂B
i − ĥA

i,j τ̂
B
i,j . (2.37)

This is the local form of the elastic reciprocity theorem.
The global form of the reciprocity theorem is obtained by integrating

eq. (2.37) over the volume V, which is bounded by the surface ∂V and where
the normal nj is pointing outward (see Figure 2.2), and by applying Gauss’
integral theorem. This leads to:∮

x∈∂V

(
τ̂A
i,j v̂

B
i − τ̂B

i,j v̂
A
i

)
njd2x =∫

x∈V

[
s
(
SB

i,j,p,q − SA
p,q,i,j

)
τ̂A
i,j τ̂

B
p,q − s

(
ρB − ρA

)
v̂A
i v̂B

i

]
d3x +∫

x∈V

[
f̂B

i v̂A
i + ĥB

i,j τ̂
A
i,j − f̂A

i v̂B
i − ĥA

i,j τ̂
B
i,j

]
d3x. (2.38)

This equation is the elastic field reciprocity in its global form for the do-
main V, and is also known as the Betti-Rayleigh reciprocity theorem.

2.6 Application of reciprocity: physical reciprocity

In marine, acoustic seismics, missing traces can be replaced by traces from
other shots, where source and receiver positions are swapped. This swapping
of source and receiver positions is called physical reciprocity, and can be
done because both sources and receivers are omni-directional. With elastic
seismics, this is obviously not the case. However, a similar form of physical
reciprocity is possible, and will be derived here.

We start by defining the sources for the two states. In state A, there is a
point source of force, pointing specifically in the xm direction, while in state
B, there is a point source of force, pointing specifically in the xn direction.
These sources are denoted for example by: f̂i(x, s) = f̂n(s)δi,nδ(x−xS). The
Kronecker delta implies, that should a summation over i occur, then there is
only a contribution when i equals n, and the superscript n is just a reminder
that this source points in the xn direction.

The resulting wavefield quantities due to these sources will be described
with an extra subscript, i.e. τ̂i,j;n and v̂i;n, which means that the wavefields
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Table 2.2: States for determining physical reciprocity.

State A State B

Field state
{

τ̂A
i,j;n, v̂A

i;n

}
(x|xA, s)

{
τ̂B
i,j;m, v̂B

i;m

}
(x|xB, s)

Material state {ρ, Si,j,p,q} (x) {ρ, Si,j,p,q} (x)

Source state
{

0, f̂A,n(s)δi,n

}
δ(x − xA)

{
0, f̂B,m(s)δi,m

}
δ(x − xB)

Domain R3

are caused by a source pointing specifically in the xn direction. The po-
sition dependence of the wavefield quantities are denoted for example as:
v̂i;n(xR|xS , s), which means as much as the xi component of the particle ve-
locity measured at position xR, caused by a source at position xS (which is
pointing in the xn direction).

The domain of integration is the complete three dimensional space R3.
The material parameters are the same for both states. The states are summa-
rized in Table 2.2, and substituted in eq. (2.38). When we assume adiabatic
processes, the symmetry property Si,j,p,q = Sp,q,i,j holds (Dahlen and Tromp
[1998]). Therefore the integral with the differences in material parameters
vanishes. The integral over the surface (the left hand side of eq. (2.38)) at
infinity yields zero, due to causality (Fokkema and van den Berg [1993]).

We obtain:

f̂B,m(s)v̂A
m;n(xB|xA, s) = f̂A,n(s)v̂B

n;m(xA|xB, s), (2.39)

When we take equal source signatures f̂A,n(s) = f̂B,m(s), we get:

v̂A
m;n(xB|xA, s) = v̂B

n;m(xA|xB, s). (2.40)

This equation implies that the xm component of the particle velocity at point
xB, caused by a source in the xn direction at point xA is the same as the xn

component of the particle velocity at point xA, caused by a source in the xm

direction at point xB. Or, in other words, source and receiver positions can
be swapped, but then the indices have to be swapped, too.
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Removal of Love waves from land
seismic SH-wave reflection data

In this chapter, we take the Betti-Rayleigh reciprocity theorem and derive
an expression that removes the effects of the stress-free surface from land
seismic data. We do that for the decoupled case of SH-waves only. The two
states that are defined for the use in the reciprocity integral are an actual
state and a desired state. The actual state has a stress free surface, which, in
the case of SH-waves, is a perfectly reflecting boundary. It is the cause of all
sorts of surface effects, such as Love waves. The desired state distinguishes
itself from the actual state only in the sense that it lacks a surface. Hence,
no surface effects are possible in this configuration.

The final expression is an integral equation of the second kind, and it
solves the wavefield without surface effects from the actual wavefield that
does contain such effects. After discretization, the integral equation becomes
a matrix equation that can be solved by for example a direct matrix inver-
sion. When a horizontally layered medium is assumed, the kernel of the
matrix equation becomes diagonal after a double Fourier transformation to
the horizontal slowness domain. An efficient suppression procedure is then
derived.
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3.1 Reciprocity theorem for SH-waves

Since this chapter only considers the decoupled case of SH-waves, it is not nec-
essary to take all terms of the Betti-Rayleigh reciprocity theorem, eq. (2.38),
into account. Also, since a source of force density in the crossline (x2) di-
rection generates only SH-waves in the (x1, x3)-plane, we take only this kind
of source, and the notation introduced in Section 2.6 (see Table 2.2 and
eq. (2.40)) is omitted in this chapter. Furthermore, since both states we
describe have the same material properties for the domain of integration,
there is be no difference in the material parameters. Lastly, for reasons of
simplicity, we take x2-invariant media and use line sources from now on.
Summarizing this, and applying it to the Betti-Rayleigh integral, leads to:∮

x∈∂V

(
τ̂A
2,j v̂

B
2 − τ̂B

2,j v̂
A
2

)
njdx =

∫
x∈V

[
f̂B
2 v̂A

2 − f̂A
2 v̂B

2

]
d2x. (3.1)

In this equation, V is a two-dimensional plane, instead of a volume like in
eq. (2.38), and similarly, ∂V is its one-dimensional closed path. This equation
is the starting point of our analysis in the remainder of this chapter.

3.2 Description of the reciprocity states

We describe the two states for the reciprocity theorem here. They are: a
state with a stress free surface, and a state without it. Therefore, from now
on, quantities related to state A will have the superscript surf, and quantities
related to state B will have the superscript nosurf.

3.2.1 The actual state - with a stress free surface

In the actual configuration, we assume that there is a homogeneous and
isotropic layer with an arbitrarily shaped lower boundary on top of other
earth layers, which may be arbitrarily inhomogeneous and anisotropic. This
top layer is bounded at x3 = 0 by a stress-free surface, i.e. we imposed the
boundary condition of eq. (2.15). When this top layer has a shear-wave
velocity lower than the layers underneath it, then that is the configuration
where Love waves can occur. However, the shear wave velocity does not have
to be lower to achieve suppression of the surface effects, it just means that
the surface effects will be different. We denote the domain of the top layer
by D, and the domain of the remainder of the configuration by D′. Figure 3.1
shows a graphical representation of this configuration.
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x3

x1 5 xS
1 F xR

1

D

D′

x3 = 0

ρ, λ&µ

ρ′, S′
i,j,p,q

Figure 3.1: The actual state for the reciprocity theorem.

The sources and receivers are placed on the stress-free surface x3 = 0.
The receiver is placed on a position denoted with xS

1 (with S for Source, but
the reason for this will become clear later). It is a little hard to define a
volume source density of force, when it is located exactly on the stress-free
surface. Instead we choose to define the source as a boundary condition in
the stress field. This means that the surface is stress-free, except at a certain
point x1 = xR

1 (with R for Receiver ; again, the reason for this will become
clear later). Hence, the stress on the surface is given by:

τ̂ surf
2,3 (x1, x3 = 0|xR

1 , xR
3 = 0, s) = −t̂surf

2 (s)δ(x1 − xR
1 ), (3.2)

where, conform eq. (2.1), t̂2 is defined as the traction on the surface in the x2

direction. The minus sign on the right hand side comes from the fact that, in
the reciprocity theorem, the normal on the surface points out of the domain
of integration, which is upward in this case, while the positive x3 direction is
downward.

3.2.2 The desired state - without a surface

The desired configuration differs only from the actual configuration in the
sense that it lacks a stress free surface. The material properties of the top
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x3

x1 F xS
1 5 xR

1

D

D′

x3 = 0

ρ, λ&µ

ρ′, S′
i,j,p,q

Figure 3.2: The desired state for the reciprocity theorem.

layer are extended to x3 → −∞. This way, the plane x3 = 0 is no longer a
real surface, but an arbitrary reference depth level in a homogeneous half-
space. This configuration is shown in Figure 3.2. It is obvious that for this
configuration, no surface effects exist. The “boundary” condition on the
depth level x3 = 0 now consists of continuous velocity and traction across
this depth level, conform eq. (2.13) and eq. (2.14).

Also in this situation, the sources and receivers are placed on the plane
x3 = 0. The receiver is placed on a position denoted with xR

1 , and the source
is placed on a position denoted with xS

1 , i.e. the source- and receiver-positions
are switched when compared to the situation of the surface state. Since the
source is now surrounded by a homogeneous embedding, we can now define
a source of force density in a normal fashion:

f̂nosurf
2 (x1, x3, s) = f̂nosurf

2 (s)δ(x1 − xS
1 )δ(x3). (3.3)

3.2.3 The domain of integration

The domain of integration is the same for both states. It is the lower half-
space, {V = D ∪ D′ ∈ R2| − ∞ < x1 < ∞, 0 ≤ x3 < ∞}. The path of
integration (for the left hand side of eq. (3.1)) is defined as the surface x3 = 0,
which is closed by a semi-circle with a radius ∆ that extends to infinity in the



3.3 Application of the reciprocity theorem 25

∆
→

∞

5 xS
1 F xR

1

D

D′

x3 = 0

Figure 3.3: The domain of integration for the reciprocity theorem.

lower half-space. Figure 3.3 shows a graphical representation of this domain
of integration. The integral over the semi-circle at infinity yields zero, due
to causality (Fokkema and van den Berg [1993]), and the only contribution
that remains on the left hand side of eq. (3.1) is the integral over the surface
x3 = 0.

3.3 Application of the reciprocity theorem

The states discussed in the previous section are summarized in Table 3.1 for
quick reference. We can now substitute them into eq. (3.1). Furthermore,
we apply physical reciprocity, as explained by eq. (2.40), on v̂surf

2 . Then, we
obtain the following equation:∫

x1∈R
τ̂nosurf
2,3 (x1, 0|xS

1 , 0, s)v̂surf
2 (xR

1 , 0|x1, 0, s)dx1 =

1
2 f̂nosurf

2 (s)v̂surf
2 (xR

1 , 0|xS
1 , 0, s) − t̂surf

2 (s)v̂nosurf
2 (xR

1 , 0|xS
1 , 0, s). (3.4)

There is no minus sign on the left hand side of this equation, because the nor-
mal of the domain of integration is pointing outward (upward, in this case),
while the positive x3 direction is downward. Therefore, that compensates for
the original minus sign of −τ̂B

2,j v̂
A
2 . The same reasoning goes for the minus
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Table 3.1: States for the reciprocity theorem, used for the removal of Love waves. xS

and xR are located on the surface x3 = 0.

State A State B

(surface state) (no-surface state)

Field state
{

τ̂ surf
2,j , v̂surf

2

}
(x|xR, s)

{
τ̂nosurf
2,j , v̂nosurf

2

}
(x|xS , s)

Material state {ρ, λ&µ} in D {ρ, λ&µ} in D{
ρ′, S′

i,j,p,q

}
in D′

{
ρ′, S′

i,j,p,q

}
in D′

Source state {0, 0} {0, f̂nosurf
2 (s)×

δ(x1 − xS
1 )δ(x3)}

Surface state Stress-free Continuous velocity
except at x1 = xR

1 : and traction
τ̂ surf
2,3 = −t̂surf

2 (s)×
δ(x1 − xR

1 )

Domain V = D ∪ D′ (see Figure 3.3)

sign in the second term on the right hand side of the equation. The factor
1
2 in the first term on the right hand side is the result of integrating over a
delta function located exactly on the boundary of the domain of integration
(the surface x3 = 0).

We take equal source function in both states:

f̂nosurf
2 (s) = t̂surf

2 (s) = f̂2(s), (3.5)

and apply Parseval’s theorem to eq. (3.4):

1
2π

∫
sα1∈R

τ̃nosurf
2,3 (jsα1, 0|xS

1 , 0, s)v̄surf
2 (xR

1 , 0|jsα1, 0, s)dsα1 =

1
2 f̂2(s)v̂surf

2 (xR
1 , 0|xS

1 , 0, s) − f̂2(s)v̂nosurf
2 (xR

1 , 0|xS
1 , 0, s). (3.6)
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Notice that we used two different Fourier transforms in this equation. We
used one Fourier transform with respect to the receiver coordinates (denoted
by the tilde )̃, and one with respect to the source coordinates (denoted by
the bar )̄. These Fourier transforms are explained in Appendix A.2.

From eq. (3.6), we want to solve for the term v̂nosurf
2 (xR

1 , 0|xS
1 , 0, s). When

the term v̂surf
2 (xR

1 , 0|xS
1 , 0, s) is the measured data and the source wavelet

f̂2(s) is known, then the only other unknown term in eq. (3.6) is the stress
component τ̃nosurf

2,3 (jsα1, 0|xS
1 , 0, s). Finding a suitable expression for this

term is the scope of the next section.

3.3.1 The stress in terms of velocity

The term τ̂nosurf
2,3 is an unknown term in eq. (3.4). It can be rewritten in

terms of velocity with the help of the equation of deformation, eq. (2.21).
We restate that equation, but without sources of deformation rate, and take
only the necessary component:

τ̂nosurf
2,3 =

µ

s
∂3v̂

nosurf
2 . (3.7)

The differentiation to the x3 coordinate cannot be performed in the space-
Laplace domain, because, in a land seismic survey, there are only receivers
on one level: the surface x3 = 0. But in the horizontal slowness domain, we
have more convenient expressions for the wave field. From Appendix B.1 we
see that a differentiation to the x3 coordinate becomes a multiplication with
either +sγs or −sγs in the horizontal slowness domain. γs is defined as:

γs =

√
1
c2
s

+ α2
1, Re(γs) > 0. (3.8)

The sign of this multiplication depends on a differentiation of an up-going or
down-going wavefield, respectively.

Therefore, to determine whether to use the multiplication with +sγs or
−sγs, we split the wavefield ṽnosurf

2 into components of which we can easily
determine whether they are up- or down-going. These components are the
incident and the reflected wavefield:

ṽnosurf
2 = ṽinc

2 + ṽref
2 . (3.9)

Figure 3.4 shows a graphical representation of these two components of the
no-surface wavefield. The vertical derivative of the incident wavefield is zero,
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Figure 3.4: The incident and reflected wavefield in absence of a stress-free surface.

because the sources and receivers are at the same level (namely, the surface
x3 = 0). Exactly on this level, the wavefield is neither up-going nor down-
going (as shown in Figure 3.4). Mathematically, the same outcome can be
shown. For this we look at eq. (B.10). When we take the vertical derivative,
we see that: ∂3ṽ

inc
2 = −sign(x3)sγsṽ

inc
2 . Therefore, ∂3ṽ

inc
2 = 0, because

the sign-function is defined such that sign(x3) = 0 for x3 = 0. Figure 3.4
also shows that the reflected wavefield is purely up-going in the no-surface
situation. We find that ∂3ṽ

ref
2 = sγsṽ

ref
2 . We find for eq. (3.7):

τ̃nosurf
2,3 =

µ

s
∂3

(
ṽinc
2 + ṽref

2

)
= µγs

(
ṽnosurf
2 − ṽinc

2

)
, for x3 = 0. (3.10)

With this, the goal of writing the stress-field in terms of velocity is complete.
The term ṽnosurf

2 is the unknown term that we are looking for, and the term
ṽinc
2 is known. We can write for the latter term (see Appendix B.1):

ṽinc
2 (jsα1, 0|xS

1 , 0, s) =
f̂2(s)
2µγs

ejsα1xS
1 . (3.11)
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3.3.2 Integral equation of the second kind for the no-surface
wavefield

The final expression is achieved when we substitute eq. (3.10) into eq. (3.6):

1
2π

∫
sα1∈R

µγs

f̂2(s)

(
ṽnosurf
2 − ṽinc

2

)
(jsα1, 0|xS

1 , 0, s)v̄surf
2 (xR

1 , 0|jsα1, 0, s)dsα1 =

1
2 v̂surf

2 (xR
1 , 0|xS

1 , 0, s) − v̂nosurf
2 (xR

1 , 0|xS
1 , 0, s). (3.12)

When we substitute the equation for the incident SH-wavefield, eq. (3.11),
into this last equation, we find that this part represents exactly an inverse
Fourier transformation from the horizontal slowness domain to the space-
Laplace domain, with regard to the source coordinates, i.e.

− 1
2π

∫
sα1∈R

µγs

f̂2(s)
ṽinc
2 (jsα1, 0|xS

1 , 0, s)ṽsurf
2 (xR

1 , 0|jsα1, 0, s)dsα1 =

−1
2 v̂surf

2 (xR
1 , 0|xS

1 , 0, s). (3.13)

With this, we reach our final expression:

1
2π

∫
sα1∈R

µγs

f̂2(s)
v̄surf
2 (xR

1 , 0|jsα1, 0, s)ṽnosurf
2 (jsα1, 0|xS

1 , 0, s)dsα1 =

v̂surf
2 (xR

1 , 0|xS
1 , 0, s) − v̂nosurf

2 (xR
1 , 0|xS

1 , 0, s). (3.14)

This is an integral equation of the second kind, meaning that the unknown
term (v̂nosurf

2 ) is both inside and outside the integral. In order to solve for
v̂nosurf
2 , the following input is needed: the measured data with the surface

effects (v̂surf
2 ), the source wavelet (f̂2(s)), and the material parameters of the

top layer (via µγs). No model is needed for the structure of the first layer
(or further earth layers for that matter).

