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INTRODUCTION 

GEOPHYSICS IN THE SEARCH FOR OIL AND GAS 

Geophysics is the science that studies the physics of the earth and its surrounding 
atmosphere. Applied geophysics in search for minerals, oil and gas — also called 
exploration geophysics — can be divided into a number of general exploration methods 
(see Telford et al., 1976). Some methods deal with surface measurements, such as 

seismic 
magnetic 
gravity 
radioactivity 
electromagnetic 

and electrical measurements. 
Other methods deal with subsurface measurements or in situ measurements, such as well 
logging and miscellaneous chemical and thermal methods. 
All methods can be characterized by two basic properties: 
1. the physical parameter of interest 
2. the nature of this parameter and the way it is measured. 
Rapid lateral variations, for instance, require a dense spatial sampling. The temporal 
sampling density is determined by the frequency contents of the measured quantity. This 
may range from low frequent (gravity, apart from tidal corrections) to high-frequent 
quantities (transient waves in seismics). 



2 INTRODUCTION 

Figure 1 Reconnaissance gravity profile of the U.S. Geological Survey (USGS) through the 
Railroad Valley Nevada. The Sheep Pass formation (SP) and Oligocene ignimbrites (OV) 
are the reservoir rocks. The Tertiary to Quaternary fill (QT) forms a seal and has a low 
density (after Healey, 1975, quoted by Guion, 1981). Note that the trapping fault on the 
east side of the valley is apparent in the gravity data. Also Che major bounding fault at the 
left side is detectable. 

Within the physical limit of the specific method, the sampling density also determines the 
maximum resolution that may be obtained. 
An example of a geophysical method is the gravity profile shown in figure 1 (after Healey 
1975, quoted by Guion et al., 1981). The gravity method detects lateral variations in rock 
densities. The gravity data result from time-invariant integral measurements. The latter 
means that at each surface location the measured gravity value is the total response of the 
subsurface. The method will therefore be a global one. In general only trend information is 
obtained. Gravity may be used to identify prospects, thus significantly reducing the amount 
of seismic data needed to evaluate the prospect. 
This suggests that different geophysical measurements can be combined in order to arrive 
at a better description of the subsurface. This is indeed the case. It especially applies to the 
combination of well log data and seismic data, which can be used to arrive at more detailed 
reflectivity information of the subsurface than can be obtained from seismic data only. An 
example of this is given in figure 2. A seismic section is shown, together with a reflectivity 
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seismic data 

-reflectivity at well location 

* ,-synthetic traces 
I seismic data 

Figure 2 CMP stack related with a reflectivity sequence derived from well log information. From 
the reflectivity sequence and some seismic traces around the well a wavelet is determined. 
The wavelet and the reflectivity are then used to calculate some synthetic seismic traces. 

sequence derived from a well at the center of the section. Using the well log and the 
seismic data, a wavelet can be determined. 
The wavelet can then be used to deconvolve the seismic section, or to compute a synthetic 
seismic section, using the reflectivity information. The synthetic traces are also shown. We 
see that they match the seismic data around the well fairly well. 

Seismic exploration is by far the most important geophysical exploration technique in terms 
of expenditures and number of geophysicists involved worldwide. The predominance of 
the seismic method over odier geophysical methods is due to various factors, the most 
important of which are the high accuracy, high resolution and large penetration of which 
the method is capable (Telford et al., 1976). 
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SEISMIC DATA PROCESSING 

Seismic data processing is defined as the analysis of measured seismic data with the help of 
computers. In the history of seismic data processing we can distinguish specific time 
periods of significant progress, related to the invention and introduction of new concepts 
(Berkhout, 1984). 
In the early 1950s, the common midpoint concept was introduced in seismic data 
acquisition and processing. This meant a drastic improvement in the quality of seismic data 
with respect to signal-to-noise ratio. 
Through the 1960s emphasis was put on time series analysis and statistical filtering. Also 
digital processing was introduced. 
In the early 1970s the first imaging methods based on the wave equation were developed. 
Finally, in the early 1980s important new developments in computer hardware made 
properly formulated wave theory solutions feasible. 
However, practical seismic data acquisition and processing techniques are still greatly 
governed by the common midpoint principle and time series methods. This also applies to 
the more recently developed three dimensional (3-D) techniques, which are often a straight 
forward extension of the two dimensional (2-D) ones. While many well known procedures 
and processes have been very well refined, it should be remembered that most of the 
underlying basic principles are largely untouched (Berkhout, 1984). These include: 
- data gathering around a common midpoint (CMP); 
- velocity analysis on CMP gathers; 
- normal moveout (NMO) correction and CMP stacking; 
- deconvolution; 
- time migration. 

Time oriented processing — although it may be appropriate for processing of 90% of the 
acquired data — will not suffice in the search and evaluation of geologically complicated 
hydrocarbon accumulations. 
Therefore there is nowadays an increasing awareness that the emphasis in seismic data 
processing should be redirected from a time-oriented approach to a depth-oriented 
approach. 
The aim of seismic data acquisition and processing (and interpretation) can therefore be 
defined as: 
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"To obtain a detailed, high resolution subsurface image in terms of a correctly 
positioned, true amplitude reflectivity. The reflectivity information can then be 
used to arrive at the rock and pore parameters". 

The laboratory of seismic and acoustics of the Delft University of Technology has played a 
leading role in reformulation of seismic data processing in terms of depth technology. It 
was in fact the main goal behind the organizing of their Triton consortium (Triton research 
proposal, 1985). More precisely, the Triton project aimed at the development of a new 
depth-oriented technology for the processing of seismic data in two and three dimensions. 
These developments have led to die formulation of three metiiods, that all transform 
prestack data into zero-offset data. The methods are depicted in figure 3. They will be 
discussed in the following chapters. The CMP stacking scheme is the conventional route. 