Intermezzo - A Neumann expansion series

In this section, we derived an integral equation of the second kind, eq. (3.14),
where we could solve the no-surface wavefield from the input surface wave-
field. In the space-Laplace domain, this equation can be written as:∫

x1∈R
K̂(xR

1 , 0|x1, 0, s)v̂nosurf
2 (x1, 0|xS

1 , 0, s)dx1 =

v̂surf
2 (xR

1 , 0|xS
1 , 0, s) − v̂nosurf

2 (xR
1 , 0|xS

1 , 0, s), (3.15)
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in which K̂ is called the kernel of the integral equation, and is defined as:

K̂(xR
1 , 0|x1, 0, s) = F−1

S

{
µγs

f̂2(s)
FS

{
v̂surf
2 (xR

1 , 0|x1, 0, s)
}}

. (3.16)

One possible way to solve an integral equation of the second kind, is a Neu-
mann expansion series, as van Borselen [1995] proposes in his thesis. In our
case, the Neumann series would be defined as:

v̂nosurf
2 (xR

1 , 0|xS
1 , 0, s) =

∞∑
n=0

v̂
nosurf,(n)
2 (xR

1 , 0|xS
1 , 0, s), (3.17)

where
v̂

nosurf,(0)
2 (xR

1 , 0|xS
1 , 0, s) = v̂surf

2 (xR
1 , 0|xS

1 , 0, s), (3.18)

and

v̂
nosurf,(n)
2 (xR

1 , 0|xS
1 , 0, s) =

−
∫

x1∈R
K̂(xR

1 , 0|x1, 0, s)v̂nosurf,(n−1)
2 (x1, 0|xS

1 , 0, s)dx1. (3.19)

If a Neumann series expansion converges, it will converge to the right so-
lution. Convergence, however, is not guaranteed. A sufficient condition for
convergence is when the norm of the kernel is smaller than 1. For a defini-
tion of the norm of the kernel, see Appendix D. In numerical tests, the norm
turned out to be as big as 104 in some occasions. Therefore, we cannot prove
convergence with the norm condition.

Van Borselen showed that the expansion series was convergent for his
case, by proving that, for data with a finite recording time, the infinite sum
could be replaced by a finite one. In his case, each successive term of the
Neumann series removes a higher order multiple, i.e. the first term removes
the first multiple, the second term removes the second multiple, etc. There-
fore, each term of the expansion series is zero before a certain time in the
space-time domain. And so, an N -th order term will be zero for the whole
window of observation in the data, and the Neumann series expansion can
be terminated.

In our case, where we want to remove Love waves from SH-wave data, we
can also look at the Love waves as “multiples”. Not propagating multiples
like in the marine case, but “multiples” with the largest contribution in the
evanescent field. These “multiples” are not separated in time, and the time
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before which each “multiple” is zero increases only slightly with each iter-
ation. Therefore, to remove Love waves with a Neumann expansion series,
we need an order of 20 multiples or more. With a norm of the kernel in
the order of 104, the computations will rapidly reach machine precision. We
conclude that a Neumann series expansion is not possible for the removal of
Love waves from SH-wave data.

3.4 Horizontally layered media

A convenient simplification is reached, when the medium is assumed to be
horizontally layered, like in Figure 3.5. This is called a 1-D configuration.
In this configuration, the data is dependent on the relative distance between
the source and the receivers (at least in a land configuration, where both are
situated on the surface), but not on their absolute position. We can write:

v̂surf
2 (xR

1 , 0|xS
1 , 0, s) = v̂surf

2 (xR
1 − xS

1 , 0, s). (3.20)

We perform a Fourier transform to the horizontal slowness domain with re-
spect to the receiver coordinates, and obtain:

ṽsurf
2 (jsαR

1 , 0|xS
1 , 0, s) =

∫
xR
1 ∈R

v̂surf
2 (xR

1 − xS
1 , 0, s)ejsαR

1 xR
1 dxR

1 =

ṽsurf
2 (jsαR

1 , 0, s)ejsαR
1 xS

1 . (3.21)

After applying another Fourier transform to the horizontal slowness domain,
this time with respect to the source coordinates, we obtain:

˜̄vsurf
2 (jsαR

1 , 0|jsαS
1 , 0, s) = ṽsurf

2 (jsαR
1 , 0, s) · 2πδ(sαR

1 − sαS
1 ). (3.22)

The same arguments are used to arrive at a similar expression for v̂nosurf
2 .

When we apply a double Fourier transform (one with respect to the receiver
coordinates, the other with respect to the source coordinates) on eq. (3.14)
and substitute eq. (3.22), we find for horizontally layered (1-D) media:

2π

∫
sα1∈R

µγs

f̂2(s)
ṽsurf
2 (jsαR

1 , 0, s)δ(sαR
1 − sα1)·

ṽnosurf
2 (jsα1, 0, s)δ(sα1 − sαS

1 )dsα1 =
2πṽsurf

2 (jsαR
1 , 0, s)δ(sαR

1 − sαS
1 ) − 2πṽnosurf

2 (jsαR
1 , 0, s)δ(sαR

1 − sαS
1 ).

(3.23)
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Figure 3.5: Configuration of a horizontally layered medium.

We observe that the factors 2π cancel each other, and that the integral on
the left hand side only has a contribution at sα1 = sαR

1 due to the Dirac
delta functions. The remaining delta functions also cancel each other. The
equation reduces to an analytical expression:

µγs

f̂2(s)
ṽsurf
2 (jsαR

1 , 0, s)ṽnosurf
2 (jsαR

1 , 0, s) =

ṽsurf
2 (jsαR

1 , 0, s) − ṽnosurf
2 (jsαR

1 , 0, s). (3.24)

In this equation, the factor γs is now a function of αR
1 , whereas previously,

it was a function of α1. When we use eq. (3.11), the equation becomes:

ṽnosurf
2 =

ṽsurf
2

1 + ṽsurf
2

2ṽinc
2

. (3.25)

This equation represents an efficient 1-D suppression scheme to remove Love
waves from data in a horizontally layered media. The integral equation is re-
duced to an explicit analytical expression, and only one shot-gather is needed
to solve eq. (3.25).
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Intermezzo - Mildly laterally varying media

The previous analysis shows that data from a horizontally layered medium,
after a double Fourier transform to the horizontal slowness domains of the
source- and receiver-coordinates, only has contributions when sαR

1 = sαS
1 .

This implies that after discretization (see the next section), the data-matrix
will be a diagonal one. It is likely that when the data comes from a mildly
laterally varying medium, the matrix becomes primarily centered around the
diagonal (after the double Fourier transformation, of course). This could
possibly speed up computations, by using routines that incorporate special
techniques for band matrices. However, the increase in efficiency is dimin-
ished by the application of the double Fourier transform. The subject has
not been fully explored by the author.

For mildly laterally varying media, Verschuur [1991] proposes in his thesis
to apply his multiple removal scheme on common-midpoint (CMP) sorted
data. A CMP-sorting means that the data are sorted in such a way that,
in each gather, the point halfway each source and receiver pair is constant.
It is assumed that each reflection point in the subsurface is more or less
vertically below this midpoint. When this is true, the data are considered
to correspond to data from a 1-D configuration. However, due to the low
velocity of shear waves (especially in soft soils), a common-shot gather can
very easily be spatially aliased in SH-wave experiments. When the data are
CMP-sorted, this becomes even worse, since a CMP-gather has at most half
the number of traces of a common-shot gather. Therefore, applying eq. (3.25)
on CMP-sorted data is unfortunately often not an option.

3.5 Numerical implementation for laterally varying media

When the data are discrete, eq. (3.14) can be written as a matrix equation.
The discrete counterparts of v̂surf

2 (xR
1 |xS

1 , s) and v̂nosurf
2 (xR

1 |xS
1 , s) (where we

omitted the xR
3 = xS

3 = 0 dependence) are denoted with bold, uppercase
V̂surf

2 and V̂nosurf
2 , respectively. For a fixed Laplace parameter s, these are

two-dimensional matrices, where the organization is, from fast to slow di-
mension: xR

1 and xS
1 . This way, one column in the matrix V̂surf

2 represents
a common-source gather (data where the source position is constant), while
one row represents a common-receiver gather (data where the receiver posi-
tion is constant). When these matrices are square, it greatly simplifies the
performance of matrix operations such as multiplication or inversion. This
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matrix notation was introduced by Berkhout [1982].
As a next step, we examine the operation µγs in eq. (3.14). It is the result

of writing the no-surface stress-field, τ̂nosurf
2,3 , in terms of velocity, v̂nosurf

2 . But
now that the equation is written in the horizontal slowness domain with the
help of Parseval’s theorem, we notice that this operation can alternatively be
applied to the surface wavefield, v̄surf

2 , but with the Fourier transform applied
to the shot positions, instead of the receiver positions. We then transform the
equation back to the space-Laplace domain by applying Parseval’s theorem
again. Then, we arrive at the formulation of eq. (3.15) in the intermezzo
about the Neumann series expansion. In discrete notation, this equation
becomes:

µ

f̂2(s)
F−1

S

{
FS

{
V̂surf

2

}
· Γs

}
· V̂nosurf

2 ∆x1 = V̂surf
2 − V̂nosurf

2 . (3.26)

Here, Γs is the discrete counterpart of γs. Since it is a function of αS
1 only,

it has the shape of a diagonal matrix. We rewrite the equation as:

V̂nosurf
2 =

[
µ∆x1

f̂2(s)
F−1

S

{
FS

{
V̂surf

2

}
· Γs

}
+ I

]−1

· V̂surf
2 . (3.27)

In this equation, I is the unity matrix. This equation can be solved with a
matrix inversion, for example. Notice that in the integral equation, eq. (3.15),
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Figure 3.6: Procedure for solving a set of linear equations in the space-Laplace domain
to obtain one Love-wave-free trace (denoted by the crossing of the lines on the left-
hand side). A circle represents a padded zero, a disc a receiver and a cross a source
position. The lines on the right hand side indicate the source and receiver positions
involved in the numerical procedure.
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the integration variable is the source coordinate in the kernel and the receiver
coordinate in the surface wavefield. This implies that the source and receiver
sampling must be equal in order to solve the matrix equation, eq. (3.27).
Figure 3.6 shows the layout of the matrices when the data is split spread
(when there are as many receivers with negative offset in a gather as there
are with positive offset), for a fixed Laplace parameter s. In this picture, K̂
denotes the discrete counterpart of the kernel described in eq. (3.16).

3.6 Numerical tests and results

This section tests the Love wave removal method described in the previous
sections on several synthetic datasets. The datasets are obtained with the
use of finite difference modeling, as developed by Falk [1998]. Although the
structural model differs in each dataset, the material parameters are the same
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Figure 3.7: Source wavelet f2(t), (a) in the time domain, (b) its amplitude spectrum,
(c) its phase spectrum.
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for all. First, there is a thin, Love wave generating layer with a shear wave
velocity of cs = 200 m/s, then a thicker layer, which generates a normal
reflection, with a shear wave velocity of cs = 300 m/s, and finally the lower
half-space, with a shear wave velocity of cs = 350 m/s. The mass density is
the same for all layers: ρ = 2000 kg/m3. Shot and receiver spacing is 0.8 m.
The sampling interval in time is 0.001 s. For the source function, we use a
Ricker-wavelet (2nd derivative of the Gaussian bell-curve), with a peak fre-
quency of 33.3333 Hz, and which is shifted in time to make it (almost) causal.
This wavelet is shown in Figure 3.7. The data are tapered with a spatial co-
sine taper to reduce edge effects that are caused by spatial windowing, and
only the non-tapered parts of the data are shown. For the implementation of
eq. (3.27) and eq. (3.25), we used a complex Laplace parameter s = ε + jω,
where ω is the angular frequency, and an independent value of ε = 4 is used.

3.6.1 A horizontally layered medium

For the first example, we use a horizontally layered medium. The first layer
has a thickness of 1.2 m, the second layer has a thickness of 22.0 m. Figure 3.8
shows a graphical representation of this medium. Because the medium is
horizontally layered, we modeled only one shot record. Figure 3.9a shows
a shot record from this configuration. The problem is immediately visible.
Love waves are the most dominant events in this figure. They are clearly

F555 5 5 5

Figure 3.8: Configuration of a horizontally layered medium.
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Figure 3.9: (a) Shot record including Love waves, in a horizontally layered medium,
(b) after application of Love wave removal method (eq. (3.25)).
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dispersive. The reflection from the deeper layer can be seen as a hyperbolic
event at small offsets. For larger offsets, the Love waves obscure the reflection.

Figure 3.9b shows the shot record after the application of the removal
method. Since the medium is horizontally layered, we used eq. (3.25). All the
Love waves have been removed. The events that remain in this record, are the
direct (incident) SH-wave, which interferes destructively with the reflection
of the boundary of the first layer, and the refraction at this layer. More of
the reflection of the deeper layer has become visible, and its amplitude ratio
with respect to the other remaining events in this record is higher than in
Figure 3.9a.

3.6.2 A medium with an interface with a jump

As a next example, the removal method is tested on data from a medium
with an interface with a jump. This medium is one of the most simple
configurations that is not horizontally layered. Figure 3.10 shows a graphical
representation of this medium. The depth of the small Love-wave generating
layer was 0.8 m on the left side of the jump, and 2.8 m on the right side of the
jump. The boundary of the deeper layer is located at a depth of 22.0 m. We
modeled 251 shots, with 241 receivers each, in a split spread configuration.
Figure 3.11a shows the data from shot number 126, the shot in the middle of
the dataset. The source of this shot is located exactly above the jump in the

F555 5 5 5

Figure 3.10: Configuration of a medium with an interface with a jump.
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Figure 3.11: (a) Shot record including Love waves, in a medium with an interface
with a jump, (b) after application of Love wave removal method (eq. (3.27)).
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interface. The Love waves on the left side of the source differ from the Love
waves on the right side of the source, which is to be expected. The effect of
the jump is also visible in the reflection from the deeper layer.

Figure 3.11b shows the same shot record after the application of the re-
moval method. Since the medium is no longer horizontally layered, eq. (3.27)
must be used. Also here, the Love waves have been completely removed.
We are left again with the direct (incident) wave, and the reflection and re-
fraction of the small layer. This time, the incident wave and the reflection
interfere even more destructively than in the previous example on the left
side of the source, in such a way that the resulting wave is hardly visible.
But the interference is less destructive on the right side of the source.

3.6.3 A medium with a complex interface

The real test of the Love wave removal method comes with the next example.
The medium used for this example has an interface that incorporates several
jumps. Figure 3.12 shows a graphical representation of this medium. The
thin Love-wave generating interface makes twelve of these jumps, evenly dis-
tributed over the model, which is 480 m wide, i.e. there is a jump every 40
m. The depth of this small layer varies from 0.8 m to 2.4 m. The depth of
the reflection generating layer is 22.0 m. Again, we modeled 251 shots with
241 receivers each. Figure 3.13a shows the data from a shot in the middle

F555 5 5 5

Figure 3.12: Configuration of a medium with a complex interface.
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Figure 3.13: (a) Shot record including Love waves, in a medium with a complex
interface, (b) after application of Love wave removal method (eq. (3.27)).
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of the dataset. Love waves are again the dominant feature in these data.
But together with the Love waves, other noise is introduced in the form of
scattered Love waves, which are the result of the wave-front “hitting” a jump
in the medium.

Figure 3.13b shows the same shot record after the application of the
removal method. We have to use eq. (3.27) again. As expected, the Love
waves are removed again. But also the scattered Love waves have been
removed. In the absence of a (stress-free) surface, the scattered waves are
no longer confined within the small layer, but radiate freely to the half-space
above the receivers. Therefore their contribution in the data is drastically
reduced.

3.6.4 A medium with scatterers

After the result of the previous section, where scattered Love waves were
removed by the method, we wondered if the method could also remove the
effect of scatterers in the shallow subsurface. So for the final test in this thesis,
we made a horizontally layered medium, like in the first example, but buried
some scatterers in the thin Love wave generating layer. Figure 3.14 shows a
graphical representation of this medium. The depth of the thin layer is 2.0 m.
In this layer we place 4 scatterers at a depth of 1.6 m. These scatterers have
a shear wave velocity much higher than the surrounding medium, namely

r r r r

F555 5 5 5

Figure 3.14: Configuration of a medium with scatterers.
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Figure 3.15: (a) Shot record including Love waves, in a medium with scatterers, (b)
after application of Love wave removal method (eq. (3.27)).
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800 m/s. The scatterers are 80 m apart from each other. Figure 3.15a shows
the shot record at the central source position of the dataset. The source is
located exactly between two scatterers, and the effect of them is obvious. In
addition to the normal Love waves, we also have scattered Love waves.

Figure 3.15b shows the same shot record after the application of the
removal method. The presence of scatterers makes this medium no longer
horizontally layered, and therefore we must use eq. (3.27) again. As expected,
both the Love waves and their scattering are removed. The little noise that
remains is most likely the effect of small inaccuracies in the finite-difference
method. For example, it cannot deal with sources and receivers located
exactly on the surface, but places them one grid-space underneath it instead.
This places the sources and receivers even more close to the scatterers than
to the boundary of the example in the previous section.



4

Sensitivity of the Love-wave removal
method

In the previous chapter, we developed a method to remove Love waves from
seismic SH-wave data. The method performed very well on synthetic data
examples. It was even capable of not only removing direct Love waves, but
also their scattering. However, with synthetic data, the forward model is
known exactly. This is of course not the case with field data. Therefore, in
this chapter, we will examine the strengths and weaknesses of the removal
method. In other words, we will test under what conditions the method will
still perform well, and when it will not. The actual application of the method
on a field dataset is discussed in Appendix C.

Two distinctions can be made in this testing. First, the estimation of
the input parameters can be wrong. The effects of this are studied in the
first section. Second, the input data can be distorted. This can be the result
of stochastic noise, or because the subsurface incorporates effects that are
not described by the elastodynamic theory. These effects are studied in the
second section. Finally, as a third example, we study the sensitivity of the
method to the source wavelet. The source wavelet is also an input parameter
to the Love-wave removal method, or more precise, it is an input vector. This
is the reason that we devote a separate, third section to the effects of a wrong
estimation of the source wavelet. We will find that the Love-wave removal
method is relatively most sensitive to distortions in the source wavelet.
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Throughout this chapter, we use data from a horizontally layered medium.
This way, eq. (3.25) can be used, which drastically reduces the amount of
calculations. This configuration is described in Section 3.6.1.