1 i 

CMP stacking 

ZO synthesis 

■ i 

CRP stacking 

, i 

CDP stacking 

Figure 3 Three processing schemes that transform multi-offset measurements into zero-offset (ZO) 
data 

In the Triton research project CRP and CDP stacking in both 2-D and 3-D have been 
studied. The main characteristics of CRP and CDP stacking can be summarized as follows: 
- stacking velocity distributions are replaced by geologically oriented macro interval 

velocity models; 
- single-dip normal moveout (NMO) correction is replaced by multi-dip NMO correction 

combined with compensation for reflecton point smear (CRP) or, even better, 
downward extrapolation (CDP); 

- common midpoint (CMP) stacking is replaced by common reflection point (CRP) 
stacking or, even better, true common depth point (CDP) stacking. 
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A problem — in particular with 3-D data — is that 3-D shot record migration followed by 
genuine CDP stacking is very elaborate. Even for the fastest current computer systems, 
application of full multi-offset depth processing schemes in 3-D is not yet realistic. 
However, instead of turning to simplified algorithms, a target-oriented processing 
approach was proposed for the Triton project. By limiting the output of multi-offset depth 
processing to a detailed reflectivity of the target zone only, the method becomes feasible 
(Kinneging, 1989). Target-oriented processing consists of three basic steps (see figure 4): 
- Redatuming: 

Non-recursive extrapolation of the downgoing source wave field and the upgoing 
reflected wave field from the acquisition surface to the upper boundary of the target 
zone; 

target related 
CMP gathers 

target related 
shot records 

at the 
surface 

surface 
i 

target 

3-D CRP stacking 

3-D post-stack 
redatuming 

' 

3-D pre-stack 
redatuming 

3-D CRP stacking 

3-D zero-offset 
depth migration 

' 

surface 

target 

at the 
target 
upper 

boundary 

3-D image of target 

Figure 4 Target oriented processing. 

CRP (or CMP) stacking at the target upper boundary: 
After extrapolation new shot records are constructed, followed by CRP (or CMP) 
stacking for the synthesis of zero-offset data; 
Zero-offset migration: 
After stacking full 3-D zero offset depth migration within the target zone. 
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In case of less complicated media an alternative route may be followed. This route — also 
depicted in figure 4 — contains common reflection point stacking at the surface, followed 
by 3-D poststack redatuming and finally full zero-offset depth migration. 
The latter procedure is less general than the prestack redatuming procedure, but on the 
other hand computationally far less intensive. Macro model based common reflection point 
stacking is the subject of this thesis. 

'-' 

multi-offset 

surface related 
preprocessing 

multi-offset 
migration 

CDP stacking 

litho-stratigraphic 
inversion 

■ 1 

data 

direct inversion 

' 

cp)cs,p cp(cs,p 

Figure 5 Two approaches to determine elastic subsurface parameters. 

A macro model is defined as an interval-velocity versus depth model of the subsurface 
which contains the information necessary to describe the propagation effects of waves 
travelling through the subsurface. Details which describe the reflectivity properties are not 
included in the macro model description. These details are obtained by applying a depth 
migration scheme to the data, using the macro model. 
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An entirely different solution to the problems of seismic data processing is the inverse 
scattering approach. In its most general formulation this approach attempts to estimate 
directly the elastic subsurface parameters (Tarantola, 1986). Schemes for this approach are 
not yet commercially available. 

Summarizing, we may distinguish two approaches, see figure 5. The first approach, which 
has been introduced by the Triton and Delphi consortia (Delphi research proposal, 1988), 
is a four-step procedure. First surface related preprocessing is applied. Secondly the multi-
offset data is migrated and — thirdly — subsequently stacked to arrive at a definition of the 
angle-dependent reflectivity of the subsurface. Fourthly the data is inverted to end up with 
the detailed p- and s-wave velocity and density. 
The odier approach is the inverse scattering approach. 
A discussion of the inverse scattering approach in general and the differences between the 
two approaches presented in figure 5 is beyond the scope of this dissertation. The 
interested reader is referred to the literature (Tarantola, 1986; Duijndam, 1987; Berkhout, 
1984) 

THE OUTLINE OF THIS THESIS 

In chapter I, a general introduction to seismic data processing is given. The three main 
techniques currendy available and applied will be discussed from a theoretical point of 
view. The aim is to relate the CRP technique to the alternative CMP and CDP techniques. 
In chapter II, an introduction to CRP stacking in constant velocity media — which is also 
known as dip moveout (DMO) — is given, based on the literature on DMO. Several 
proposed DMO schemes will be discussed. 
Chapter III gives an alternative description of CRP stacking in constant velocity media. 
This description leads to chapter IV, which deals with CRP stacking in inhomogeneous 
media. Chapter IV forms the heart of this thesis. First the meory is given. Next ample 
attention is paid to synthetic data examples. Those examples will show the characteristics 
of CRP processing, and give comparisons with the CMP and CDP techniques. In chapter 
V a real data example is used to compare the CMP, CRP and CDP techniques. In chapter 
VI some ideas about CRP stacking in tiiree dimensions are presented. 
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I 

A COMPARATIVE OVERVIEW OF CMP, 
CRP AND CDP PROCESSING 

1.1 INTRODUCTION 

As mentioned in the introduction chapter, in today's seismic data processing three main 
approaches are available and feasible. Those approaches — depicted in figure 1.1 — may 
function as different branches in a processing scheme, which starts with preprocessing of 
the seismic data and leads to a bandlimited reflectivity image of the subsurface, either in 
time or in depth. 
Conventional preprocessing may contain — but is not restricted to — demultiplexing, 
time-variant single trace filtering, velocity filtering in the shot- and receiver domain, static 
correction, wavelet and/or statistical deconvolution. Depending on the specific branch to be 
followed spherical divergence correction, compensation of inelastic losses and CMP 
sorting could also be included. 
The CMP method includes the conventional processing of single-dip NMO followed by 
common midpoint stacking. The method is robust but dip-selective and the reflection point 
is smeared, see figure 1.2. However, as can be observed the traveltime compensation 
before stack is correct for the selected dip. 
The CRP technique — for homogeneous media also called the DMO method — is, for one 
CMP gather, visualized in figure I.2e. In the CRP method the main disadvantages of the 
CMP technique (dip-selectivity and the reflection point smearing) are addressed. As can be 
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multi-offset seismic data 

fcMP method 
■ • • * 

NMO correction 

CMP stacking 
, , M t " " 

optional poststack 
migration 

surface related 
preprocessing 

^ ^ ^ S & B & B B B S Ö 
NMO + DMO 
correction 
(multi-dip) 

m 
mm 

CRP stacking 

poststack 
migration 

available well log information- lit ho - stratigraphic 
inversion 

Jcopwethad 
multi-offset 

migration 
l.l.l.l.l.l.l.l.^U.l^l 

• :-xXfrX:X*X-Xv 

CDP stacking 

bandlimited reflectivity 

-available geological information 

detailed subsurface model 

Figure 1.1 Seismic data processing aims at transforming multi-offset data into a bandlimited 
reflectivity image of the subsurface, optionally followed by inversion (Berkhout, 1985). 