4.1 Effect of an erroneous estimation of input parameters

The Love-wave removal equations, eq. (3.25) and eq. (3.27), require two scalar
input parameters. They are: the shear wave velocity cs of the upper layer,
and its shear modulus µ. Since the shear modulus can be written as µ =
ρc2

s, the mass density can also be used as an input parameter. This section
explores the effects when these parameters are wrongly estimated, i.e. when
they are chosen too high or too low.

4.1.1 Effect of an erroneous estimation of the velocity

Figure 4.1 shows the result of the Love-wave removal method, when the
velocity is estimated two times too low, i.e. it is chosen as 100 m/s instead
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Figure 4.1: Result of removal method, when the velocity is underestimated.
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of 200 m/s. The Love waves are still removed to the same extent as the
example in Section 3.6.1. The only aberration is that the direct wave (which
originally had a velocity of 200 m/s) is replaced by one with a velocity of
100 m/s. However, an effect like this was to be expected. Similar results are
obtained when the shear-wave velocity is overestimated by a factor of two,
i.e. 400 m/s (instead of 200 m/s).

Fortunately, a very estimation of the shear-wave velocity can usually be
obtained easily from the data. Deviations by a factor of two are certainly not
an issue. But even then, the Love-wave removal method will still produce
very good results.

4.1.2 Effect of an erroneous estimation of the mass density

Figure 4.2 shows the result of the Love-wave removal method, when the mass
density of the top layer is severely underestimated. It is chosen as 750 kg/m3,
instead of 2000 kg/ms. The result is still satisfactory. Although the Love
waves are not completely removed, they are suppressed for the greater part.
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Figure 4.2: Result of removal method, when the mass density is underestimated
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When the mass density is chosen too large, the Love-wave removal method
will still provide good results. However, the total energy of the resulting
data (see Appendix D for a definition of energy in data) decreases as the
mass density is chosen larger. The cause of this effect becomes clear when we
examine eq. (3.27). When, in this equation, ρ (or equivalently: µ) is chosen
infinitely large, the result will go to: V̂nosurf

2 → 0.
So also for the mass density (or equivalently, the shear modulus), it is

concluded that the Love-wave removal method will provide good results as
long as this parameter is chosen correctly within an order of magnitude.
Indeed, this parameter can be used as a “fudge factor”. When the mass
density is unknown, we start the method with a low value for it, and then
perform the method iteratively, until the Love waves are completely removed.

4.2 Effect of distorted input data

In addition to unknown input parameters, the data itself can be distorted
in ways that are not described by the theory. Some of these distortions are
discussed here. One example is the addition of random, stochastic noise,
another example is the effect of anelastic attenuation.

4.2.1 Effect of random noise

The distortion of data unfortunately does not stay limited to shot generated
noise. Random, stochastic noise is also present in field data. The only
assumption that will be made about this kind of noise, is that it is additive.
Figure 4.3a shows the data with random noise added to it. The noise level
is as high as the amplitude of the reflection of the deeper layer.

Figure 4.3b shows the result of the removal procedure on this data. The
presence of noise in the data did not seem to influence the result. The Love
waves are still removed, and the reflection, previously buried underneath
the noise, now becomes visible, especially for larger offsets. One remark is
that the noise increases for larger times. This is probably because of the
exponential taper used for the complex Laplace parameter. Another remark
is that the noise appears to be more coherent after the application of the
method. That could be explained as the method performing its operations
on the noise part of the data.
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Figure 4.3: (a) Shot record of data with added random noise, (b) after application of
the removal method (eq. (3.25)).
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4.2.2 Effect of anelastic attenuation

A wave described by the elastodynamic wave theory will continue to propa-
gate through a medium indefinitely. The wave will attenuate spatially, but
the total energy of the particle motion in the medium will be preserved. Ob-
servations in the field show this idealization to be inaccurate. A wave field
will attenuate through a number of processes, which we will describe as be-
ing anelastic. Aki and Richards [1980] give a description of the effects of
anelastic attenuation, via a quality factor Q. A high value of Q means a high
“quality” of the medium, that acts mainly elastic, while a low value means a
low “quality” of the medium, with much attenuation. In the shallow region,
which is the focus of this thesis, where the soil is soft and unconsolidated,
the quality factor can be as low as 5.

Figure 4.4a shows the data on which anelastic attenuation is introduced,
in the form of an exponential taper applied to the data. A quality factor of 10
is used. Figure 4.4b shows the data after application of the removal method.
The method still removes the Love waves. It does introduce a direct wave
which is not attenuated into the data. However, in view of Section 4.1.1, an
effect like this was to be expected.

The method can be extended by incorporating the effects of anelastic
attenuation. Another way to describe the effect of losses in an elastic medium
is to take complex values for the material parameters (de Hoop and Stam
[1988]). It is likely that the method can be improved by taking such a complex
value for the shear modulus µ and shear-wave velocity cs in eq. (3.14) or
eq. (3.27). A further discussion is beyond the scope of this thesis.

4.3 Effect of an erroneous estimation of the source wavelet

As a final example, we test the sensitivity of the method to errors in the source
wavelet. As can be seen in eq. (3.27) or eq. (3.25), the method performs a
deconvolution step, i.e. the data are divided by the source wavelet. This
could be a sensitive procedure. The problem can actually be divided into
two parts: The effect of deviations in the amplitude of the source wavelet,
and the effect of deviations in the phase of the source wavelet. When we
look at eq. (3.27), we see that it contains the term µ/f̂2(s). This implies
that a deviation in the amplitude of the wavelet is equivalent to a deviation
in the shear modulus (or also: mass density). This has been explored in
Section 4.1.2, and we concluded that our method was not very sensitive to
that. Therefore, this section will focus on the effect of deviations in the phase
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Figure 4.4: (a) Shot record with anelastic attenuation introduced in the data, (b)
after application of removal method (eq. (3.25)).
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of the wavelet.
As explained in Section 3.6, for the forward modeling, we used a shifted

version of the Ricker wavelet, which was then almost causal. Next, we applied
a phase shift of 60 degrees to this wavelet, and used this resulting wavelet in
the removal procedure. Figure 4.5 shows these two wavelets, and it can be
seen that the shape of the wavelet has been changed significantly.

Figure 4.6 shows the result of the removal procedure where the phase-
shifted wavelet is used. The Love waves are not completely suppressed any-
more, and some noise is added to the data. When the phase shift becomes
bigger, more noise is added faster, and the Love waves are also suppressed
much worse.

The distortions in the the phase of the wavelet are the only example of
errors we found that introduces noise in the data. Therefore, if the source
wavelet is unknown, then this implies that it can be estimated from the
data with a wavelet estimation procedure based on energy minimization. An
attempt to develop such an estimation procedure was tried by the author,
but was not successful. This attempt is described in Appendix D.
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5

Towards removal of surface effects
from coupled P- and SV-wave
systems

Up to this point, this thesis focussed on the the removal of Love waves from
seismic SH-wave data. In this chapter, we will explore the possibilities of
removing surface effects, in particular Rayleigh waves, from seismic P- and
SV-wave data in isotropic media. Since P- and SV-waves are coupled in
elastic media, the resulting equations will be coupled as well.

The starting point of our analysis is similar to Chapter 3. We define
two different elastodynamic states for use in the Betti-Rayleigh reciprocity
integral. One state is the actual state which has a stress-free surface, the
other state is the desired state, which lacks this surface. The difference with
Chapter 3 lies in the definition of the source-terms. In the P- and SV-wave
case, these sources will point in the x1 and x3 directions, instead of in the x2

direction. The resulting wavefield is then measured with receivers measuring
the x1 and x3 components of the particle velocity.

Due to the length and complexity of the equations, we consider only
horizontally layered media, so that we can follow the same procedure as in
Section 3.4. This will simplify the expressions. The resulting expression
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is a set of four equations with eight unknowns. Obviously, this is unsolv-
able. However, with one more simplification (we assume that the medium
is a homogeneous halfspace), the number of unknowns reduces to four. We
illustrate this result with an example in which we will remove the Rayleigh
wave from finite difference data. As a final note, we expand the theory in
such a way that it should be able to deal with the original and less trivial
case of removing surface effects from horizontally layered media. No results
have been obtained here yet, however.

Much of this chapter is the result of the M.Sc.-project performed by
Lenders [2002].

5.1 Reciprocity for coupled P- and SV-wave systems

This chapter only considers coupled P- and SV-wave systems, without SH-
waves. Therefore, some terms in the Betti-Rayleigh reciprocity theorem,
eq. (2.38), drop. Specifically, we will not use sources of force in the crossline
(x2) direction and assume x2-invariant media. As a consequence, the particle
velocity will not have a crossline component in the (x1, x3)-plane. We will
also not use any sources of deformation rate, and we will define the two states
in such a way, that the material parameters in the domain of integration are
the same for both states. Lastly, we use line sources again. With these
assumptions, the Betti-Rayleigh integral becomes:∮

x∈∂V

(
τ̂A
i,j v̂

B
i − τ̂B

i,j v̂
A
i

)
njdx =

∫
x∈V

[
f̂B

i v̂A
i − f̂A

i v̂B
i

]
d2x, (5.1)

where the subscripts i and j take the values 1 and 3 only.

5.2 Description of the reciprocity states

Here, we again describe the two states for the reciprocity theorem. State A,
the state with a stress-free surface, will have the superscript surf, whereas
state B, without such a surface, will have the superscript nosurf.

5.2.1 The actual state - with a stress-free surface

In the actual configuration, it is assumed that there is a homogeneous and
isotropic layer on top of further arbitrary earth layers. At x3 = 0, the
top layer is bounded by a stress-free surface, i.e. the boundary condition of
eq. (2.15) is imposed. The material parameters of the top layer are denoted
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Figure 5.1: The actual state for the reciprocity theorem. As an example, the source
and receiver are pointing in the x3 direction.

with ρ and λ&µ. The material parameters of the further earth layers are
denoted with ρ′ and S′

i,j,p,q. Figure 5.1 shows a graphical representation of
this configuration.

The source and receiver are placed on the surface x3 = 0. The receiver
is placed at xS

3 , and it is a multi-component receiver, capable of measuring
both particle velocity components v1 and v3. The source is introduced as
a boundary condition in the stress field: The surface x3 = 0 is stress-free,
except at x1 = xR

1 , where a traction source is introduced. Therefore, for the
surface-state stress field, we can write:

τ̂ surf
i,3;m(x1, x3 = 0|xR

1 , xR
3 = 0, s) = −t̂surf,m(s)δi,mδ(x1 − xR

1 ). (5.2)

Note that here, we did use the notation introduced in Section 2.6. The source
is pointing specifically in the xm-direction (where m can only take the values
1 or 3).

5.2.2 The desired state - without a surface

The desired configuration doesn’t have a stress-free surface at x3 = 0. In-
stead, the material parameters of the top layer extend to x3 → −∞. This
causes the stress and particle velocity field to be continuous on the plane
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Figure 5.2: The desired state for the reciprocity theorem. As an example, the source
and receiver are pointing in the x1 direction.

x3 = 0. A graphical representation of this configuration is shown in Fig-
ure 5.2.

Following the known procedure, we place sources and receivers on the
plane x3 = 0. A multi-component receiver is placed on the position xR

1 . It is
capable of measuring both the x1- and x3-component of the particle velocity.
We place a source of force density on the position xS

1 . It is defined as:

f̂nosurf
i (x1, x3 = 0|xS

1 , xS
3 = 0, s) = f̂nosurf,n(s)δi,nδ(x1 − xS

1 )δ(x3). (5.3)

Note that this source is pointing specifically in the xn direction, where n can
take the value 1 or 3.

5.3 Application of the reciprocity theorem

The domain of integration is the lower halfspace, {V = D ∪ D′ ∈ R2| −∞ <
x1 < ∞, 0 ≤ x3 < ∞}. The states we discussed in the previous section are
summarized in Table 5.1. These states are now substituted in eq. (5.1). This



5.3 Application of the reciprocity theorem 59

Table 5.1: States for the reciprocity theorem, used for the removal of surface effects
from P- and SV-wave systems. xS and xR are located on the surface x3 = 0.

State A State B

(surface state) (no-surface state)

Field state
{

τ̂ surf
i,j;m, v̂surf

i;m

}
(x|xR, s)

{
τ̂nosurf
i,j;n , v̂nosurf

i;n

}
(x|xS , s)

Material state {ρ, λ&µ} in D {ρ, λ&µ} in D{
ρ′, S′

i,j,p,q

}
in D′

{
ρ′, S′

i,j,p,q

}
in D′

Source state {0, 0} {0, f̂nosurf,n(s)δi,n×
δ(x1 − xS

1 )δ(x3)}

Surface state Stress-free Continuous velocity
except at x1 = xR

1 : and traction
τ̂ surf
i,3;m = −t̂surf,m(s)δi,m×

δ(x1 − xR
1 )

Domain V = D ∪ D′

yields:∫
x1∈R

τ̂nosurf
k,3;n (x1, 0|xS

1 , 0, s)v̂surf
k;m(x1, 0|xR

1 , 0, s)dx1 =

+1
2 f̂nosurf,n(s)v̂surf

n;m(xS
1 , 0|xR

1 , 0, s) − t̂surf,m(s)v̂nosurf
m;n (xR

1 , 0|xS
1 , 0, s).

(5.4)

The factor 1
2 in the first term on the right hand side is the result of the

integration over a delta function which was located on the edge of the domain
of integration (the surface x3 = 0).

Our aim is to solve the no-surface wavefield v̂nosurf
m;n from the measured

wavefield v̂surf
n;m. The remaining unknown factor in eq. (5.4) is the desired

stress-field, τ̂nosurf
k,3;n . This term has to be rewritten with the help of eq. (2.21)
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and eq. (2.19). After applying physical reciprocity (see Section 2.6) on the
terms v̂surf

k;m , we obtain:

∫
x1∈R

(
Ck,3,p,q

s
∂pv̂

nosurf
q;n (x1, 0|xS

1 , 0, s)
)

v̂surf
m;k(xR

1 , 0|x1, 0, s)dx1 =

1
2 f̂nosurf,n(s)v̂surf

m;n(xR
1 , 0|xS

1 , 0, s) − t̂surf,m(s)v̂nosurf
m;n (xR

1 , 0|xS
1 , 0, s).

(5.5)

Since we assumed that the top layer is an isotropic layer, and by using
eq. (2.10), we see that the stress terms become:

τ̂nosurf
1,3;n =

µ

s
∂1v̂

nosurf
3;n +

µ

s
∂3v̂

nosurf
1;n , (5.6)

and
τ̂nosurf
3,3;n =

λ

s
∂1v̂

nosurf
1;n +

λ + 2µ

s
∂3v̂

nosurf
3;n . (5.7)

With this, eq. (5.5) becomes:∫
x1∈R

(µ

s
∂1v̂

nosurf
3;n (x1, 0|xS

1 , 0, s) +
µ

s
∂3v̂

nosurf
1;n (x1, 0|xS

1 , 0, s)
)
·

v̂surf
m;1 (xR

1 , 0|x1, 0, s)dx1 +∫
x1∈R

(
λ

s
∂1v̂

nosurf
1;n (x1, 0|xS

1 , 0, s) +
λ + 2µ

s
∂3v̂

nosurf
3;n (x1, 0|xS

1 , 0, s)
)
·

v̂surf
m;3 (xR

1 , 0|x1, 0, s)dx1 =
1
2 f̂nosurf,n(s)v̂surf

m;n(xR
1 , 0|xS

1 , 0, s) − t̂surf,m(s)v̂nosurf
m;n (xR

1 , 0|xS
1 , 0, s).

(5.8)

This equation becomes more convenient in the horizontal slowness do-
main, because in that domain we are able to substitute simple multiplications
in the place of the partial derivatives. A partial derivative with respect to
the x1 coordinate (∂1) in the space domain becomes a multiplication with
−jsα1 in the angular slowness domain. But the partial derivative with re-
spect to the x3 coordinate (∂3) is more difficult. For this, we first have to
know whether the derivative applies to an up-going or down-going field. And
second, we have to know with what velocity the wavefield travels. In Sec-
tion 3.3.1, we saw that when a reflected shear-wave field was differentiated
to the x3 coordinate, this differentiation became a multiplication with sγs in
the horizontal slowness domain. Analogously, a differentiation with respect
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to the x3 coordinate of a reflected P-wave field becomes a multiplication with
sγp in the horizontal slowness domain. γs is defined by eq. (3.8), and γp is
given as:

γp =

√
1
c2
p

+ α2
1, Re(γp) > 0. (5.9)

We see that in order to be able to perform the differentiation with respect
to the x3 coordinate, the no-surface wavefield has to be split into three parts:
the incident field, the reflected P-wave field and the reflected SV-wave field:

v̂nosurf
i;n = v̂inc

i;n + v̂ref,P
i;n + v̂ref,SV

i;n . (5.10)

In Appendix B.2 we see that the vertical derivative of the incident P- and
SV-wave field is not equal to zero for all combinations of source and receiver
directions, in contrast to the SH-wave case.

Using Parseval’s theorem to transform the necessary quantities to the
horizontal slowness domain, we obtain:

1
2π

∫
sα1∈R

(µ

s
(−jsα1)ṽinc

3;n +
µ

s
(−jsα1)ṽ

ref,P
3;n +

µ

s
(−jsα1)ṽ

ref,SV
3;n

+
µ

s
∂3ṽ

inc
1;n + µγpṽ

ref,P
1;n + µγsṽ

ref,SV
1;n

)
(jsα1, 0|xS

1 , 0, s) ·

v̄surf
m;1 (xR

1 , 0|jsα1, 0, s) dsα1 +

1
2π

∫
sα1∈R

(
λ

s
(−jsα1)ṽinc

1;n +
λ

s
(−jsα1)ṽ

ref,P
1;n +

λ

s
(−jsα1)ṽ

ref,SV
1;n

+
λ + 2µ

s
∂3ṽ

inc
3;n + (λ + 2µ)γpṽ

ref,P
3;n + (λ + 2µ)γsṽ

ref,SV
3;n

)
(jsα1, 0|xS

1 , 0, s) ·

v̄surf
m;3 (xR

1 , 0|jsα1, 0, s) dsα1 =
1
2 f̂nosurf,n(s)v̂surf

m;n(xR
1 , 0|xS

1 , 0, s) − t̂surf,m(s)v̂inc
m;n(xR

1 , 0|xS
1 , 0, s)

−t̂surf,m(s)v̂ref,P
m;n (xR

1 , 0|xS
1 , 0, s) − t̂surf,m(s)v̂ref,SV

m;n (xR
1 , 0|xS

1 , 0, s).
(5.11)

At this point, we assume that the medium is horizontally layered. Then,
we can follow the same line of reasoning as in Section 3.4. We perform
a double Fourier transformation on eq. (5.11), with respect to the source
coordinate and with respect to the receiver coordinate. All the wavefield
quantities become diagonal kernels (see eq. (3.22)), and this eliminates the
integrals. Since all the wavefield quantities now have the same coordinate
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dependence (which is (jsα1, 0, s)), we will drop that notation. We obtain:(µ

s
(−jsα1)ṽinc

3;n +
µ

s
(−jsα1)ṽ

ref,P
3;n +

µ

s
(−jsα1)ṽ

ref,SV
3;n +

µ

s
∂3ṽ

inc
1;n + µγpṽ

ref,P
1;n + µγsṽ

ref,SV
1;n

)
· ṽsurf

m;1 +(
λ

s
(−jsα1)ṽinc

1;n +
λ

s
(−jsα1)ṽ

ref,P
1;n +

λ

s
(−jsα1)ṽ

ref,SV
1;n +

λ + 2µ

s
∂3ṽ

inc
3;n + (λ + 2µ)γpṽ

ref,P
3;n + (λ + 2µ)γsṽ

ref,SV
3;n

)
· ṽsurf

m;3 =

1
2 f̂nosurf,n(s)ṽsurf

m;n − t̂surf,m(s)ṽinc
m;n − t̂surf,m(s)ṽref,P

m;n − t̂surf,m(s)ṽref,SV
m;n .

(5.12)

This is a set of four equations (both m and n can take the values 1 and 3)
with eight unknowns. For with each combination of m and n, the unknown
terms are split into a P-wave field (ṽref,P

m;n ) and an SV-wave field (ṽref,SV
m;n ).

The incident field terms (ṽinc
m;n) are derived in Appendix B.2. This problem

is unsolvable in its current form. In the next section, we make one more
simplification, i.e. we assume that the medium is a homogeneous halfspace.
This will reduce the number of unknowns.

In Section 5.6, we will find auxiliary relations for the particle velocity.
Together with those, the set of equations, eq. (5.12), should also be solvable
for inhomogeneous (but horizontally layered) media. But no results have
been obtained yet.

5.4 Removing Rayleigh waves from a homogeneous halfspace

In order to show the validity of the theory above, we make one more simplifi-
cation. We assume that the medium consists of a homogeneous and isotropic
halfspace only, bounded at x3 = 0 by a stress-free surface. The description
of seismic waves in this kind of configuration is classically known as Lamb’s
problem (Lamb [1904]).

It is obvious that in this configuration, no reflections will occur. There-
fore, when we look at eq. (5.12), all the terms ṽref,P

m;n and ṽref,SV
m;n vanish, and

for the sake of the argument, we assume that ṽinc
m;n are the unknown terms for

which we want to solve. In Appendix B.2, we show that the following terms
also vanish: ṽinc

3;1, ṽinc
1;3, ∂3ṽ

inc
1;1 and ∂3ṽ

inc
3;3. When we take all source wavelets

equal, i.e. f̂nosurf,n(s) = t̂surf,m(s) = f̂(s), similar to Section 3.3, and divide
by that wavelet, what remains are the following four equations:
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m = 1 and n = 1:

2λ

sf̂(s)
(−jsα1)ṽinc

1;1 ṽ
surf
1;3 +

2(λ + 2µ)

sf̂(s)

(
∂3ṽ

inc
3;1

)
ṽsurf
1;3 + 2ṽinc

1;1 = ṽsurf
1;1 , (5.13)

m = 3 and n = 1:

2λ

sf̂(s)
(−jsα1)ṽinc

1;1 ṽ
surf
3;3 +

2(λ + 2µ)

sf̂(s)

(
∂3ṽ

inc
3;1

)
ṽsurf
3;3 = ṽsurf

3;1 , (5.14)

m = 1 and n = 3:

2µ

sf̂(s)
(−jsα1)ṽinc

3;3 ṽ
surf
1;1 +

2µ

sf̂(s)

(
∂3ṽ

inc
1;3

)
ṽsurf
1;1 = ṽsurf

1;3 , (5.15)

m = 3 and n = 3:

2µ

sf̂(s)
(−jsα)ṽinc

3;3 ṽ
surf
3;1 +

2µ

sf̂(s)

(
∂3ṽ

inc
3;1

)
ṽsurf
1;3 + 2ṽinc

3;3 = ṽsurf
3;3 . (5.16)

This set of four equations has four unknowns (ṽinc
1;1, ṽinc

3;3, ∂3ṽ
inc
3;1 and ∂3ṽ

inc
1;3).

We can arrange these equations into a matrix equation, which has the form:




A B 0 0
C D 0 0
0 0 E F
0 0 G H


 ·




ṽinc
1;1

∂3ṽ
inc
3;1

∂3ṽ
inc
1;3

ṽinc
3;3


 =




ṽsurf
1;1

ṽsurf
3;1

ṽsurf
1;3

ṽsurf
3;3


 , (5.17)

in which:

A =
2λ(−jsα1)

sf̂(s)
ṽsurf
1;3 + 2, (5.18)

B =
2(λ + 2µ)

sf̂(s)
ṽsurf
1;3 , (5.19)

C =
2λ(−jsα1)

sf̂(s)
ṽsurf
3;3 , (5.20)

D =
2(λ + 2µ)

sf̂(s)
ṽsurf
3;3 , (5.21)
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E =
2µ

sf̂(s)
ṽsurf
1;1 , (5.22)

F =
2µ(−jsα1)

sf̂(s)
ṽsurf
1;1 , (5.23)

G =
2µ

sf̂(s)
ṽsurf
3;1 , (5.24)

H =
2µ(−jsα1)

sf̂(s)
ṽsurf
3;1 + 2. (5.25)

Interesting in this result is the fact that the matrix equation is decoupled with
respect to the source direction. In order to solve eq. (5.17), all source and
receiver combinations of the data are needed to define the matrix elements
A . . .H and the vector on the right hand side, but we can independently solve
for data without surface effects, with the source in the x1-direction (ṽinc

1;1 and
∂3ṽ

inc
3;1), or with the source in the x3-direction (ṽinc

3;3 and ∂3ṽ
inc
1;3).

5.5 Numerical test and results

In this section, we test the method described in the previous section on a
synthetic dataset. The dataset is once again obtained by modeling with a
finite difference method, as developed by Falk [1998]. The model for the
dataset is of course a homogeneous halfspace. The P-wave velocity is 500
m/s, and the S-wave velocity is 250 m/s. The mass density is 2000 kg/m3.
The receiver spacing is 1.0 m. The sampling interval in time is 0.001 s. We
again use a Ricker-wavelet with a peak frequency of 33.3333 Hz as the source
wavelet. This wavelet was already shown in Figure 3.7.

The dataset consists of four shot records. One where the source points
in the x1-direction and the receivers point in the x1-direction (the vsurf

1;1 -
component), one where the source points in the x1-direction and the receivers
point in the x3-direction (the vsurf

3;1 -component), one where the source points
in the x3-direction and the receivers point in the x1-direction (the vsurf

1;3 -
component), and finally, one where the source points in the x3-direction and
the receivers point in the x3-direction (the vsurf

3;3 -component). Each record
contains 201 receivers, in a split-spread configuration. The data of the ṽsurf

1;1 -
component and the ṽsurf

3;3 -component are shown in Figure 5.3. The data are
spatially tapered to reduce edge effects, and only the non-tapered parts are
shown. A Rayleigh wave is indeed dominant in these pictures. In Figure 5.3a,
there is also a direct P-wave visible. In Figure 5.3b, there is an event with
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Figure 5.3: Shot records containing a Rayleigh wave, (a) vsurf
1;1 -component, (b) vsurf

3;3 -
component.
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the same P-wave velocity, but this is near-field P-wave (see Appendix B,
eq. (B.30)).

Figure 5.4 shows the data after the application of the removal method,
eq. (5.17). In Figure 5.4a, it is immediately obvious that the Rayleigh wave
has been removed. What remains in this record are the direct P-wave, and a
near-field SV-wave (see Appendix B, eq. (B.25)). In Figure 5.4b, the Rayleigh
wave has also been removed. What remains here are the direct SV-wave,
which of course has a larger amplitude than its near-field counterpart in
Figure 5.4a, and a near-field P-wave (see Appendix B, eq. (B.30)). Notice
that the dominant event in Figure 5.4b indeed is the direct SV-wave and not
a Rayleigh wave, since the phase of the wave is different, and it has a slightly
higher group velocity. Also, the amplitudes in this figure are much lower
than in Figure 5.3b.

During the implementation of eq. (5.17), we found that the bottom-right
part of the matrix was almost ill-conditioned. This is probably because the
Rayleigh wave we are trying to remove has almost the same velocity as the
desired remaining direct SV-wave. This ill-conditioning resulted in large
artifacts in the data. We countered this by taking a larger value for the real
part of the Laplace parameter, ε. Instead of the usual ε = 4, we took ε = 8.
With this, the matrix was no longer ill-conditioned, and the artifacts are
largely suppressed.

5.6 Removing surface effects from horizontally layered media

We already saw that eq. (5.12) is unsolvable by itself. We need to find aux-
iliary relations for the particle velocity if we want to solve for true unknown
wavefield quantities, ṽref,P

n;m and ṽref,SV
m;n , in the less trivial case of a horizontally

layered medium. Luckily, they can be found fairly easy.
Although P- and SV-waves are decoupled and propagate independent,

their respective particle velocity components are not independent. When we
look at eq. (2.29) and eq. (2.30), we see that we can write for P-waves in the
horizontal slowness domain:

ṽref,P
1;n = (−jsα1)Φ̃ref , and

ṽref,P
3;n = sγpΦ̃ref . (5.26)
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Figure 5.4: Shot records after applying the removal method, eq. (5.17)(a) vnosurf
1;1 -

component, (b) vnosurf
3;3 -component.
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And for SV-waves:

ṽref,SV
1;n = −sγsΨ̃ref

2 , and

ṽref,SV
3;n = (−jsα1)Ψ̃ref

2 . (5.27)

In these equations, remember that the reflected wavefield is an up-going field.
Alternatively, we can write:

ṽref,P
1;n =

(−jsα1)
sγp

ṽref,P
3;n , (5.28)

ṽref,SV
3;n =

(−jsα1)
−sγs

ṽref,SV
1;n . (5.29)

These are four equations (n = 1&3), which are independent of eq. (5.12).
With them, the problem should be solvable.

We take all source functions equal, like in Section 5.4, and divide eq. (5.12)
through this wavelet, to arrive at expressions similar to the final expressions
in Chapter 3.

The set of equations formed by eq. (5.12), eq. (5.28) and eq. (5.29) can
be formed into a matrix equation. Since we now have eight equations with
eight unknowns, the matrix will be a square eight by eight matrix, and will
have the form:



A B C D 0 0 0 0
1 0 E 0 0 0 0 0
F G H I 0 0 0 0
0 J 0 1 0 0 0 0
0 0 0 0 K L M N
0 0 0 0 1 0 O 0
0 0 0 0 P Q R S
0 0 0 0 0 T 0 1




·




ṽ
ref,P
1;1

ṽref,SV
1;1

ṽref,P
3;1

ṽref,SV
3;1

ṽref,P
1;3

ṽref,SV
1;3

ṽref,P
3;3

ṽref,SV
3;3




=




1
2 ṽsurf

1;1 + U
0

1
2 ṽsurf

3;1 + V
0

1
2 ṽsurf

1;3 + W
0

1
2 ṽsurf

3;3 + X
0




,

(5.30)
where all the terms are defined as:

A =
µγp

f̂(s)
ṽsurf
1;1 +

λ(−jsα1)

sf̂(s)
ṽsurf
1;3 + 1, (5.31)

B =
µγs

f̂(s)
ṽsurf
1;1 +

λ(−jsα1)

sf̂(s)
ṽsurf
1;3 + 1, (5.32)

C =
µ(−jsα1)

sf̂(s)
ṽsurf
1;1 +

(λ + 2µ)γp

f̂(s)
ṽsurf
1;3 , (5.33)
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D =
µ(−jsα1)

sf̂(s)
ṽsurf
1;1 +

(λ + 2µ)γs

f̂(s)
ṽsurf
1;3 , (5.34)

E = −(−jsα1)
sγp

, (5.35)

F =
µγp

f̂(s)
ṽsurf
3;1 +

λ(−jsα1)

sf̂(s)
ṽsurf
3;3 , (5.36)

G =
µγs

f̂(s)
ṽsurf
3;1 +

λ(−jsα1)

sf̂(s)
ṽsurf
3;3 , (5.37)

H =
µ(−jsα1)

sf̂(s)
ṽsurf
3;1 +

(λ + 2µ)γp

f̂(s)
ṽsurf
3;3 + 1, (5.38)

I =
µ(−jsα1)

sf̂(s)
ṽsurf
3;1 +

(λ + 2µ)γs

f̂(s)
ṽsurf
3;3 + 1, (5.39)

J =
(−jsα1)

sγs
, (5.40)

K =
µγp

f̂(s)
ṽsurf
1;1 +

λ(−jsα1)

sf̂(s)
ṽsurf
1;3 + 1, (5.41)

L =
µγs

f̂(s)
ṽsurf
1;1 +

λ(−jsα1)

sf̂(s)
ṽsurf
1;3 + 1, (5.42)

M =
µ(−jsα1)

sf̂(s)
ṽsurf
1;1 +

(λ + 2µ)γp

f̂(s)
ṽsurf
1;3 , (5.43)

N =
µ(−jsα1)

sf̂(s)
ṽsurf
1;1 +

(λ + 2µ)γs

f̂(s)
ṽsurf
1;3 , (5.44)

O = −(−jsα1)
sγp

, (5.45)

P =
µγp

f̂(s)
ṽsurf
3;1 +

λ(−jsα1)

sf̂(s)
ṽsurf
3;3 , (5.46)

Q =
µγs

f̂(s)
ṽsurf
3;1 +

λ(−jsα1)

sf̂(s)
ṽsurf
3;3 , (5.47)

R =
µ(−jsα1)

sf̂(s)
ṽsurf
3;1 +

(λ + 2µ)γp

f̂(s)
ṽsurf
3;3 + 1, (5.48)

S =
µ(−jsα1)

sf̂(s)
ṽsurf
3;1 +

(λ + 2µ)γs

f̂(s)
ṽsurf
3;3 + 1, (5.49)

T =
(−jsα1)

sγs
, (5.50)
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U = −ṽinc
1;1 −

(
λ(−jsα1)

sf̂(s)
ṽinc
1;1 +

(λ + 2µ)

sf̂(s)
∂3ṽ

inc
3;1

)
ṽsurf
1;3 , (5.51)

V = −
(

λ(−jsα1)

sf̂(s)
ṽinc
1;1 +

(λ + 2µ)

sf̂(s)
∂3ṽ

inc
3;1

)
ṽsurf
3;3 , (5.52)

W = −
(

µ(−jsα1)

sf̂(s)
ṽinc
3;3 +

µ

sf̂(s)
∂3ṽ

inc
1;3

)
ṽsurf
1;1 , (5.53)

X = −ṽinc
3;3 −

(
µ(−jsα1)

sf̂(s)
ṽinc
3;3 +

µ

sf̂(s)
∂3ṽ

inc
1;3

)
ṽsurf
3;1 . (5.54)

This matrix equation is also decoupled with respect to the source direction,
much the same as eq. (5.17). The actual implementation of eq. (5.30) is left
open for future research.
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Conclusions

This thesis presented a method to remove Love waves (and other surface
effects) from land seismic data. This final chapter summarizes the method,
discusses the main results obtained on synthetic datasets and field data, and
proposes possible subjects for future research.

In shallow seismic SH-wave experiments, the data are often severely pol-
luted with surface related wave phenomena, the most important of which are
Love waves. Conventional methods to remove these Love waves are often
unsuccessful, most importantly because their group velocity is almost equal
to the shear wave velocity. A method to remove Love waves from seismic
SH-wave data is an important pre-processing step. This method should not
be dependent on a priori information about the subsurface, and should not
disturb the desired reflection events.

In this thesis, we derived a method, based on the Betti-Rayleigh field
reciprocity theorem, that removes surface effects like Love waves from seis-
mic land data, and where the data itself carries all the information needed
to distinguish Love waves (and other surface related wave phenomena) from
the other events present in the data. Reciprocity is a mathematical tool to
describe the interaction between two different states. By taking one state
as the actual (Love wave containing) configuration, where the medium is
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bounded by a stress-free surface, and the other state as an ideal (Love wave
free) configuration, where this surface is absent, we derived an integral equa-
tion of the second kind from which the Love wave free velocity wavefield can
be solved as a function of the Love wave contaminated data. Other input
parameters are: the soil properties of the top layer, which are the shear wave
velocity cs and the shear modulus µ (or alternatively, the mass density ρ),
and the source wavelet.

In discrete notation, the integral equation becomes a matrix equation,
which can be solved with conventional matrix operations such as inversion.
Another technique used to solve integral equations of the second kind, the
Neumann series expansion, can not be used, due to the fact that Love wave
“multiples” occur mainly in the evanescent regime, and are thus hardly sep-
arated in time. This means that when the norm of the kernel of the integral
equation is greater than one (which it usually is), too many updates of the
series are needed before the computer reaches machine precision.

When the medium is horizontally layered, the kernel of the integral equa-
tion becomes diagonal, and the equation reduces to a simple scalar expres-
sion. The usefulness of this expression is limited, since it has to be applied to
CDP-gathers, while seismic SH-wave data are often severely spatially aliased
due to the low velocity of shear waves (especially in soft soils), and this is
even more so with CDP-gathers.

We tested the method on several synthetic datasets. The datasets were
all modeled with the finite difference method. In all of the cases, the removal
method had no problems with removing the Love waves completely from the
data. It even removed noise in the form of scattered Love waves, in the
examples where such noise was present. In all cases, the data matched the
response of a medium without a stress-free surface after the application of the
removal procedure. The computation takes about two and a half hours for a
dataset consisting of 251 shots with 241 traces per shot, with 120 frequencies
to be solved.