seen in figure I.2e, the reflection events from both the dipping and the horizontal reflector 
have now been corrected properly. 
The CDP method is the full prestack migration — i.e. — accomplished by single shot 
record migration. The CDP method is the only applicable technique when the hyperbolic 
moveout assumption is not valid (i.e. when media become arbitrarily complicated). An 
example from one shot record before and after migration is shown in figure 1.3. 
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Figure 1.2 Simple subsurface geometry, showing raypaths and data acquired for one CMP gather. 
The velocity of the overburden is homogeneous. Note that no diffraction energy has been 
modelled. 

a. geometry and raypaths. 
b. CMP gather, unconnected traveltimes. 
c. CMP gather, NMO correction for horizontal reflector. 
d. CMP gather, NMO correction for dipping reflector. 
e. CRP processing, one gather of zero-offset traces related to the same surface point is 

shown. 
Note that xh refers to the original offset; note also that figure e shows two superimposed 

CRP gathers. 
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Figure 1.3 The same subsurface geometry as depicted in figure 1.2. No diffraction energy has been 
modelled, 

a. geometry and raypaths for one shot record. 
b. shot record, immigrated. 
c. shot record, migrated. 
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Note, that going from left to right in figure I.l, the methods become more sophisticated 
and are based on fewer assumptions and/or approximations. However, the methods also 
become less robust, more complicated and computationally more intensive. 
In the course of this dissertation the typical properties of these three methods will be made 
clear. 

In this chapter we will study the relation between CMP, CRP and CDP processing. The 
double square root (DSR) equation — that is die one-way wave equation for constant 
velocity media, formulated in the double Fourier domain — will be used as a starting point. 
CMP and CRP processing schemes will be described in terms of different approximations 
to the DSR equation. 
The theory presented here is partly a summary of the existing literature. Several authors, 
Yilmaz (1979), Deregowski (1981), Hale (1983) and Berkhout (1984) a.o. have published 
about the DSR equation. 

1.2 WAVE THEORETICAL DESCRIPTION OF CMP, CRP AND CDP 
PROCESSING 

1.2.1 The double square root equation 
.In this section we present a wave theoretical description of CMP, CRP and CDP 
processing. We will use a vector notation to represent a monochromatic shot record, 
following Berkhout (1984). If Pj"(xn,z0,com) represents the monochromatic response (in 
terms of one complex-valued number) at detector position (xn,z0) due to the ith source 
position — see figure 1.4 —, then the monochromatic seismic data vector Pj (z0) is defined 
as 

P > o ) = 

1 ^ " O - V n . ) ^ 
P.(x1,Z0,<Dm) 

(1.1) 

Pi(XN'Z0'O)m) 

where z = ZQ represents die data acquisition plane. By combining all seismic data vectors in 
a matrix, 

P ^ o ^ ^ o ^ o ) . - ^ ) • (1.2) 

the ith column containing the elements of the ith shot record, then die monochromatic 
seismic data matrix is obtained for frequency component com. 
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detectors 
* i x 2 X N 

source 
X: 

z=z„ 

Figure 1.4 Seismic experiment. Indicated is a seismic source vector Si and a reflected wavefield P, 
being detected by detectors at x0, Xj,... xN. 

Within the data matrix different data gathers can be indicated (see also figure 1.5): 
- one column 
- one row 
- the main diagonal 
- one sub diagonal 
- one anti diagonal 

one common source point gather, or shot record 
one common receiver point gather 
zero offset gather 
one common offset gather 
one common midpoint gather 

Note, that if sources and receivers have the same directivity property then, according to the 
principle of reciprocity, 

-J 
r~(z0) = P"(2. ;o)] . (1.3) 

"T" meaning that rows and columns should be interchanged. Note, that in practice the data 
matrix is never completely filled. The usefulness of the matrix notation will easily be 
appreciated if we understand the relation between matrix multiplication and convolution. 
The convolution process is frequently applied in different stages of seismic data 
processing. If a convolution process is applied to an input data series then each input 
sample is replaced by a weighted sum applied to this input sample and its neighbours, the 
weighting factors being determined by the convolution operator. For example, using the 
convolutional model, a seismic data trace can be described by 
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" aperture area—*-
Q O 
X X 

common receiver 
point gather 

common source point gather 

Figure 1.5 Monochromatic data matrix. 

s(tn) = 2^ w(tn - mAx) r (mAx) , 
m 

where t,, = nAt. 

(1.4) 

As convolution defines a weighted sum per output sample the matrix notation is pre
eminently suited to describe the convolution process.. Taking M = N and At = Ax: 

\ 
/s(0) 

s(At) 

\ 

\s(NAt)/ 

or, symbolically, 

(r(0) 

r(At) 

\ 

|r(NAt) 

(1.5) 

i*=W? , (1.6) 

where the nth row of W contains the samples of operator w(tn- mAx) for all m, and the 
mth column of W contains the samples of wavelet w(nAt - xm) for all n. Note that the mth 
column may be considered as the impulse response due to S(t - xm). For a time invariant 
convolution operator the impulse response is independent of m, which means that the 
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elements on one diagonal of W are all equal. On the other hand, for a time variant 
convolution operator the elements on one diagonal of W will not be equal. 
Using the matrix notation explained above, an elegant expression can be obtained for the 
discrete measurements of one seismic experiment, that is the data of one shot record. As 
pointed out already, the formulation is a monochromatic one (the circular frequency ca is a 
parameter). 