The method was not very sensitive to errors in the estimation of the input
parameters. The shear wave velocity can be chosen within a factor of two of
the real value, and the mass density even provides satisfactory results when
it is chosen five times too high. The deviation in the phase of the source
wavelet can be up to 60 degrees, although larger phase shifts introduce much
more noise into the data.

The data itself can also carry severe distortions and still produce satis-
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factory results. For example, when there is a stochastic noise level as high
as the amplitude of the reflections in the data, or when anelastic attenuation
with a quality factor as low as 10 is introduced, it poses no problem for the
method. We also examined the effects of (slight) spatial aliasing, a missing
trace in the data and 3-D effects on the performance of the method, but in
all cases, the method still manages to remove the Love waves from the data.
The method seemed to be very robust.

In Chapter 5, an initiative is taken to remove Rayleigh waves and other
surface effects from coupled P- and SV-wave systems, using the same tech-
nique, derived from elastic reciprocity. Once again, we defined one state
where the surface is bounded by a stress free surface, and one state where
the surface is absent, and applied the Betti-Rayleigh reciprocity theorem.
The difference is that, in this case, the sources and receivers do not point in
the crossline (x2) direction, but in the vertical (x3) and inline (x1) direction.

Since P- and SV-waves are coupled, application of the reciprocity theorem
also leads to coupled equations. However, the final equation is decoupled with
respect to the source direction. This means that, even though all source and
receiver combinations are needed to make the removal operator, the data can
be solved independently for the source in the x1- or the x3-direction.

We modeled a dataset with finite difference modeling. The dataset con-
sisted of four shots (the source and the receiver can each point into the x1-
or the x3-direction). The model was a simple unbounded halfspace, so the
only waves that occur are a (non-dispersive) Rayleigh wave and the direct
waves. The method managed to remove the Rayleigh wave and leave the
direct waves intact.

In Appendix C, we test the Love wave removal method on a field dataset.
We shot a dataset at the site of the Sofia tunnel (before it was drilled) near
Hendrik Ido Ambacht in the Netherlands. At first sight, the data seemed to
be of good quality. Over the whole of the line, the data contained Love waves
which behaved almost exactly like the ones in the synthetic example.

However, application of the method did not remove the Love waves from
the data. Quite the contrary, the method introduced more noise into the
data.

Even though we could not pinpoint the exact reason why the removal
method does not produce satisfactory results on field data, we did rule out
some of the possibilities:



74 Conclusions

• It is not due to spatial aliasing, since we interpolated the data both in
the common shot domain and in the common receiver domain.

• It is not due to differences in the source wavelet (which the method
assumes are equal). The variations in the recorded vibrator source
wavelets are minor, which we checked in the time domain as well as
in the frequency domain (both the amplitude and the phase of the
wavelet). Besides, deconvolving with these wavelets resulted in nice
pulse-like wavelets, and this is a strong indication that they are correct.

• It is not due to differences in shot strengths. Even though there is some
variation in the shot strength, when we applied the same weights on a
synthetic dataset, the method did still produce good results.

Some of the possible reasons for the poor results, but which we were unable
to check, are:

• Near-field effects. Near-field effects do not occur when the SH-waves
are created with line sources. In a field experiment, the sources behave
more like point sources, and near-field effects do occur. Checking what
effect the near field has on Love waves and their subsequent removal
would require 3-D finite difference modeling. This was deemed to be
computationally too expensive.

• Anisotropy. We assumed that the top layer of the medium is homoge-
neous and isotropic. Previous studies showed however, that the highest
degree of anisotropy occurs in these top layers. This means that the
polarization of the traveling wave is rotated as it propagates through
the medium. Therefore, although the wave will still be a decoupled SH-
wave, it will have components in both the crossline (x2) direction and
the inline (x1) direction. This will have an effect on the amplitude and
the phase of the wave, when we measure only the crossline component.

• A combination of effects described above. Each time we ruled out a
possible cause, this was done in a way where we examined the effect
of the cause on the Sofia dataset, and then applied the same effect
on a synthetic dataset. Therefore, each time, the synthetic dataset
suffered from only one distortion, while the Sofia dataset suffers from
all of them. If a combination of effects is the cause, then it is hard to
discover which combination, and where exactly the threshold lies.
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Even though we could not make the Love wave removal method work on a
field dataset, we are still confident that it has a high potential. Perhaps with
a few modifications to the theory, like taking the anelastic attenuation into
account with complex values for the medium parameters, or incorporating
the near-field effects when constructing a line source response, the method
will provide good results.

Appendix D shows an attempt at a wavelet estimation. It is based on
energy minimization. The idea was that only the correct wavelet will remove
the most energy from the data. This attempt was also not successful, because
when the wavelet goes to zero, the data also goes to zero, and this is obviously
not the solution we are looking for.
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A

Integral transforms and their
properties

Throughout the theory, we use Laplace transforms and spatial Fourier trans-
forms for the derivation of the equations. These transforms are defined here,
and some of their most relevant properties are discussed.

A.1 The Laplace transform

A.1.1 Continuous Laplace transform

In view of causality, we assume that a wavefield generated by sources is only
not equal to zero, after a time t = 0, which defines the time when the sources
are fired. If we introduce the characteristic function χT (t) as:

χT (t) =




0, t < 0,
1
2 , t = 0,

1, t > 0,

(A.1)

then the Laplace transform of a causal function u(x, t) in space and time is
defined as:

Lt {u(x, t)} = û(x, s) =
∫

t∈R
χT (t)u(x, t)e−stdt. (A.2)
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To ensure convergence of eq. (A.2), the Laplace parameter s must satisfy
the constraint Re(s) > 0. When we take the limiting case of a completely
imaginary Laplace parameter, s → jω, where ω is the angular frequency, we
arrive at the temporal Fourier transform.

The function û(x, s) can be transformed back to the time domain by
evaluating the Bromwich integral (Bracewell [1987]), which is defined as:

1
2πj

∫ ε+j∞

ε−j∞
û(x, s)estds = χT (t)u(x, t). (A.3)

The path of integration in this equation is the line parallel to the imaginary
axis of the complex s-domain (s = ε, ε ∈ R+), on the right side of this
domain, since this is where the Laplace transform itself is defined.

The Laplace transform of a function differentiated to time can be found
when we take the time derivative of the complete integrand in eq. (A.2):∫

t∈R
∂t

[
χT (t)u(x, t)e−st

]
dt =

∫
t∈R

[∂tχT (t)] u(x, t)e−stdt +∫
t∈R

χT (t) [∂tu(x, t)] e−stdt +
∫

t∈R
χT (t)u(x, t)

[
∂te

−st
]
dt. (A.4)

It is the second term on the right hand side that we are interested in. The
term on the left hand side yields zero. For the first term on the right hand
side, we find: ∫

t∈R
[∂tχT (t)]u(x, t)e−stdt = lim

t↓0
u(x, t), (A.5)

and for the third term on the right hand side:∫
t∈R

χT (t)u(x, t)
[
∂te

−st
]
dt = −sû(x, t). (A.6)

Therefore, for the Laplace transform of a function differentiated to time, we
find: ∫

t∈R
χT (t) [∂tu(x, t)] e−stdt = sû(x, t) − lim

t↓0
u(x, t). (A.7)

This equation shows that a differentiation to time is equivalent to a multi-
plication with a factor s in the Laplace domain, together with a correction
due to the jump of the function as it passes the instant t = 0. In most prac-
tical cases, it can be assumed that u(x, t) = 0 for t = 0, and thus, only the
multiplication with s remains.
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A.1.2 Numerical implementation

For the numerical implementation of the Laplace transform, we take a com-
plex Laplace parameter:

s = ε + jω, (A.8)

where, according to our earlier statement, ε > 0. If ε is taken constant, the
forward Laplace transform, eq. (A.2), becomes:

û(x, ε + jω) =
∫

t∈R
χT (t)

[
u(x, t)e−εt

]
e−jωtdt. (A.9)

This equation is a normal forward Fourier transform, but after the application
of an exponential taper on the function. The integral converges when the
function u(x, t)e−εt is absolute integrable. Also, singularities along the path
of integration are avoided with this definition.

The function χT (t)u(x, t) can be obtained from its Laplace-domain coun-
terpart. The Bromwich integral, eq. (A.3), becomes an inverse temporal
Fourier transform:

eεt

2π

∫
ω∈R

û(x, ε + jω)ejωtdω = χT (t)u(x, t). (A.10)

From eq. (A.9), and keeping in mind that u(x, t) is real, it follows that
û(x, ε−jω) = û∗(x, ε+jω), with the star (∗) denoting the complex conjugate.
Therefore, the inverse transform can also be written as:

χT (t)u(x, t) = 2Re
{

eεt

2π

∫ ∞

0
û(x, ε + jω)ejωtdω

}
. (A.11)

Since an elastic medium has an equilibrium state, when there are no waves
propagating, there will be no DC-component in the data, i.e. û(x, jω) = 0
for ω = 0. Furthermore, we can restrict our analysis to positive frequencies
only.

A.1.3 Discretization in the time domain

When processing seismic data on a computer, eq. (A.9) and eq. (A.10) are
performed by numerical techniques. With digital devices, the function values
of u(x, t) are only known on a discrete and finite set of points in time.

Suppose that we have N measured points in time, regularly divided by
a constant width ∆t. As a consequence, we will also have N data points in
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the frequency domain, also regularly divided, this time by a width of ∆ω.
Eq. (A.9) is now replaced by its discrete counterpart:

û(x, j k∆ω) = ∆t
N−1∑
n=0

[
e−εn∆tu(x, n∆t)

]
e−j k∆ω n∆t,

for k = −1
2N + 1, · · · , 1

2N. (A.12)

The frequency sampling rate ∆ω is chosen in such a way that it agrees to the
relation:

∆t ∆ω =
2π

N
. (A.13)

Note that the domain of integration in eq. (A.12) is chosen symmetrically
around t = 0, i.e. t ∈ [(−1

2N+1)∆t, · · · , 1
2N∆t]. Since the function u(x, n∆t)

is discrete in the time domain, this means that it is periodic in the frequency
domain, with period N∆ω.

We find a similar expression for the discrete counterpart of eq. (A.10):

u(x, n∆t) =
eεn∆t∆ω

2π

1
2
N∑

k=− 1
2
N+1

û(x, ε + j k∆ω)ej n∆t k∆ω,

for n = 0, · · · , N − 1. (A.14)

Since the function û(x, j k∆ω) is discrete in the frequency domain, this means
that it is periodic in the time domain, with period N∆t.

Eq. (A.12) and eq. (A.14) are standard discrete Fourier transforms, apart
from the multiplication with the exponential factor, and can be performed
with standard numerical Fast Fourier Transform (FFT) routines.

A.2 The spatial Fourier transform

During the course of this thesis, one frequently encounters notations such as:
û(xR|xS , s). This notation means a scalar wavefield quantity û (the hat (̂ )
denotes its representation in the Laplace domain), measured at a position
xR, caused by a source at position xS . Since the coordinates xR and xS

are independent, we can define two different Fourier transforms, one for each
coordinate.
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A.2.1 Fourier transform with respect to the receiver coordinate

We define the horizontal Fourier transform with respect to the receiver coor-
dinate as:

FR

{
û(xR

1 |xS
1 , s)

}
= ũ(jsαR

1 |xS
1 , s) =

∫
xR
1 ∈R

û(xR
1 |xS

1 , s)ejsαR
1 xR

1 dxR
1 . (A.15)

Here, αR
1 is defined as the complex angular horizontal slowness. The reason

for this is explained later. While αR
1 may be complex, it is chosen in such a

way that sαR
1 is real. The horizontal slowness is related to the more commonly

used horizontal wavenumber kR
1 by: kR

1 = sαR
1 . The integral in eq. (A.15)

converges when the function û(xR
1 |xS

1 , s) is integrable for the domain {xR
1 ∈

R| −∞ < xR
1 < ∞}.

The function ũ(jsαR
1 |xS

1 , s) can be transformed back to the space domain
by means of an inverse Fourier transform:

û(xR
1 |xS

1 , s) = F−1
R

{
ũ(jsαR

1 |xS
1 , s)

}
=

1
2π

∫
sαR

1 ∈R
ũ(jsαR

1 |xS
1 , s)e−jsαR

1 xR
1 dsαR

1 . (A.16)

The horizontal Fourier transform of a function differentiated with respect
to the horizontal receiver coordinate can be found when we take the derivative
with respect to the horizontal receiver coordinate of the complete integrand
in eq. (A.15), a similar procedure as eq. (A.4):∫

xR
1 ∈R

∂R
1

[
û(xR

1 |xS
1 , s)ejsαR

1 xR
1

]
dxR

1 =∫
xR
1 ∈R

[
∂R

1 û(xR
1 |xS

1 , s)
]
ejsαR

1 xR
1 dxR

1 +
∫

xR
1 ∈R

û(xR
1 |xS

1 , s)
[
∂R

1 ejsαR
1 xR

1

]
dxR

1 .

(A.17)

We are interested in the first term on the right hand side. The integral on the
left hand side yields zero, on account of Gauss’ integral theorem. Therefore,
we find:∫

xR
1 ∈R

[
∂R

1 û(xR
1 |xS

1 , s)
]
ejsαR

1 xR
1 dxR

1 = −jsαR
1 ũ(jsαR

1 |xS
1 , s). (A.18)

This equation shows that a differentiation to the xR
1 component of a function

in the space domain corresponds to a multiplication with a factor −jsαR
1 of

the function in the horizontal slowness domain.
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When examining the complex angular horizontal slowness parameter, we
find that its dimension is [s/m], i.e. the inverse dimension of velocity. Hence,
the name slowness. Indeed, when taking the limit s → jω, the complex
angular horizontal slowness parameter αR

1 becomes completely imaginary.
We can then write: αR

1 = −jpR
1 , in which pR

1 is the slowness parameter more
commonly found in literature, for example in (τ -p)-transforms.

A.2.2 Fourier transform with respect to the source coordinate

The horizontal Fourier transform with respect to the source coordinates is
defined as:

FS

{
û(xR

1 |xS
1 , s)

}
= ū(xR

1 |jsαS
1 , s) =

∫
xS
1 ∈R

û(xR
1 |xS

1 , s)e−jsαS
1 xS

1 dxS
1 . (A.19)

It is a similar expression as eq. (A.15), but with an opposite sign in the
exponent. In Section 3.4, we use the two different Fourier transforms on data
from horizontally layered media. With them, the double Fourier transform
of a shift-invariant quantity becomes diagonal (i.e. only has a contribution
when sαR

1 = sαS
1 ), instead of an anti-diagonal one.

With the two different definitions of the Fourier transform, Parseval’s
theorem (Arfken [1985]) becomes:

∫
x1∈R

f̂(xR
1 |x1, s)ĝ(x1|xS

1 , s)dx1 =

1
2π

∫
sα1∈R

f̄(xR
1 |jsα1, s)g̃(jsα1|xS

1 , s)dsα1. (A.20)

A.2.3 Discretization in the space domain

Discretization in space is almost inevitably caused by the use of geophones.
Geophones are devices that measure the particle velocity at a certain point.
Suppose that we have placed N geophones in the ground with a spacing
of ∆xR

1 . This will lead to N points with a spacing of ∆sαR
1 (which is

real-valued) in the horizontal slowness domain. The domains of integration
are chosen symmetrically around zero for both the forward and the inverse
transforms, i.e. xR

1 ∈ [(−1
2N + 1)∆xR

1 , · · · , 1
2N∆xR

1 ] in the space domain,
and sαR

1 ∈ [(−1
2N + 1)∆sαR

1 , · · · , 1
2N∆sαR

1 ] in the horizontal Fourier do-
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main. The discrete counterparts of eq. (A.15) and eq. (A.16) are then:

ũ(jk∆sαR
1 |xS

1 , s) = ∆xR
1

1
2
N∑

n=− 1
2
N+1

û(n∆xR
1 |xS

1 , s)ej n∆xR
1 k∆sαR

1

for k = −1
2N + 1, · · · , 1

2N, (A.21)

and

û(n∆xR
1 |xS

1 , s) =
∆sαR

1

2π

1
2
N∑

k=− 1
2
N+1

ũ(jk∆sαR
1 |xS

1 , s)e−j n∆xR
1 k∆sαR

1

for n = −1
2N + 1, · · · , 1

2N, (A.22)

where the sampling in the horizontal slowness is chosen as:

∆sαR
1 ∆xR

1 =
2π

N
. (A.23)

Also here it goes that, since the function û(n∆xR
1 |xS

1 , s) is discrete in the
space domain, it is periodic in the horizontal slowness domain and vice versa.
To avoid edge effects that are the result of spatial windowing, the data are
usually tapered with a spatial cosine taper.
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B

Elastodynamic radiation from line
sources

In the theory, we sometimes needed expressions for the incident wavefields.
Analytical expressions for these wavefields could be found in the literature,
but usually they were formulated in the space domain, and intended for
point sources. In this appendix, we will derive expressions for the incident
wavefields generated by line sources.

B.1 The incident SH-wave field

We begin by restating eq. (2.20) and eq. (2.21), but without sources of de-
formation:

∂j τ̂i,j − sρv̂i = −f̂i, (B.1)

τ̂i,j =
Ci,j,p,q

s
∂pv̂q. (B.2)

For the volume density of force, we take a line source which exerts its force in
the x2 direction. Obviously, this source generates only SH-waves. Therefore,
i = 2 and f̂i(x, s) = f̂2(s)δ(x1 − xS

1 )δ(x3 − xS
3 ). We substitute eq. (B.2) into
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eq. (B.1), assume a homogeneous and isotropic medium, and obtain:

C2,j,p,q

s
∂j∂pv̂q − sρv̂2 = −f̂2(s)δ(x1 − xS

1 )δ(x3 − xS
3 ). (B.3)

Since there are only SH-waves in this configuration, we can take also q = 2.
Furthermore, since the source is a line source, all derivatives with respect to
the x2 coordinates are zero, hence, both j and p do not take the value 2. In the
remaining components of the stiffness tensor Ci,j,p,q, only two contributions
remain: C2,1,1,2 = µ and C2,3,3,2 = µ. Substituting this, eq. (B.3) becomes:

∂1∂1v̂2 + ∂3∂3v̂2 −
s2

c2
s

v̂2 = − s

µ
f̂2(s)δ(x1 − xS

1 )δ(x3 − xS
3 ), (B.4)

where we have to remember that c2
s = µ/ρ.