P - ( Z 0 ) 
ww r — N 

S+(z0) 

Y - — ~ r 
W ( z 0 . z m ) W ( z m , z 0 ) 

\ Rco / 

P"(z0) W ( z 0 , z m ) R(zm) Wtzm.z0) « — i+(z0) 

/ x \ 

\A 

I X X---X \ 

\ \ \ 
\ \ 

\ \ 
* N I 
X X - - - X / » 

\ \ \ 
\ \ x 

\ \ 

■ l X X - - X 
\ I \ N V 

X ' 

s \ 

X X - - -X 

/ \ 

Figure 1.6 Basic model for the seismic response from depth level z = zm (no field patterns, 
homogeneous surface). 

The basic model is depicted in figure 1.6. Reflection from only one interface is considered. 
The figure gives a schematic illustration of the acoustic forward (that is modelling) process 
which appeals well to physical intuition and contains the essentials of any echo technique: 
1. illumination with a source field given by vector Si; 
2. downward propagation given by matrix W+ 

3. reflection given by matrix R 
4. upward propagation given by matrix W~ 

5. detection of a wave field given by vector P,. 
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In figure 1.6 only one source position is indicated, giving one shot record. Extending this 
shot record model to a multi-record data set can easily be done by extending the vectors S; 
and P7 to matrices S+(ZQ) and P"(z0) respectively. 
Summarizing, for one shot record the model depicted in figure 1.6 reads as follows (we 
consider one depth level only): 

P > 0 ) = W-(z0,zm)R(zm)W+(zm,z0)r(z0) , (1.7) 

whereas for a multi-record data set the model reads 

p-(z0)=W-(z0,zm)R(zm)W+(zm,z0)S+(z0) . ( L 8 ) 

If we assume no lateral velocity variations, then the matrix description can be replaced by a 
convolution along the source coordinate followed by a convolution along the receiver 
coordinate (compare expressions (1.4) and (1.6)). We also assume for the sake of 
simplicity the source matrix to be equal to the unity matrix. Rewriting (1.8) in terms of 
convolutions leads then to 

P7(xs,xd,z0,co) = Wd(xd,Az,co) *d R(xs,xd,zm,co) *s W+(xs,Az,co) . (1.9) 

The symbols "*s" and "*d" denote a spatial convolution over the source and detector 
coordinate respectively, and Az is equal to IZQ - z j . 
In the wavenumber-frequency domain expression (1.9) reads 

P:(ks,kd,z0,co) = Wd(kd,Az,ü>) R(ks,kd,zm,co) W+(ks,Az,co) . (1.10) 

The transformation to the wavenumber-frequency domain assumes the velocity laterally 
constant. Note also, that we still consider the response from one depth level only. 

From expression (1.10) it can be seen that determination of R(ks,kd,zm,co), that is the 

reflectivity at depdi level z,, + Az, is obtained by inverting for the propagation operators W: 

<R(ks 'kd'V ( ü)> = [w;(kd,Az,ü))J P"(k ,kd,z0,co) [w>s ,Az,co)] , (T n ) 

(when <R(ks,kd,zm,co)> still contains reflectivity information from other depth levels — 
which is always the case in practice — the reflectivity information for the current depth 
level zm can be obtained by integrating over all frequencies. This is called the imaging 
principle). 
If we define the inverse operators as F^(kd,Az,co) and F£(ks,Az,co) respectively we arrive 
at expression 

<R(ks,kd,zm,c»)> = Fd(kd,Az,co) P^(ks,kd,z0,o)) F*(ks,Az,co) . (1.12) 
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The derivation of the extrapolation operators F can be accomplished using the scalar wave 
equation. 

The scalar wave equation, which describes the propagation of a compressional wavefield 
p(x,z,t) in a medium with velocity c(x,z) and a constant material density, is given by 

a2 j ^ i_ a*_ 
dx dz c 3t 

p(x,z,t) = 0 , (1.13) 

where x denotes the horizontal spatial coordinate and z denotes the depth. 
Before we proceed we first define the forward and inverse Fourier transforms for temporal 
and spatial transients. 
For a temporal coordinate the Fourier transform pair is defined as 

P(x,z,co) = p(x,z,t) e Jtot dt 

and 

p(x,z,t) = — P(x,z,co) e+JC° dco . 
271 J 

For a spatial coordinate the Fourier transform pair reads 

f +jkxx 

P(k ,Z,CD) = P(x,z,co) e dx 

and 

(1.14a) 

(1.14b) 

(1.14c) 

-jk x 
P(x,z,co)= — j P(kx,z,co)e " dk, (I.14d) 

We now assume that the medium velocity can only vary as a function of depth z: 

c = c(z) . (1.15) 
Using expressions (1.15) and (I.14a-d), the wave equation (1.13) can be transformed to 
the following expression: 

/ 

dz 
2 P(kx,z,co) + 

^ 
CO . 2 

k_ 
c(zr 

P(k,z,co) = 0 . (1.16) 
/ 

For c = constant the downgoing (or forward travelling) wave solution to (1.16) is given by 
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P+(k ,z,co) = P+(k ,0,(0) exp -J 
( 2 \ m 

^ - - k 2 Z 
c2 " 

This is also the solution to the one-way wave equation (Berkhout, 1984) 

3 
^-P+(kx.z.co) = -j 

( 2 
^ - - k 2 P + ( k x . ^ ) 

Expression (1.17) can be rewritten as 

P+(k ,z,(0) = W+(k ,z,co) P+(k ,0,co) 

with 

W+(k ,z,co) = exp 4*-A) ' 
and 

(1.17) 

(1.18) 

(1.19a) 

(1.19b) 

k = ^ (1.20) 

W1" is the forward extrapolation operator. 
From this result we conclude that the forward extrapolation operators in expression (1.10) 
— which describes the seismic experiment in the wavenumber-frequency domain — 
should be defined as follows 

W.(k.,Az,co) = exp 

W.(k.,Az,co) = exp 

W (k ,Az,co) = exp - j ^ 

- j k x / l - | f ] Az 

-k , / \f\ - 1 Az 

1-1 f I Az 

i 2 ^ 2 k. 5 k a 

, k2>k2 

, k <k 

(1.2 la) 

(1.2 lb) 

(1.2 lc) 

and 

W (k ,Az,co) = exp -k, - 1 Az 
. 2 . 2 

, k >k 
' 6 

(I.21d) 
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The wavenumbers kj > k2 and kf > k2 define die so called evanescent field. Evanescent 
waves will not be considered here. Note that the total propagation effect (extrapolation) is 
described by two square root operators (I.21a) and (I.21c). These operators can be 
combined to form one operator: 

W.(k Az,(a) W (k ,Az,co) = exp 

/ 

-jk 1- k 1-1 f I Az (1.22) 

Equation (1.22) describes the modelling or forward extrapolation. 
Inverse extrapolation operators can be defined— in accordance with (1.11) and (1.12) ■ 
as the inverse of the forward extrapolation operators (I.21a-d): 

F.(k.,Az,co)=l/W,(k.)Az,co) dv <1 dv d'' (I.23a) 

and 

Fs
+(ks,Az,co) = l/Wj(ks,AZ>a)) . (I.23b) 

Since these operators are not stable — due to exponential increase — for k^ > k2 or k? > 

k2 we choose F to be the matched filter of W: 

and 

F-(kd,Az,to) = [w-(kd)Az,co)J 

* 
F;(ks>Az,co) = [w;(ks>Az,ca)] 

(I.24a) 

(I.24b) 

The asterix indicates the complex conjugate. 
For details about the choice for a matched filter approach, the reader is referred to Berkhout 
(1984). 
In other words, F is now defined as follows: 

F (k ,Az,co) = exp + jkx / 1 -
kA 

F.(k.,Az,co) = exp 

Az 

- k , / U» - 1 Az 

k. <k 
a 

. 2 . 2 
k. >k 

a 

(I.25a) 

(I.25b) 

and 
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F (k.Az,co) = exp 

F*(k Az,co) = exp 

; j k \ 

_ k \ V 

/ i, ^ 2 

A-(S * 
/ $ -\ / 

2 2 
, k < k 

, kj>k2 

(1.25c) 

(I.25d) 

Let us again restrict ourselves to travelling waves only. Then, the inverse extrapolation 
operator, which describes the full prestack migration process in the shot-receiver 
wavenumber and frequency domain, can be described as 

F(ks,kd,Az,a>) = [wd(kd,Az,co) W+(k.,Az,co)J 

* * 
= [w-(kd,Az,co)J [ws

+(ks,Az,(o)] . 

(I.26a) 

(I.26b) 

Summarizing the results obtained sofar, we recognize two basic steps in the inverse extra
polation or downward continuation of a multi-record data set, defined in the shot-receiver 
domain: 
1. Inverse wavefield extrapolation for the upward propagating wavefield; 
2. Inverse wavefield extrapolation for the downward propagating wavefield. 

We have three alternative descriptions of the downward continuation procedure, which 

read as follows: 
1. A multiplication in the (ks,kd,a>)-domain according to 

Fd(kd,Az,co) P"(ks,kd,z0,co) Fj(k.,Az,ü)) , 

see figure 1.8. 
2. A double convolution operation in the (xs,xd>cu)-domain, see figure 1.8 according to a 

lateral deconvolution of shot records 

Fd(xd,Az,co) *d P"(xs,xd,z0,a>) 

followed by a lateral deconvolution of detector gathers 

[Fd(xd,Az,o)) *d p-(xs,xd,z0,co)] *s F;(XS,AZ,CO) , 

see figures 1.7 and 1.8. 
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Figure 1.7 Full prestack extrapolation can be carried out as a set of independent convolutions in the 
source-detector space. 

3. A matrix multiplication in the (xs,xd,co)-domain yielding 

F-(zm,z0)p-(z0)F+(z0,Zm) , 

where again Az =lzm - z0l. 

Prestack migration consists of two basic steps, viz. downward continuation of the 
wavefields, followed by imaging. Imaging at the depth level of downward continuation 
implies selection of the zero offset data at time zero at this depth level. 
A CDP processing scheme for prestack migration in the shot-receiver spatial and 
wavenumber domain is illustrated by a flow diagram in figure 1.8. 

Combining equation (I.26a,b) with (1.22) results in 

F(k ,k Az.co) = exp \ +jk Az, (I.27a) 

This operator is known in the literature (e.g. Yilmaz, 1979) as the Double Square Root 
(DSR) operator. The DSR operator is the solution to the DSR equation, that is the one way 
wave equation in the shot-geophone space. This equation reads 

dz P (k .k.,z,co) = \ +jkz P (k ,k„z,co) . (I.27b) W 

The DSR operator downward continues the shots and receivers into the earth, thus 
transforming the data as if it were measured at another depth level inside the earth. 
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Figure 1.8 CDP processing scheme in the shot and receiver wavenumber (figure a) and spatial 
(figure b) domain respectively. 

Let us now consider the midpoint-offset coordinate system (see figure 1.9). 
We introduce midpoint ^ and half-offset xh coordinates according to 

x = -z- (x. + x ) m 2 " s 

h 2 ° s 

(I.28a) 

(I.28b) 

Since wavefields do not change under a coordinate transformation, we can write 
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p(xs,xd,z,t) = p'(xm,xh,z,t) , (L29) 

where z and t are invariant under the coordinate transformation. Bearing in mind that 3 
transforms to -jk^ in the wavenumber domain, we use expressions (I.28a,b) and (1.29) to 
arrive at a relation between shot-geophone wavenumbers and midpoint-offset wave-
numbers. 

Figure 1.9 Definition of shot-geophone (or source-detector) coordinates and midpoint-offset coordinates. 