To find a convenient solution to this differential equation, we perform a
double Fourier transformation on it, not only with respect to the x1 coordi-
nate, but also with respect to the x3 coordinate. This Fourier transform is
defined, similar to eq. (A.15), as:

ŭ(jsα1, jsα3, s) = F3{ũ(jsα1, x3, s)} =
∫

x3∈R
ũ(jsα1, x3, s)ejsα3x3dx3.

(B.5)
Also for this Fourier transform goes, similar to the Fourier transform with
respect to the x1 coordinate, that a differentiation to the x3 component of a
function in the space domain corresponds to a multiplication with a factor
−jsα3 of the function in the horizontal slowness domain.

After applying this double Fourier transform, eq. (B.4) becomes:

(s2α2
1 + s2α2

3)v̆2 +
s2

c2
s

v̆2 =
s

µ
f̂2(s)ejsα1xS

1 +jsα3xS
3 . (B.6)

From this equation, we can solve v̆2:

v̆2(jsα1, jsα3, s) =
sf̂2(s)ejsα1xS

1 +jsα3xS
3

µ
(
s2(α2

1 + α2
3 + 1

c2s
)
) . (B.7)

To arrive at the expression we used in this thesis, we only have to perform
an inverse Fourier transformation with respect to the x3 coordinate:

ṽ2(jsα1, x3, s) =
s

µ
f̂2(s)ejsα1xS

1
1
2π

∫
sα3∈R

ejsα3xS
3

s2
(
α2

3 + γ2
s

)e−jsα3x3dsα3. (B.8)
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Here, γs is defined as:

γs =

√
1
c2
s

+ α2
1. (B.9)

This integral can be evaluated easily with the pole-residue theorem (see for
example Fokkema and van den Berg [1993]). The integrand has a pole at ei-
ther +jsγs or −jsγs, depending on whether x3 ≤ xS

3 or x3 ≥ xS
3 , respectively.

Taking into account the respective residues, we find:

ṽ2(jsα1, x3, s) =
f̂2(s)
2µγs

ejsα1xS
1 −sγs|x3−xS

3 | (B.10)

From this equation, it is obvious that a differentiation to the x3-coordinate
becomes a multiplication with either −sγs when the field is down-going (x3 >
xS

3 ) or +sγs when the field is up-going (x3 < xS
3 ). Also, we see that the

vertical derivative of this wavefield is zero (∂3ṽ2 = 0) when x3 = xS
3 , due to

the absolute-function in the exponent.

B.2 The incident P- and SV-wave field

The starting point for the calculation of the coupled P- and SV-wave system
is again eq. (B.1) and eq. (B.2). This time however, the line source exerts its
force in either the x1 direction or the x3 direction. This means that i does
not take the value 2. Again, we substitute eq. (B.2) into eq. (B.1), assume a
homogeneous and isotropic medium, and obtain:

Ci,j,p,q

s
∂j∂pv̂q − sρv̂i = −f̂i. (B.11)

In this equation, j and p do not take the value 2, because we assumed line
sources, and also q 6= 2, because the sources (pointing only in the x1 or x3

direction) generate only P- and SV-waves. Performing all summations, this
gives for i = 1:

λ + 2µ

ρ
∂1∂1v̂1 +

λ

ρ
∂1∂3v̂3 +

µ

ρ
∂3∂1v̂3 +

µ

ρ
∂3∂3v̂1 − s2v̂1 = −s

ρ
f̂1, (B.12)

and for i = 3:

λ + 2µ

ρ
∂3∂3v̂3 +

λ

ρ
∂3∂1v̂1 +

µ

ρ
∂1∂3v̂1 +

µ

ρ
∂1∂1v̂3 − s2v̂3 = −s

ρ
f̂3. (B.13)
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This can be summarized as:(
c2
p − c2

s

)
∂j∂iv̂i + c2

s∂i∂iv̂j − s2v̂j = −s

ρ
f̂j , (B.14)

where i & j 6= 2. In order to solve this equation, we need an expression for
the coupling term ∂iv̂i. In order to get there, we multiply the above equation
with ∂j , and obtain:

c2
p∂j∂j∂iv̂i − s2∂j v̂j = −s

ρ
∂j f̂j . (B.15)

In order to get a useful expression, we perform a double Fourier transfor-
mation on this equation. One transformation is with respect to the x1 co-
ordinate, the other with respect to the x3 coordinate, which is defined by
eq. (B.5). We get:

(−jsαi)v̆i =
(−jsαi) s

ρ f̆i(
s2(c2

pαjαj + 1)
) . (B.16)

Now, eq. (B.14) is also transformed to the horizontal slowness domain with a
double Fourier transformation. After that, we can substitute eq. (B.16), and
solve the expression for the velocity. We obtain:

v̆i =
s
ρ f̆i

s2(c2
sαjαj + 1)

+

(
c2
p − c2

s

)
(−jsαi)(−jsαj) s

ρ f̆j

s2(c2
pαjαj + 1) s2(c2

sαjαj + 1)
. (B.17)

Remember that in these equations, i&j 6= 2. We see that:

(c2
p − c2

s)
(c2

pαjαj + 1)(c2
sαjαj + 1)

=
1

αjαj + 1
c2p

− 1
αjαj + 1

c2s

. (B.18)

So finally, we can write the solution for the particle velocity:

v̆i = Ği,j
s

ρ
f̆j , (B.19)

in which:

Ği,j =
1
c2
s

ĞSδi,j +
(−jsαi)(−jsαj)

s2

(
ĞP − ĞS

)
, (B.20)

where ĞP and ĞS are Greens functions, similar to acoustic Greens functions
(see for example Fokkema and van den Berg [1993], de Hoop [1995] or the
previous section):

ĞP,S =
1

s2(αjαj + 1
c2p,s

)
. (B.21)



B.2 The incident P- and SV-wave field 89

B.2.1 The x1 component of the particle velocity, due to a source
in the x1 direction

The most simple case to find incident wavefield is the one where the source
is pointing in the x1 direction, and where we consider the x1 component of
the particle velocity. We substitute i&j = 1 in eq. (B.19), and obtain:

v̆1;1 =
sf̆1

µ
ĞS − α2

1 sf̆1

ρ
ĞP +

α2
1 sf̆1

ρ
ĞS . (B.22)

In order to obtain the expression in the (jsα1, x3, s)-domain, we only have
to perform an inverse Fourier transformation with respect to the x3 coordi-
nate on the Greens functions ĞP and ĞS , because all the other factors are
independent from jsα3. These inverse Fourier transforms are known (see
Section B.1):

G̃P,S(jsα1, x3, s) = F−1
3 {ĞP,S(jsα1, jsα3, s)} =

e−sγp,s|x3|

2sγp,s
(B.23)

In this equation, γp is defined, similarly to γs, as:

γp =

√
1
c2
p

+ α2
1. (B.24)

A clarifying perspective is obtained when we take x3 = 0, and a line source
f̂1 = f̂1(s)δ(x1)δ(x3). In that case, the incident field becomes:

ṽ1;1 =
f̂1(s)
2µγs

− α2
1f̂1(s)
2ργp

+
α2

1f̂1(s)
2ργs

, for x3 = 0. (B.25)

However, when we realize that:

α2
1 = γ2

p,s −
1

c2
p,s

, (B.26)

then the equation becomes:

ṽ1;1 =
f̂1(s)

2(λ + 2µ)γp
− γpf̂1(s)

2ρ
+

γsf̂1(s)
2ρ

, for x3 = 0. (B.27)

This equation tells us, that the x1-component of the particle velocity, due to
a source in the x1-direction at the “depth level” x3 = 0 consists not only of
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a direct P-wave (described by the first term on the right hand side), but also
of a near-field P-wave component (described by the second term on the right
hand side), and, surprisingly, of a near-field S-wave component (described by
the third term on the right hand side). This would not have been immediately
obvious had we looked only at eq. (B.25).

B.2.2 The x3-component of the particle velocity, due to a source
in the x3 direction

Now, we try to find the incident wavefield when the source is pointing in the
x3 direction, and when we measure the x3 component of the particle velocity.
To this end, we substitute i&j = 3 in eq. (B.19), and obtain:

v̆3;3 =
sf̆3

µ
ĞS +

(−jsα3)(−jsα3)
s2

s

ρ
f̆3 ĞP − (−jsα3)(−jsα3)

s2

s

ρ
f̆3 ĞS . (B.28)

The Greens functions GP and GS are known both in the (jsα1, jsα3, s)-
domain and in the (jsα1, x3, s)-domain. But now, when performing the in-
verse Fourier-transformation with respect to the x3-coordinate, we have to
take the multiplications with −jsα3 in the second and the third term of the
last equation into account. Similar to the Fourier transform with respect to
the x1-coordinate, a multiplication with −jsα3 in the (jsα1, jsα3, s)-domain
is equivalent to a differentiation with respect to the x3-coordinate in the
(jsα1, x3, s)-domain. We can show that:

∂3∂3G̃P,S = s2γ2
p,sG̃P,S − δ(x3), (B.29)

independent of whether it is an up-going or down-going field. After an inverse
Fourier transform with respect to the x3-coordinate, we substitute this and
eq. (B.23) into eq. (B.28), assume a line source in the form of f̂3(s)δ(x1)δ(x3),
observe that the delta functions cancel each other, and we obtain:

ṽ3;3 =
f̂3(s)
2µγs

− γsf̂3(s)
2ρ

+
γpf̂3(s)

2ρ
, for x3 = 0. (B.30)

Similar to eq. (B.25), this equation implies that the x3-component of a wave-
field caused by a source in the x3 direction consists on the “depth level”
x3 = 0 of a normal incident SV-wave (described by the first term on the
right-hand side), a near-field SV-wave (described by the second term on the
right-hand side) and a near-field P-wave (described by the third term on the
right-hand side).



B.2 The incident P- and SV-wave field 91

B.2.3 The x1-component of the particle velocity, due to a source
in the x3 direction, and vice versa

Finally, we determine the last components of the incident wavefield. They are
the cross-components, i.e. the source and receiver are pointing in a different
direction each. As an example, we take i = 1 and j = 3 in eq. (B.19). This
yields:

v̆1;3 =
(−jsα1)(−jsα3)

s2

(
ĞP − ĞS

) s

ρ
f̆3. (B.31)

This time, when we Fourier-transform the equation back to the (jsα1, x3, s)-
domain, there is only one multiplication with (−jsα3) which becomes a dif-
ferentiation with respect to the x3-coordinate. So we perform a Fourier-
transformation with respect to the x3-coordinate on eq. (B.31), substitute
eq. (B.23), and perform the differentiation (and of course, the source func-
tion is defined as f̂3(s)δ(x1)δ(x3)). Thus we obtain:

ṽ1;3 =

(
−(−jsα1)f̂3(s)

2sρ
e−sγp|x3| +

(−jsα1)f̂3(s)
2sρ

e−sγs|x3|
)

sign(x3). (B.32)

Remember, the sign-function is defined as:

sign(x) =




−1, x < 0,

0, x = 0,

1, x > 0,

(B.33)

and it is the result of the differentiation of the absolute function in the ex-
ponent.

We see that exactly on the surface x3 = 0, the incident wavefield of the
cross-terms is zero, due to the sign-function. However, when we perform a
differentiation with respect to the x3-coordinate on eq. (B.32), we see that it
does not equal to zero, in contrast to the other incident wavefields we derived.
Instead it becomes:

∂3ṽ1;3 =
(−jsα1)γpf̂3(s)

2ρ
− (−jsα1)γsf̂3(s)

2ρ
, for x3 = 0. (B.34)

We obtain the same expressions for the wavefields when the source and
receiver directions are switched (i.e. i = 3 and j = 1).
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C

Application on field data

In Chapter 3, we have seen that the procedure to remove Love waves from
seismic SH-wave data works very well on synthetic datasets. Chapter 4
showed that even with substantial distortions in the input parameters or
in the data, the method still provides good results. In this appendix, we
discuss our findings of the application of the method on a field dataset.

The dataset we used was shot at the site of the Sofia tunnel before it
was drilled, near Hendrik Ido Ambacht in the Netherlands (see Figure C.1
for the exact location of the site). We will use the name Sofia-dataset from
now on. This site was chosen because of the excellent quality of the data in
previous experiments (were it not for the dominating presence of Love waves),
and because a geological subsurface model was already known, due to soil
investigations needed for the construction of the tunnel. The realization
of this dataset was made possible due to sponsoring of the former OYO-
department in Nieuwegein in the Netherlands.

First, this appendix describes the acquisition of the dataset. Then it
describes the preprocessing steps needed to arrive at a dataset suitable for
the removal procedure. Finally it shows the results of the application of the
removal procedure on the Sofia dataset. These results are not satisfactory.
The method fails to remove Love waves from the data, and furthermore
introduces more noise instead. The appendix concludes with a discussion of
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Figure C.1: Location of the acquisition of the Sofia dataset. The arrow indicates the
exact location.
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the reasons behind these results, and recommendations for improvement.

C.1 Geometry of the dataset

The Sofia-dataset consists of a 2-D geometry. According to eq. (3.27) and
Figure 3.6, the most ideal geometry would be split-spread roll-along, with a
wide aperture. However, we only had 96 geophones at our disposal, divided
over 4 cables, and therefore, a roll-along configuration is not optimal. We
chose to organize the data in fixed spreads. In each spread, the geophones stay
in place, and only the source is moved. It is only when a certain number of
shots have been reached, that a geophone cable is moved from the beginning
to the end of the line. We made 5 such spreads, with 24 shots per spread,
totaling 120 shots. The data from a receiver exactly at the source position
would be clipped, due to the strength of the source. Therefore, we chose
to remove this zero-offset geophone and replace it after the source had been
moved to the next position. A simplified version of this geometry is given in
Figure C.2. We also constructed a synthetic dataset following this geometry,

∇ ∇ ∗ ∇ ∇ ∇ ∇ ∇
∇ ∇ ∇ ∗ ∇ ∇ ∇ ∇
∇ ∇ ∇ ∇ ∗ ∇ ∇ ∇
∇ ∇ ∇ ∇ ∇ ∗ ∇ ∇

∇ ∇ ∗ ∇ ∇ ∇ ∇ ∇
∇ ∇ ∇ ∗ ∇ ∇ ∇ ∇
∇ ∇ ∇ ∇ ∗ ∇ ∇ ∇
∇ ∇ ∇ ∇ ∇ ∗ ∇ ∇

∇ ∇ ∗ ∇ ∇ ∇ ∇ ∇
∇ ∇ ∇ ∗ ∇ ∇ ∇ ∇
∇ ∇ ∇ ∇ ∗ ∇ ∇ ∇
∇ ∇ ∇ ∇ ∇ ∗ ∇ ∇

Figure C.2: Simplified geometry for 3 spreads, 4 shots per spread and 7 receivers per
shot. A “ ∇” represents a receiver, a “ ∗” represents a source. The Sofia dataset
consists of 5 spreads, 24 shots per spread and 95 receivers per shot.
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Table C.1: Acquisition parameters of the Sofia dataset.

number of spreads 5
number of shots per spread 24
total number of shots 120
number of traces per shot 95
source- and receiver-spacing 0.75 m
max. neg. offset at begin of swath 27.0 m
max. pos. offset at begin of swath 44.25 m
max. neg. offset at end of swath 44.25 m
max. pos. offset at end of swath 27.0 m
sample time 0.001 s
total trace length 9.0 s
starting freq. of sweep 5 Hz
end freq. of sweep 80 Hz
sweep length 7.0 s
number of sweeps per stack 4

and performed the Love wave removal method on it. No problems were
encountered when using this geometry.

For the source, we used a horizontal shear-wave vibrator, developed at
the former OYO-CAG department (Ghose et al. [1996]). This device has
the advantage of being a controlled source, as opposed to less controllable
methods, such as a sledgehammer. Other important acquisition parameters
are summarized in Table C.1.

C.2 Source and receiver considerations

In order to apply the Love-wave removal method on this field data, we have
to make the following assumptions regarding the source and receiver config-
urations and the subsurface characteristics:

• The method described in Chapter 3 assumes that all sources are line-
sources. This implies that the wavefield shows a cylindric symmetry,
with a corresponding amplitude decay proportional to 1/

√
|x| for body
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waves in the far field in a homogeneous medium. The wavefields of the
Sofia-dataset however, are generated by (approximately) point sources,
which means that the corresponding amplitude decay is proportional
to 1/|x| for body waves in a homogeneous medium (so called spherical
divergence).

Several methods exist to correct for this discrepancy in amplitude decay
(Yilmaz [1987]; Wapenaar et al. [1992].) The most common method
used is to multiply the data with offset-independent factors of

√
jω in

the frequency domain and
√

t in the time domain.

• The method assumes that the source signature of each shot is the same.
In reality, this is hard to realize. However, each shot of the Sofia-dataset
is deconvolved with its respective source-signature, measured on the
source itself. Therefore, after deconvolution, each shot should have the
same source-signature (which, in the frequency domain, should be 1,
for the frequency range of the sweep).

• All the sources and receivers are placed upon the surface, and it is
assumed that this surface is flat. Fortunately, that is not a big problem
in the Netherlands. . .

Also, it is assumed that the surface acts as a perfect reflector for SH-
waves, because it is stress-free, and that the placement of the sources
and receivers on this surface does not influence this condition.

• It is assumed that the medium is independent of the crossline (x2) direc-
tion. In that case, the crossline component of the particle velocity will
contain only SH-waves. If not, there will be pollution from other wave
types in the data, and the timing of Love-waves will not be predicted
correctly.

• It is assumed that there is a homogeneous and isotropic surface layer
present throughout the whole area where the dataset was obtained.
Chapter 4 however, showed that slight deviations in the estimated mass
density and shear-wave velocity do not influence the result significantly.

• The geophones have a sensitivity of 1.67 .104 mV/(m/s). The ac-
celerometer on the vibrator has a sensitivity of 0.162 mV/N. Therefore,
to obtain the displacement velocity of the geophones, the raw data has
to be divided by 1.67 .104. Then, because of the deconvolution, the
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data has to be multiplied by 0.162. Bear in mind that the unit of the
deconvolved data is then m/N.