Applying the chain rule for differentiation to equation (1.29) yields 

3p' 3x 
dx 3x 

m s 

apl^h 
3x. dx 

h s 

(I.30a) 

and 

dx dp 3p' d x
m _,_ 3p' ""h 3xu 

3Xj dx dx. dxh dxd d m d 

Using expressions (I.28a,b) we see that 

(I.30b) 

3 x s 

^ h 
3x 

2' 

_i_ 
2 

dx 
re 

dx. a 

3X j 

2 

l_ 
2 

(I.31a,b) 

(1.3 lc.d) 
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Substitution of expressions (I.31a-d) into (I.30a,b), Fourier transforming both sides of the 
resulting expression and finally using (1.29) to cancel p=p', leads to the midpoint-offset 
wavenumbers in terms of shot-receiver wavenumbers: 

k d = 2 C k * + ki>) (I.32a) 

k«=-r(k
m-kJ 

s 2 m " 
(I.32b) 

The wavenumbers kd, ks, km and kh are related to the spatial coordinates xd, xs, xm and xh 

respectively. 
The latter result means, that expression (I.27a) can be rewritten: 

F(km,kh,Az,co) = exp \ +jk l _ | _ Ï L J l | +, 
2k 

1 
k -lc 

m n 
2k 

Az j (1.33) 

Note, that in this expression both square roots are dependent on the midpoint and offset 
wavenumbers. In other words: 

F(km,kh,Az,co) * F(km,kh=0,Az,o>)F(km=0,kh,Az,to) , (I.34) 

for all 1^ and kh values not equal to zero. 
We conclude that full 2-D prestack extrapolation can not be carried out by two independent 
one-dimensional convolutions along the midpoint and offset coordinates, see figure 1.10. 

0 
V 

x x-
X^X- K - -fi 

CMP' 
gather x x- •-K X 

CO gather 

Figure 1.10 Full prestack extrapolation by a set of independent convolutions in the midpoint-offset 
space necessarily involves approximations. 
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For small wavenumbers (e.g. small dips both in midpoint and offset space), relation (1.33) 
can be approximated by: 

F(km,kh,Az,to) =exp<+jk Az i (I.35a) 

= Ffk.Az.co) F. (k. .Az.to) , hv*Ti*' 

with Fm defined by 

Fm(km,Az,co) = e x p W j k ^ 1 - -

and Fh defined by 

(k\* 
Az/ 

Fh(kh>Az,co) = expWjk / 1 - - ^ -1 MS. Azj 

(I.35b) 

(1.35c) 

(I.35d) 

Relations (I.35c) and (I.35d) can be verified by expanding the square roots in (1.33). 
Relation (1.33) provides the basis for migration of CMP slant stacks, as proposed by 
Ottolini and Claerbout (1984). Ottolini suggests that the coupling between the square roots 
in the midpoint and offset wavenumber can be evaded by transforming the data to the 
(T.p)-domain and applying the downward continuation to data which is sorted into constant 
ray parameter sections. The method is only valid for 1-D media. A discussion of this 
approach is beyond the scope of this thesis. 
Summarizing, we have derived two expressions of the DSR operator, one in the shot-
receiver wavenumber domain and on in the midpoint-offset wavenumber domain. The 
expression of the DSR operator in the midpoint-offset wavenumber domain is the most 
suitable for linking the CMP, CRP and CDP methods. 

1.2.2 The DSR operator and CMP processing 
We will now make an analysis of conventional CMP processing, to see how it can be 
developed from the theory of the DSR operator. We will assume constant velocity. 
We repeat the DSR operator (1.33) for non-recursive application, assuming ZQ = 0: 

F(km,kh,z,co) = exp \ +jk 1 -
k +k, 

2k 
(1.36) 
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This equation describes the — theoretically correct — process of downward extrapolation 
of shots and detectors in the midpoint-offset domain. Followed by the imaging principle, it 
implies full prestack migration. 
In CMP processing the whole process of downward continuation followed by imaging has 
been replaced by an approximate process, consisting of two distinct steps: 
1. Normal moveout correction and stacking in the offset domain; 
2. Poststack migration in the midpoint domain. 

The assumptions underlying this two-step process are respectively: 
1. Zero-dip assumption. 

The conventional NMO correction formula is based on a stratified earth (or zero-dip) 
assumption. 

2. Zero-offset assumption. 
Assuming zero-offset means that we deal with a CMP stack in conventional processing. 

Let us now apply these assumptions to the DSR equation (1.36) and see if we can extract 
the processes that describe CMP processing viz. NMO correction, stacking and poststack 
migration. 

The zero-dip assumption implies that in the midpoint wavenumber domain all energy is 
concentrated around the midpoint wavenumber 1^ = 0. Setting k,,, to zero in (1.36) means 
that we arrive at the following expression: 

cto J L:„ L (K\2%) F^km=0,kh,-^,a)j = exp^+j2kx | 1 - ^ J -f[ , (1.37) 

where ̂  equals z. 

We can make the following remarks: 
1. Expression (1.37) — a special case of (1.36)! — obeys the wave equation (1.16). 
2. If we define 

k' =2k (I.38a) 

=■^72 • <L38b> 
then (1.37) can be rewritten as: 
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F (Kn=0.V^ö)=eXp{Vk,2-k2h T ) • < L 3 9 > 
Compare this result with formula (1.19b), that is the forward extrapolation operator. 
Expression (1.39) can be interpreted as an inverse wavefield extrapolation operator in the 
offset wavenumber-frequency domain, also called the phase shift operator. 
The space-time domain expression corresponding to the phase shift operator is the 
Kirchhoff summation operator. Using the far field approximation (27tr » X.max, r is the 
distance, X.max is the maximum wavelength) the 2-D version of this operator can be written 
as 

where 
'*' denotes a convolution along the spatial axis xh and the time axis th, 

cos $ is defined by (-^p)/r , 

(1.41) 

c is the medium velocity, 
8 is the delta function • 

and d_1/2(t) is a half differentiator, whose Fourier transform is given by 

d_1/2(t) ™- f * for comin < Icol < comM . (1.42) 

Application of f(km = 0, xh, ^ , th) involves collection of data from neighbouring offset 
traces at larger traveltimes, defined by the hyperbola 

^ =2r / c (I.43a) 

(I.43b) 

Since th is the offset traveltime and t0 denotes in fact the two-way vertical traveltime, 
formula (I.43b) — used in combination with the imaging condition — represents the well 
known hyperbolic moveout equation. 
Figure.I.11 shows what in fact happens: 
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1. Mapping of data along a hyperbolic trajectory ("focussing effect") implying 
- NMO correction 
- Stacking 

2. Decrease of time delays, implying an application of a phase shift equal to exp (+jcot0). 
Imaging implies that the data at time zero is placed in the output data domain at time 
equal to t0. 

We may conclude that operator (1.37) indeed represents NMO correction plus stacking, 
when used in combination with an imaging step. 
Therefore (1.37) is rewritten as 

Figure I.ll The inverse extrapolation result at ^ = 0 is obtained by integration along the hyperbola 

t ^ w h e r e r ^ f f f x S -

FJVn.0) = exP 1 +J st v ,V l0 
(1.44) 

A synthetic data example of NMO correction and stacking by means of (1.37) and (1.44) is 
shown in figure 1.12. 
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Figure 1.12 A synthetic data example of NMO correction and stacking by means of migration with a 
phase shift operator. 

a. Uncorrected CMP gather. 
b. Migrated CMP gather. The migrated CMP gather for xh = 0 forms the so called CMP 

stack. 

Assuming zero offset means that we deal with a CMP stack in conventional processing. In 
an NMO corrected unstacked CMP gather all energy in the offset wavenumber-frequency 
domain is concentrated at kh = 0; that is zero spatial frequency. So setting kh = 0 in DSR 
operator (1.36) (written as a recursive expression) results in 

Fex(km,Az,co) = exp ) +j2k (1.45) 

Expression (1.45) is the well known zero-offset exploding reflector extrapolation operator. 
Note that the multiplication of k by a factor of 2 accounts for the half of the medium 
velocity, this is typical for exploding reflector models. 
In practice the zero-dip assumption will never be completely fulfilled. Therefore the 
mapping to zero-offset by normal moveout correction and stacking will imply an 

approximation. By the same token it is more appropriate to apply Fw in the (k^k^co)-
domain for all values of 1^ instead of k,,, = 0 only. 

A realistic CMP processing scheme based on application of operators F s t and F e x is 
depicted in figure 1.13. 
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Figure 1.13 Flow diagram, showing conventional CMP processing by means of application of the 
non-recursive operator F j t and the recursive operator F e x . 
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Note, that for a stratified medium (as opposed to a homogeneous medium), the medium 
velocity c is replaced by the stacking velocity cstack. 
We conclude that CMP processing is based on a two-pass migration procedure; CMP 
stacking by means of non-recursive extrapolation and imaging according to expression 
(1.44) followed by zero-offset migration by means of recursive extrapolation and imaging 
according to expression (1.45). 

1.2.3 The DRS equation and CRP processing 
An interesting improvement over CMP processing can be obtained if we use the relation 
(Levin, 1971): 

c
suok = c / c o s a o • (1.46) 

where cstack is the stacking velocity, c is the medium velocity and <x0 is a specific 
(apparent) dip angle. 
We will again assume the medium velocity to be constant 
Application of relation (1.46) to the conventional hyperbolic moveout equation implies the 
correct traveltime correction for reflection data from dipping events. The NMO equation 
can thus be rewritten as 

i -i+tr- • (L47a) 
Q 

stack 

4 2 
= tJ + - j L c o s 2 a 0 , (I.47b) 

c 

A 2 A 2 

= ^ + - ^ - - - ^ s i n a 0 . (I.47c) 
c 

4xj 2 
The extra term - ^ - ^ sin2 a„ is called the Dip Moveout (DMO) term (Deregowski, 1981, 

c2 

Hale, 1984). Application of this term ensures the correct traveltime correction for one 
particular dip. Since CMP processing is only valid for horizontally layered media, the 
application of the extra DMO term implies a considerable improvement over CMP 
processing. CMP processing with DMO included is called common reflection point (CRP) 
processing, because DMO corrects data according to their true common reflection point. 
This will be explained in great detail in chapter in. 
We will now derive a stacking operator F ^ which includes the DMO term. 

In conventional CMP processing — where stacking operator Fst (1.44) is applied — the 
wavenumber k is defined by (1.20). 
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k = - ■ (1.48) 

Here we assume a constant velocity medium. 
In CRP processing we replace c (and k accordingly) as follows 

c -* c / cos aQ , (I.49a) 

k-> k cosaQ . (I.49b) 

Substitution of this result into the CMP stacking operator (1.44) 

V* ^ • • ^ - « p i + K / ' - h È j ■of <U0) 

yields the non-recursive stacking operator defined by 

F> 0 , k h , t 0 , co ) = e x p ^ j c o ^ y i ^ I i ^ - j i0( , ( I . 5 1 ) 

where tQ is the zero-offset time. 

The operator F ^ applied to surface related data P(kmJch,z=0,co) yields 

^ « V S n - M o - 0 » - O v V o ' " ) P(km,kh,z=0,u)) . (1.52) 

The output data Pi will be properly NMO corrected for dip a^ and time t̂  and also stacked 
on the plane xh = 0. Selection of this plane is accomplished by integration over the offset 
wavenumbers kh, yielding 

^ « W o - 0 » = J O v w » P(km.kh-zo=0'c°) <K • a.53) 
The data P2, however, will in general also contain data corresponding to dips unequal to 
otg. The data that correspond to dip oc0 must, for xh= 0, lie on the plane described by 

km = 2 k o s i n a o • (I.54a) 
with 

k0 = -^- . (I.54b) 

The frequency co0 corresponds to the NMO corrected zero-offset time t,j. To a good 
approximation relation (I.54a) also holds for t in the vicinity of %. This means that the data 
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lies on a plane described by 

km = 2ksinoc0 , (1.55) 

the approximation lies in the fact that for t larger or smaller than t0 the data is respectively 
under- and over corrected for NMO. 
The data corresponding to dips unequal to OQ can now be filtered out by using a dipfilter 
based on relation (1.55), which reads 

(1.56) D(a0) = 8 la 0 -arcs in l — 

The actual dip filtering is described by 

P3<a0'km't0>0)) = J Ö(ai>) P2(a0-km't0'C°) d(X0 

= J J 8 ( a ' o — s i n ( ^ 5CIP, Fst « W o - 0 » P(km,V=0,co) ^ d a o 

- ƒ exp 
' k2 

2 2 0 
4k - k ' 

m 

pCk
to-kh>z-°'<D) ^ • d-57) 

Note, that the four-dimensional data volume P3 will only contain non-zero data on the 
plane described by (I.54a). The operator F ^ can be written as 

Co^w^1 exp for k = 2k sin <xn 
m' U 

(1.58) 

0 otherwise 

The last step is imaging by selecting the plane t = 0, or equivalently, by summing or 
integrating over to, yielding 