C.3 Preprocessing steps

In order to prepare the data optimally for the application of the removal
procedure, we performed the following preprocessing steps:

• Deconvolution with source wavelet. Each shot is deconvolved with its
own source wavelet, which is recorded with the help of two accelerom-
eters located on the vibrator itself. Since the mass of the vibrator is
known, the actual (ground) force is easily determined.

When the response of the earth is denoted by Ĝ(jω) and when there
is additive stochastic noise N̂ , then the data of a trace is obtained by:
Ĝ(jω)f̂2(jω)+N̂ . Simply dividing this expression by the source wavelet
f̂2(jω) is not feasible at the places where the source wavelet reaches

zero. The division is stabilized in the following manner: Ĝ(jω) f̂2(jω)f̂∗
2 (jω)

|f̂2(jω)|2+ε2
+

N̂
f̂∗
2 (jω)

|f̂2(jω)|2+ε2
. With the proper selection of the stabilization factor ε,

this expression approximates Ĝ(jω). In other words, the source wavelet
is (approximately) 1, for the frequency range of the vibrator sweep.
Figure C.3 shows one shot of the data after this deconvolution step.

• Top mute. To eliminate some anti-causal noise.

• Frequency filter: Bandpass 3-6-55-65 Hz. Even though the vibrator
sweep ranges up to 80 Hz, there appeared to be much noise of 70 Hz
at near offsets.

• Interpolation of dead traces with spline interpolation.

• Reconstruction of zero-offset traces. This was done with a linear inter-
polation of the two nearest offset traces, but where the samples were
chosen such that at smaller times, an event will have a linear move-out,
while at larger times, an event will have a hyperbolic move-out. The
reconstructed trace was multiplied with a factor of 2.7, which was taken
from the synthetic data.

• Anti-aliasing steps. The data are severely spatially aliased. Figure C.4
shows the (f, k)-spectrum of the shot displayed in Figure C.3, after
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Figure C.3: Shot number 33 from the Sofia dataset. Raw data, deconvolution only.
Individual trace scaling.
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the pre-processing steps above. Not only are the data aliased, the
aliasing starts where there is the maximum energy. Therefore, we took
the following anti-aliasing steps: First we applied a Linear Move Out.
This causes the data to be moved towards k = 0 in the (f, k)-domain.
Bear in mind that this diminishes only the aliasing of the main events.
Events in the form of backscattered noise become more aliased by this
procedure, but we assume that this noise is not present in the data,
or at least form only a minor contribution. When the data were no
longer aliased, we added zeroes to the edges of the (f, k)-spectrum.
Thus, we made the dataset twice as large. After transforming the data
back to the space-time domain, the Linear Move Out is removed. Since
the method requires that the source and receiver spacing is equal, we
did the same in the common-receiver domain. So in total, the dataset
became four times as large as the original dataset. Figure C.5 shows the
(f, k)-spectrum of the shot, after interpolation, and Figure C.6 shows
the shot in the space-time domain after interpolation and the other
pre-processing steps described above.

After these pre-processing steps, the data are considered suitable for the
application of the removal procedure, eq. (3.27). Figure C.6 shows one shot
of the new dataset. Love waves are indeed prominent in this figure. Especially
on the left side of the figure they resemble qualitatively the Love waves in the
synthetic examples. There is also a very strong reflection starting at t = 0.4
s at the zero offset. What this figure does not show (due to the individual
trace scaling), is that there is much anelastic attenuation. But as shown in
Chapter 4, this should not be a problem.

C.4 Results of the removal procedure on the Sofia data

In the previous section, we explained how we prepared the Sofia-dataset for
the application of the removal procedure. The most important step was the
anti-aliasing procedure. When we applied the removal procedure, eq. (3.27),
on these data, we could not get a good result. Instead of removing the Love
waves, the method even introduced more noise into the data. Therefore, in
the remainder of this appendix, we explore the possible reasons for the poor
results. Since Chapter 4 explores the sensitivity of the method using only
the 1-D removal scheme, eq. (3.25), we first examine some of the possible
causes which are specific for the application of the removal method on the
complete dataset. After that, we revert back to the 1-D removal scheme, and
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Figure C.4: (f, k)-spectrum of shot number 33 of the Sofia dataset.
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Figure C.5: (f, k)-spectrum of the same shot, after interpolation.
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Figure C.6: Same shot as Figure C.3, after preprocessing. Shot is displayed with
individual trace scaling.
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take only one (modified) shot of the Sofia dataset, to take a closer look at the
characteristics of the data, and the effects the removal scheme has on them.

C.4.1 Deviations in the source wavelets

The Love wave removal method assumes that all sources are equal. This
is hard to realize. But since each shot is deconvolved with its own source
wavelet, an artificial source wavelet is created that should be equal for all
shots. However, if there are large deviations in the vibrator source, then this
could cause large deviations in the data. Therefore, we inspected the vibrator
source-wavelets first to see if there were any abnormal deviations. Figure C.7
shows frequency spectra of the vibrator sweep. In these spectra, no serious
deviations are visible. We also checked source wavelets with the help of
auto-correlation. The auto-correlations of the vibrator sweeps are shown in
Figure C.8. Also here, all deviations certainly are within acceptable limits.
We conclude that deviations in the source wavelets are not the reason that
the removal method fails on the Sofia-dataset.

This was one of the first assumptions we made; that the recorded source
wavelets somehow were incorrect, and that that was the reason for the poor
results. In Chapter 4, we saw that a deviation in the phase of the source
wavelet was the only thing that introduced noise into the data. But after the
tests described above, we dismissed this idea. Indeed, if the recorded vibrator
sweeps manage to collapse the wavelet into a pulse after deconvolution, then
this is a strong indication that the wavelets are correct. However, we did try
to develop a wavelet estimation procedure. The results of this are shown in
Appendix D.

C.4.2 Deviations in shot-sensitivity

The relative strength of each shot could also be an important factor. When
we look at eq. (3.27), we see that the method performs a Fourier transform
over the source-coordinates. When one shot of the dataset is much stronger
than the others, this means that one column in the matrix (see Figure 3.6),
will have a large amplitude. The effect of this will be that, due to the Fourier
transform, noise will be smeared over the other columns.

First, we calculated the weight of each shot. We did this by calculating
the energy of each shot record (see Appendix D) in the space-time domain.
These weights are shown in Figure C.9. There is indeed variation in the
strength of the shots. The difference between the strongest and the weakest
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Figure C.7: Frequency spectra of the vibrator sweeps.
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Figure C.8: Autocorrelation of the vibrator sweeps.
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Figure C.9: Strength of each shot (calculated by the energy in each shot) of the Sofia
dataset.

shot is as much as a factor of five. In the next step, we applied these weights
to a synthetic dataset, where we took the weight of the first shot as the norm,
and applied the removal procedure, eq. (3.27). But the results, although of
course not as good as in the perfect situation, were still satisfactory. We
conclude that differences in the shot strengths is not the cause of the poor
results, and that normalizing the energy of each shot to the same level will
also not lead to improvement.

C.4.3 Use of 1-D scheme to 1-D shot

Since we could not find an explanation for the poor results when examining
the whole dataset, we chose to use one shot instead. With one shot, we
can use the 1-D removal scheme, eq. (3.25), and display the data in the
(f, k)-domain. We chose one shot where the Love waves were most similar
to the ones we saw in the synthetic examples. This was the shot displayed
in Figure C.6. In order to make the data more consistent with data from
a horizontally layered medium, we mirrored the negative offsets of this shot
(bear in mind that we could not use CDP-gathers, since they would be aliased
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just as much as the uninterpolated data). Figure C.10 shows the resulting
shot that we are going to use.

In Chapter 4, we stated that the mass density, ρ, can be used as a “fudge
factor”. When we take ρ = 0, the method should do nothing, and the original
input data should be returned. This is shown in Figure C.11.

In Figures C.12 and C.13, we show the results of the removal procedure
where we chose the mass density as 3000 kg/m3 and 5000 kg/m3, respectively.
Figures C.12 and C.13 show how the Love wave removal method operates

on the data. The method does not remove the Love waves, but instead makes
them stronger and more dispersive. In addition to that, noise is introduced,
which seems to come from an unstable point near kx = 0 in the (f, k)-
domain. The denominator of eq. (3.25) apparently reaches zero at that point,
although we never had such problems with the synthetic examples. Even
though the division is stabilized with a technique similar to the one used
for the deconvolution, this leads only to a suppression of the unstable point,
while the surrounding area still gives large values. Therefore, in Figure C.14,
we show the result of the removal procedure where we filtered the unstable
point out of the data. This removes much of the noise, but it just makes it
more clear that the Love waves have increased in strength instead of being
suppressed. Even the desired reflection events have been obscured.

The fact that the Love waves are increasing in strength instead of decreas-
ing, could be an indication that the sign of the data is erroneous. This would
mean that instead of using 1 + ṽsurf

2

2ṽinc
2

in eq. (3.25), we should use 1 − ṽsurf
2

2ṽinc
2

.
We checked this, and it proved not to be the case. With this change, the un-
stable points appear in different points of the (f, k)-spectrum, but the Love
waves still increase in strength, while also the desired reflection information
is disturbed.

When the mass density goes to infinity, the total solution of the removal
method goes to zero. But when a large, but finite, value is chosen for the
mass density, the method will estimate a direct (incident) wave in the data,
while the original data are suppressed. This is shown in Figure C.15. The
wave in this figure looks qualitatively like a (derivative of a) Klauder wavelet.
Notice how it is anti-causal, and no longer dispersive. The rest of the data,
including the reflection, has vanished.

We have shown that for extreme choices of the mass density (ρ = 0 kg/m3

and ρ = 50, 000 kg/m3), the method behaves as predicted. But for choices
of the mass density which are realistic, the method behaves not as expected.
Somehow, the phase behavior of the data is fundamentally different from the
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Figure C.10: (a) Data of the Sofia dataset, to be used for analysis with 1-D scheme,
eq. (3.25), amplitudes are clipped to provide a better view, (b) (f, k)-spectrum of (a).
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Figure C.11: (a) Result of removal procedure, eq. (3.25), where we used ρ = 0 kg/m3,
(b) (f, k)-spectrum of (a).
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Figure C.12: (a) result of removal procedure, eq. (3.25), where we used ρ =
3000 kg/m3, (b) (f, k)-spectrum of (a).
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Figure C.13: (a) Result of removal procedure, eq. (3.25), where we used ρ =
5000 kg/m3, (b) (f, k)-spectrum of (a).
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Figure C.14: (a) Result of removal procedure, eq. (3.25), where we used ρ =
5000 kg/m3, and where we removed an anomalous point near kx = 0, (b) (f, k)-
spectrum of (a).
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Figure C.15: Result of removal procedure, eq. (3.25), where we used ρ =
50, 000 kg/m3

synthetic examples.

C.5 Conclusions and recommendations

The Love wave removal method did not provide satisfactory results on the
Sofia field data. It seems that the assumptions we made in Section C.2 do not
conform to the reality in that case. In Sections C.4.1 and C.4.2, we proved
that at least two of these assumptions were correct. The remainder of this
appendix discusses other assumptions, which we were not able to check, and
gives some possible recommendations for improvement.

C.5.1 Concerning near-field and 3-D effects

In the course of this thesis, we assumed that SH-waves behaved “pseudo-
acoustic”, which means that we assumed that only one wave type, the SH-
waves, occur. And when we have a medium with line sources, then it does.
However, in the case of point sources in an elastic medium, data are polluted
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with near-field effects. These do not occur in acoustic media, or when the SH-
waves are generated with line sources! See for example eq. (B.19) or de Hoop
[1995], compared to eq. (B.10). Although eq. (B.19) is derived for media
with line sources, the expression is the same for media with point sources,
and therefore i and/or j = 2 can also be substituted in this equation. This
means that even decoupled SH-waves have near-field wavefields, while for the
application of the removal procedure on the Sofia dataset, we simply assumed
that they were nonexistent. As we can see in Figure 5.4, the presence of
this near-field wavefield can distort the wavelet of the dataset. For the Sofia
dataset, this would mean that there are two wavelets in each shot: one wavelet
where the wavefield is distorted by near-field effects, and the “correct” wavelet
in the far field.

Although we did check if the method was sensitive to whether or not the
data was generated with line sources or point sources (which it was not),
we did not take the near-field effects into account there. To test whether or
not near-field effects do have such a great effect on the Love wave removal
method, we need a dataset modeled with full 3-D finite difference modeling.
This is computationally very expensive, and therefore it has not been tested.

Perhaps, in the future, an amplitude pre-processing procedure as de-
scribed by Wapenaar et al. [1992] should be performed prior to the appli-
cation of the Love wave removal procedure. This would mean that the v1;1-
component is needed in addition to the v2;2-component to construct a v2;2

line-source response.

C.5.2 Concerning heterogeneities and anisotropy

In the theory, one of the main assumptions was that the top layer was homo-
geneous and isotropic. In Chapter 4, we stated that deviations in the mass
density and velocity will not have a great influence on the performance of
the removal method. However, Ghose [1995] shows that our assumption of
isotropy may be presumptuous. According to this, it is the top layers of the
medium that show the highest degree of anisotropy. Also, Ernst [1999] shows
that the shallow subsurface is often heavily contaminated with small scale
heterogeneities. Such small scale heterogeneities manifest themselves in the
same manner as anisotropy. Anisotropy causes a wave traveling through the
subsurface to change polarity. Therefore, when the wave reaches a receiver,
even though it is still a decoupled SH-wave, it will have components both
in the crossline (x2) direction and in the inline (x1) direction. The amount
of change not only depends on the degree of anisotropy, but also on the dis-
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tance the wave traveled through the subsurface. The change will have an
effect on both the amplitude and phase of traces containing data from the
x2-component.

Ghose and Osada [1993] propose a method to counter the effects of
anisotropy by using both components of the particle velocity and counter-
rotate the data in such a way, that the energy of one component reaches
a minimum, while the other component reaches a maximum. Since we did
not record the x1-component of the particle velocity, we cannot check if
anisotropy is part of the problem. We can also not correct for it by using
this method if it is.

This section, and the previous one, show that multi-component record-
ings, with regard to both the source and receiver directions, are in all prob-
ability a necessity for the successful application of the Love wave removal
procedure.



D

An attempt at wavelet estimation
based on energy minimization

In Chapter 4, it became clear that an accurate knowledge of the source
wavelet was needed in order for the removal procedure to work. This source
wavelet is usually unknown, and therefore, we need an estimation procedure.

Classical estimation procedures, such as developed by Weglein and Se-
crest [1990] (later perfected by Tan [1999]), do not work in our case, because
they make use of specifics of marine seismics. More precise, these proce-
dures require that sources and receivers are located below the water surface,
whereas in our configuration, they are located on the surface.

Another approach, taken by van Borselen et al. [1994], is to base the
wavelet estimation procedure on the concept of energy minimization. In
Chapter 4, we have seen that a wrongly estimated wavelet only added noise
to the data. Therefore, if we find a wavelet that manages to reduce the total
energy in the data, then this is an indication that it leads to the right wavelet.
However, Van Borselens method is tied to a Neumann expansion series. And
as we showed in Chapter 3, on page 29, a Neumann series expansion is
impossible in our case of Love wave removal. Ikelle et al. [1997] propose to
do the same procedure, but with only taking the first order multiple. This
could work for in our case, since although a Neumann series expansion is
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impossible, we can always take only the first term. However, one condition for
Ikelle’s method to converge, is that removing the first order multiple reduces
the energy in the data. This proved to be not the case for our situation of
Love waves, which are, in one point of view, interfering multiples.

This appendix shows our attempt at developing a wavelet estimation
procedure. It is also based on energy minimization. However, we take our
full inversion equation as the basis. Unfortunately, our attempt was not very
successful. The initial estimation of the wavelet proved to be very good, but
further updates of this wavelet did not converge to the correct solution. We
will discuss the reason for this at the end of this appendix.

D.1 Basis definitions

Since the theory in this appendix is designed for discrete data organized in
matrices, it is convenient to define an inner product for these matrices:

< A;B >=
∑

all xS

∑
all xR

A(xR, xS) · B∗(xR, xS), (D.1)

where the star (∗) denotes a complex conjugation, and the matrices have the
same properties as described in Section 3.5.

A matrix has a real norm, which is defined as:

||A|| =
√

< A;A >, (D.2)

which is by definition greater than zero, or only zero when the matrix consists
of zeros.

D.2 Problem statement

As the starting point, we take the matrix equation, eq. (3.27), and write it a
bit different to show the wavelet dependence:

V̂nosurf
2 =

[
1

f̂2(s)
K̂ + I

]−1

· V̂surf
2 , (D.3)

in which K̂ is defined, without wavelet this time, as:

K̂ = µ∆x1 F−1
S

{
FS

{
V̂surf

2

}
· Γs

}
. (D.4)
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In numerical implementations, we always take the Laplace parameter as:
s = ε + jω. This makes eq. (D.3) also an equation in the space-frequency
domain (as opposed to the space-Laplace domain).

The problem consists of finding a source wavelet, which causes a minimum
in the energy norm. This energy norm is defined as:

E =
∑

pos. ω

||V̂nosurf
2 ||2. (D.5)

The only a priori information we have about the wavelet, is that it is causal
and real valued in the time domain. The causality condition is enforced by
the Hilbert transforms between the real part and the imaginary part of the
wavelet (in the frequency domain). This means that the real part of the
source wavelet is related to the “complete wavelet” (r̂2(jω) = Re(f̂2(jω))),
through a linear operator (Fokkema and van den Berg [1993]):

f̂2(jω) = C{r̂2(jω)} = 4Ft

{
χ(t)Re

(
F−1

t {χ(ω)r̂2(jω)}
)}

, (D.6)

where χ(a) is the characteristic function, which was already defined in eq. A.1.
Ft denotes a Fourier transform with respect to time.

D.3 Iterative solution

Suppose that at some point, we know an approximation of the source wavelet:
f̂

(n−1)
2 (jω). Then we try to improve that wavelet by updating it:

f̂
(n)
2 (jω) = f̂

(n−1)
2 (jω) + α(n)d̂(n)(jω). (D.7)

Because we are interested in the relative decrease in energy, we make the
energy normalized to the original (surface data) energy:

Ē(n) =

∑
pos. ω ||V̂nosurf,(n)

2 ||2∑
pos. ω ||V̂surf

2 ||2
. (D.8)

Posed this way, the problem is divided into three different pieces: Finding a
constant α(n), in such a way that the energy is minimized, finding a suitable
update direction d̂(n)(jω) and finding the first approximation of the source
wavelet f̂

(0)
2 (jω).
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D.3.1 Minimizing the energy

We try to find a minimum in the energy function, with respect to α(n).
However, the expression for V̂nosurf,(n)

2 is not linear in α(n). If, however,
we could approximate the expression in such a way that it is linear, then
the energy function becomes a quadratic function, and it will have a unique
minimum. To this end, we examine the matrix operator

[
1

f̂
(n)
2 (jω)

K̂ + I

]−1

=

[
1

f̂
(n−1)
2 (jω) + α(n)d̂(n)(jω)

K̂ + I

]−1

. (D.9)

We extract f̂
(n−1)
2 (jω) from this equation, and then make a Taylor expansion,

where we only take the first two terms:


 1

f̂
(n−1)
2 (jω)

(
1 + α(n)d̂(n)(jω)

f̂
(n−1)
2 (jω)

)K̂ + I



−1

≈

[
1

f̂
(n−1)
2 (jω)

(
1 − α(n)d̂(n)(jω)

f̂
(n−1)
2

)
K̂ + I

]−1

. (D.10)

Next, we extract the matrix
(

1

f̂
(n−1)
2 (jω)

K̂ + I
)

, and again make Taylor ex-

pansion, with only two terms:


(

1

f̂
(n−1)
2 (jω)

K̂ + I

)
·


I −

(
1

f̂
(n−1)
2 (jω)

K̂ + I

)−1

· α(n)d̂(n)(jω)

(f̂ (n−1)
2 (jω))2

K̂






−1

≈


I +

(
1

f̂
(n−1)
2 (jω)

K̂ + I

)−1

· α(n)d̂(n)(jω)

(f̂ (n−1)
2 (jω))2

K̂


 ·

[
1

f̂
(n−1)
2 (jω)

K̂ + I

]−1

.

(D.11)
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With this, we have shown that we can write eq. (D.3) as:

V̂nosurf,(n)
2 ≈

I +

(
1

f̂
(n−1)
2 (jω)

K̂ + I

)−1

· α(n)d̂(n)(jω)

(f̂ (n−1)
2 (jω))2

K̂


 ·

[
1

f̂
(n−1)
2 (jω)

K̂ + I

]−1

· V̂surf
2 .

(D.12)

This equation is a linear function of α(n). Let’s remind that we are looking for
a minimum in the energy. Therefore we differentiate the energy function with
respect to α(n). Or, since it is a quadratic function, we can also differentiate
with respect to its complex conjugate:

∂E(n)

∂α(n)
=

∂E(n)

∂α(n)∗ =
∑

pos. ω

< V̂nosurf,(n)
2 ;

∂

∂α(n)
V̂nosurf,(n)

2 > = 0. (D.13)

For the derivative within the inner product, we find:

∂

∂α(n)
V̂nosurf,(n)

2 =(
1

f̂
(n−1)
2 (jω)

K̂ + I

)−1

· d̂(n)(jω)

(f̂ (n−1)
2 (jω))2

· K̂ ·
(

1

f̂
(n−1)
2 (jω)

K̂ + I

)−1

· V̂surf
2 .

(D.14)

At this point, we would like to make some abbreviations:

Ĥinv =

(
1

f̂
(n−1)
2 (jω)

K̂ + I

)−1

, (D.15)

D̂iff =
1

(f̂ (n−1)
2 (jω))2

Ĥinv · K̂ · Ĥinv. (D.16)

And with these definitions we find that:

α(n) = −
∑

pos. ω d̂(n)(jω)
∗ 〈

Ĥinv · V̂surf
2 ; D̂iff · V̂surf

2

〉
∑

pos. ω |d̂(n)(jω)|2 · ||D̂iff · V̂surf
2 ||2

, (D.17)

When we make the constraint that α(n) has to be real, a similar expression
can be derived. We only have to take the real part of eq. (D.17).
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D.3.2 The (conjugate) gradient direction

The update direction d̂(n)(jω) is chosen as the Polak-Ribière conjugate gra-
dient direction (Brodley [1977]):

d̂(n)(s) =

{
C{ĝ(1)(jω)}, n = 1,

C{ĝ(n)(jω)} + γ(n)d̂(n−1)(jω), n > 1,
(D.18)

with

γ(n) =

∑
pos. ω

[
ĝ(n)(jω)

(
ĝ(n)(jω) − ĝ(n−1)(jω)

)]
∑

pos. ω

[
ĝ(n−1)(jω)

]2 , (D.19)

where ĝ(n)(jω) is a real gradient direction, which we will determine now. For
this, we look at eq. (D.17). The denominator is real, and always greater than
zero. Therefore, for improvement (α(n) 6= 0), the real part of the numerator
must not be zero. We substitute d̂(n)(jω) = C{ĝ(n)(jω)} in this numerator,
and with this, the improvement condition becomes:

Re

( ∑
pos. ω

C
{

ĝ(n)(jω)
}∗

·
〈
Ĥinv · V̂surf

2 ; D̂iff · V̂surf
2

〉)
6= 0. (D.20)

We can show that this equation equals to (van den Berg [1994]):

∑
pos. ω

ĝ(n)(jω) · Re
(
C

{〈
Ĥinv · V̂surf

2 ; D̂iff · V̂surf
2

〉})
6= 0. (D.21)

This expression does not vanish, and thus the improvement condition is sat-
isfied, when we take:

ĝ(n)(jω) = Re
(
C

{〈
Ĥinv · V̂surf

2 ; D̂iff · V̂surf
2

〉})
. (D.22)

This gradient direction is used in eq. (D.18). It enforces the causality of the
source wavelet.

D.3.3 Initial Guess

There are not many constraints on the initial guess of the source wavelet for
the wavelet estimation scheme to converge. The only condition is that it must
also be a causal and real-valued function in time. One approach is to start
with a constant. Since we divide by the source function (see eq. (D.3)), we
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cannot take this constant as zero. Therefore, we try to find a constant, which
also causes a minimum in the energy. For this, we make a Taylor expansion
of eq. (D.3), and take only the first two terms:

V̂nosurf
2 ≈

[
I − aK̂

]
· V̂surf

2 , (D.23)

where a is a complex constant. Finding a minimum in the energy with respect
to a, we find:

a =
∑

pos. ω

〈
V̂surf

2 ; K̂ · V̂surf
2

〉
||K̂ · V̂surf

2 ||2
. (D.24)

This constant is made causal in time by applying the causality operator:

f̂
(0)
2 (jω) = 1

2C
{

1
a

}
. (D.25)

With these definitions, the method is completely defined.
Alternatively, we can perform eq. (D.24) frequency by frequency (i.e. we

do not sum over the frequencies). This way, we build an initial wavelet,
frequency by frequency. This can already be a very good estimation of the
real wavelet.

D.4 Results and discussion

We applied the method described above on the simple case of a horizontally
layered medium. This configuration is described in Section 3.6.1. At first, it
seemed that the method would give good results. The initial-guess wavelet
(the one built frequency by frequency) decreased the (normalized) energy to
0.3518. Further updates of the wavelet kept decreasing the energy, and the
method did not converge to a solution. We show this in Figure D.1. Bear in
mind that the energy that remains after applying the removal method with
the true wavelet on this data is 0.2733.

But why does the method not converge to the right solution? To answer
this question, we look at the wavelet that the method estimates. This is
shown in Figure D.2. The initial-guess wavelet is already a good approxima-
tion of the true wavelet. However, further updates make the wavelet smaller
and smaller. To find the reason for this, we look at eq. (D.3), or to eq. (D.12).
When, in these equations, the wavelet f̂2(s) goes to zero, the result V̂nosurf

2

also goes to zero. And a matrix full of zeros certainly has the lowest possible
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energy, but it is not the solution that we are looking for. We must conclude
that the method described in this appendix does not work in its current form.

Maybe the method can be adjusted, for example by redesigning it to find
the largest wavelet that causes a minimum in the energy. This problem is
left open for examination as a possible future project.
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Abstract

Removing Love waves from shallow seismic SH-wave data

Geophysical exploration measurements are used to obtain an image of the
geological structures of the subsurface, as detailed as possible. To this end, a
wavefield is generated by a seismic source. This wavefield propagates through
the subsurface, and will partly reflect on boundaries between layers with con-
trasting properties, and it will partly propagate further into the subsurface.
De wavefields that have propagated back to the surface are measured with
receivers. When this experiment is repeated several times on different loca-
tions, the measured data can be used to obtain the desired image.

There are two kinds of seismic waves that can propagate through the
subsurface. The ones that are generally used are the pressure waves, or P-
waves, where the movement of the particles is parallel to the propagation
direction of the wave. The other ones are the shear waves, or S-waves, where
the movement of the particles is perpendicular to the propagation direction
of the wave. When the particle movement is horizontally polarized (perpen-
dicular to the plane of propagation), this wave type is often decoupled, or in
other words, it propagates independently of other wave types. These waves
are also called SH-waves.

The surface of the Earth behaves as a perfect reflector for SH-waves. This
means that all SH-waves that reach the surface will be completely reflected
back into the subsurface. When the top layer of the subsurface is thin (smaller
than the wavelength of the SH-wave), and when this top layer has a lower
wave velocity than deeper layers, then the presence of the surface leads to
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a kind of surface waves, which were first described by A.E.H. Love, and
are therefore called Love waves. Love wave characteristics are: their group
velocity is almost equal to the shear wave velocity; since they propagate
solely along the surface, they attenuate slowly and are thus often stronger
than reflected waves; and they are dispersive.

The presence of Love waves deteriorates the quality of the final picture
(or seismogram), because they obscure the desired reflections. Existing tech-
niques to remove Love waves from seismic data often perform insufficient, or
require certain knowledge about the subsurface. This knowledge is generally
not available. Therefore, the ideal method should be one where the measured
data alone is sufficient to separate the Love waves from the desired reflection
information.

The method we describe in this thesis uses the Betti-Rayleigh reciprocity
theorem for elastic media. Reciprocity is a mathematical tool to relate two
different states to each other. Here, one state is the actual situation, where
the medium is bounded by a stress-free surface. The other state is an ideal
situation, where there is no surface, and the top layer is extended to infinity.
When there is no surface, there are also no surface waves.

By applying the reciprocity theorem, we derive an integral equation, from
which the Love wave free wavefield can be solved as a function of the data
that do contain these surface waves. Other input parameters are the (shear-)
wave velocity and the mass density of the top layer, and the source wavelet.
When the data are discrete, the integral equation becomes a matrix equation.
This can be solved using conventional numerical methods, such as matrix in-
version. When the medium is horizontally layered (a so called 1-D medium),
the kernel of the matrix equation becomes diagonal in the wave-number do-
main. Then the matrix equation reduces to a scalar expression.

We tested the method on several synthetic datasets. In all cases, the Love
waves were completely removed. Even other noise in the form of scattered
Love waves was removed, in the cases where it was present. The method also
had no problems when the input parameters were chosen wrongly. And when
distortions were introduced into the data (distortions like random noise, or
the effects of anelastic attenuation), the method still performed well.

To test the method on field data, we performed a seismic experiment
on the site of the Sofia tunnel (before it was drilled) near Hendrik Ido Am-
bacht in the Netherlands. The dataset that was the result seemed all right at
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first. Strong Love waves were indeed present in the data. However, we could
not succeed in removing these Love waves with the method. Even worse,
the method added noise to the data, to such an extent, that it completely
obscured the original data. Although we searched extensively for possible
reasons, we were not able to find the exact cause of the bad results.

In the final chapter, we made a start to remove the surface waves from
coupled P- and SV-wave systems, using the same method as we did for SH-
waves. Because P- and SV-waves are coupled, the resulting equations are also
coupled. This means that we need all possible source and receiver combina-
tions to remove the surface waves. But it appeared that the equations could
be solved independently with regard to the source direction. We validated
the theory with an example where we removed the Rayleigh wave from the
response of a homogeneous half-space.
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Samenvatting

Het verwijderen van Love golven uit ondiepe seismische SH-golf
data

Geofysische exploratie-metingen zijn erop gericht om een zo gedetailleerd
mogelijk beeld te krijgen van de geologische structuren in de ondergrond.
Hiervoor wordt met behulp van een seismische bron een golfveld opgewekt.
Dit golfveld propageert dan door de ondergrond, en zal op grensvlakken
tussen contrasterende lagen gedeeltelijk worden teruggekaatst (gereflecteerd)
en gedeeltelijk zal het verder door de ondergrond propageren. De golfvelden
die vanuit de ondergrond weer terug naar het oppervlak komen, worden al-
daar gemeten met ontvangers. Door dit experiment herhaaldelijk en op ver-
schillende plaatsen te doen, kan de verkregen data gebruikt worden om het
gewenste beeld te verkrijgen.

Nu zijn er twee soorten seismische golven die door de ondergrond kun-
nen propageren. De meest gebruikte is de longitudinale golf, ook wel P-golf
genoemd, waarbij de bewegingsrichting van de deeltjes parallel is aan de
voortplantingsrichting van de golf. De andere soort is de transversale golf,
of de S-golf, waarbij de bewegingsrichting van de deeltjes loodrecht op de
voortplantingsrichting van de golf staat. Wanneer de bewegingsrichting van
de deeltjes ook nog eens horizontaal gepolariseerd is (loodrecht op het vlak
van de propagatie-richting), is in veel gevallen deze golf ontkoppeld, oftewel
hij propageert onafhankelijk. Deze golf wordt SH-golf genoemd.

Het oppervlak van de aarde gedraagt zich als een perfecte reflector voor
SH-golven. Alle SH-golven die het oppervlak bereiken zullen dus volledig
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gereflecteerd worden en weer terug de ondergrond in propageren. Wanneer
nu de bovenste laag van de ondergrond dun is, dat wil zeggen kleiner dan
de golflengte van de SH-golf, en als deze laag een lagere golfvoortplantings-
snelheid heeft dan de diepere lagen, dan leidt de aanwezigheid van het op-
pervlak tot een type oppervlakte-golven, die het eerste beschreven zijn door
A.E.H. Love, en die daarom Love golven worden genoemd. De kenmerken van
Love golven zijn: hun voortplantingssnelheid is bijna gelijk aan die van SH-
golven; doordat ze enkel langs het oppervlak propageren, doven ze langzaam
uit, en zijn dus vaak sterker dan reflecties; en ze zijn dispersief.

De aanwezigheid van Love golven heeft een nadelige invloed op de kwali-
teit van de uiteindelijke afbeelding (seismogram), doordat ze de gewenste re-
flecties van de diepere lagen overschaduwen. Bestaande technieken om Love
golven uit seismische data te krijgen schieten vaak tekort, of veronderstellen
een bepaalde kennis van de ondergrond. Deze kennis is over het algemeen
niet aanwezig. Daarom zou een ideale methode er een zijn, waarbij de geme-
ten data alleen voldoende is om de Love golven te scheiden van de gewenste
reflectie informatie.

De methode, die in dit proefschrift wordt beschreven, maakt gebruik van
het reciprociteits-theorema voor elastische media van Betti en Rayleigh. Re-
ciprociteit is een wiskundig concept waarmee twee verschillende toestanden
aan elkaar gerelateerd kunnen worden. De ene toestand is de situatie zoals
die in werkelijkheid is. Dat wil zeggen, met het reflecterende oppervlak. De
andere toestand is een idealisering van de werkelijkheid. Hier is het oppervlak
afwezig, en wordt de bovenste laag in feite tot in het oneindige voortgezet.
En als er geen oppervlak is, dan zijn er ook geen oppervlakte-golven mogelijk.

Door gebruik te maken van het reciprociteits-theorema, wordt een inte-
graal-vergelijking verkregen, waaruit het Love-golf-vrije golfveld kan wor-
den opgelost, als functie van de data waar deze oppervlaktegolven nog wel
in zitten. Andere invoer-parameters zijn de (schuif-) golfsnelheid en de
massa-dichtheid van de bovenste laag, en het bron-signaal. In discrete vorm
kan deze integraal-vergelijking geschreven worden als een matrix-vergelijking.
Deze kan opgelost worden met standaard numerieke methodes, zoals matrix-
inversie. Als de ondergrond horizontaal gelaagd is (een zogenaamd 1-D
medium), wordt de matrix-operator diagonaal in het golf-getal domein. De
matrix-vergelijking reduceert dan tot een scalaire uitdrukking.

De methode is getest op verschillende synthetische datasets. In alle
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gevallen werden de Love golven er volledig uitgehaald. In de gevallen waar ze
aanwezig waren, werden zelfs de verstrooide Love golven eruit gehaald. Ook
wanneer de invoer-parameters verkeerd gekozen werden, kon de methode toch
de Love golven verwijderen. Zelfs wanneer er verstoringen gëıntroduceerd
werden in de data, zoals bijvoorbeeld stochastische ruis of de effecten van
anelastische demping, bleef de methode goed werken.

Om de methode uit te proberen op data uit het veld, is er een seismisch
experiment uitgevoerd op de plaats van de toekomstige Sofia tunnel bij Hen-
drik Ido Ambacht. De dataset die hieruit volgde leek op het oog erg goed. Er
waren sterke Love golven in aanwezig. Echter, het lukte de methode niet om
ze te verwijderen. Sterker nog, er werd alleen maar ruis toegevoegd, en wel
van een dusdanige sterkte, dat de originele data geheel overschaduwd werd.
Alhoewel uitgebreid naar mogelijke redenen is gezocht, is de precieze oorzaak
voor het slechte resultaat niet gevonden.

In het laatste hoofdstuk is een begin gemaakt om, met dezelfde meth-
ode als voor SH-golven, de oppervlakte-golven uit gekoppelde P- en SV-
golf systemen te verwijderen. Doordat deze golven gekoppeld zijn (dat wil
zeggen, ze propageren niet onafhankelijk van elkaar), vormen de uiteindelijke
vergelijkingen ook een gekoppeld systeem. Alle mogelijke bron- en ontvanger-
combinaties zijn dus nodig om de oppervlakte-golven te verwijderen. Echter,
het blijkt dat de vergelijkingen onafhankelijk van de bron-richting opgelost
kunnen worden. De geldigheid van de theorie wordt gevalideerd met een voor-
beeld waarbij de zogenaamde Rayleigh-golf uit de respons van een homogene
halfruimte wordt gehaald.
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