P4(<xo-km'to) = } ^ « W o - 0 » d 0 ) 

-11 p ( k
m ' k h ' z = 0 ' 0 ) ) F

s , „ 0 ( k m V o ' 0 ) ) d t o d k h • (1-59) 

P4 contains only data that is properly corrected for a specific dip a0. In complete CRP 
processing of course all dips should be taken into account. This is simply done by 
-integration over OQ, yielding 
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P s ^ m V =JP4(aO-km' to)dCtO • 

-m ;crp P(km,kh,z=0,CD) F r (km,kh,t0,CD) dco dkj, da 0 , (L60) 

.S^P. where the final CRP operator Fs t can easily be shown to be 

exp +J0) 
< 

M2 i2 
2 2 

for k < 4k 
m 

(1.61) 

0 otherwise 

CRP processing as described by (1.61) is depicted in a flowchart in figure 1.14. 
The performance of the CRP stacking operator (1.61) will now be shown, using two 
synthetic data examples. 
The input data of the first example is a band limited impulse, shown in figure 1.15a. The 
offset is 500 m. Application of NMO correction for zero-dip followed by DMO will yield 
the conventional DMO impulse response which will be discussed in detail in the next 
chapter. 
In figure 1.15b the impulse response of a conventional DMO integral implementation is 
shown. 
Applying the CRP stacking operator F ^ to the input data should yield a similar impulse 
response. Since we are only looking after kinematic aspects, we will not compare the 
amplitudes. 
First we apply F ^ with km set to zero. In this case Y\f reduces to a conventional NMO 
and stacking operator. The result is shown in figure 1.15c. Note, that indeed an NMO 
correction — the stacking has no effect for one offset only — has been applied. Note also, 
the typical phase change inherent to the application of the phase shift operator. Next the 
F,^ operator is applied for all k,,, values, according to expression (1.61). The result is 
shown in figure I.15d. We see that we get an impulse response very similar to the 
conventional DMO impulse response. 
In a second example, we use again a band limited impulse, but now having an offset of 
1500 m. The corresponding conventional DMO impulse response is shown in figure 1.16a. 
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Figure 1.14 Flow diagram, showing a CRP processing approach based on Fourier domain operators 

derived from the DSR operator. 
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Figure 1.15 The impulse responses of the conventional integral type DMO (b) and the Fourier DMO 
~crp 

by means of F s t according to (1.61) (see d) are identical with respect to traveltimes. The 
bandlimited zero-phase input impulse is shown in figure a. Figure c shows the result of 

~crp 
zero-dip NMO (and "stack") by means of application of F s t . Note the phase change of 
the wavelet. 
The offset is 500 m. 

Application of the CRP stacking operator yields the result depicted in figure 1.16b. We 
again see a DMO impulse response, similar to the one depicted in figure 1.16a. 

1.2.4 Summary of main results 
Assuming a constant velocity medium, we started with the double square root operator, — 
which is the solution to the one way wave equation — and derived monochromatic 
expressions for CDP, CRP and CMP processing. 
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Figure 1.16 Conventional (a) and Fourier domain DMO impulse response (b). The offset is 1500 m. 
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In CDP processing the DSR operator is applied without any approximation. The operator is 
by nature a split one in die shot-receiver domain, hence monochromatic CDP processing is 
described by: 
1. A 1-D convolution along the shot coordinate 
2. A 1-D convolution along the receiver coordinate 
3. Imaging 
4. Repeat 1. to 3. for all depth levels. 

In CMP processing, the DSR operator has been simplified to a two-step process. Used are 
the zero-dip assumption for prestack data and the zero-offset assumption for stacked data. 
Hence, the CMP processing is accomplished by an operator that is naturally a two pass 
procedure in the midpoint-offset domain. Monochromatic CMP processing in the 
midpoint-offset domain is described by: 
1. A 1-D convolution along the offset coordinate 
2. Imaging 
3. Repeat 1. and 2. for all depth levels 
4. A 1-D convolution along the midpoint coordinate 
5. Imaging 
6. Repeat 4. and 5. for all depth levels. 

Finally, CRP processing can be described as a natural extension to CMP processing. The 
operator is again a two-pass procedure in the midpoint-offset domain. CRP processing is 
described by 
1. A 2-D convolution along the midpoint and offset coordinate 
2. Imaging 
3. Repeat 1. and 2. for all depth levels 
4. A 1-D convolution along the midpoint coordinate 
5. Imaging 
6. Repeat 4. and 5. for all depth levels. 
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II 

CRP PROCESSING BY CONSTANT 
VELOCITY DMO 

II.1 INTRODUCTION 

The subject of this thesis is CRP stacking in terms of macro-model driven DMO. This 
means that our main interest is directed to CRP stacking in inhomogeneous media. 
However, there are several reasons why we should start with the investigation of CRP 
stacking in constant velocity media: 
1. CRP stacking in constant velocity media — the better known name Dip Moveout or 

DMO will be used in this chapter only — has been well described in the literature. A 
proper understanding of DMO helps in the appreciation of its shortcomings and the 
generalization to CRP stacking in inhomogeneous media. 

2. DMO has been approached theoretically from different standpoints. These various 
approaches will be summarized and a concise comparative analysis will be given in this 
chapter. 

3. Nearly all published DMO methods have been derived as multi dip processing per 
constant offset. We start therefore to describe the phenomenon of DMO in the constant 
offset domain. In chapter in we will present our approach, which describes DMO as a 
natural extension of conventional processing, i.e. multi offset processing for a range of 
dips. 
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4. Finally, as has already been shown in chapter I, in CRP processing an approximation to 
the wave equation is used. The definition of a proper weighting of the amplitude 
characteristics of CRP and DMO operators is therefore a serious problem. This is a 
fortiori true for CRP operators in inhomogeneous media. 

In section 2 we will start with an overview of the benefits of DMO. In section 3 we 
continue with a general description of the DMO operator impulse response for constant 
offset sections. We will then concentrate on the traveltime aspects. 
In practice the amplitude and phase characteristics of the DMO impulse response very much 
depend on the type of implementation. We will therefore first give an overview of several 
implementations in section 4 and will mention some amplitude and phase characteristics. In 
section 5 we will discuss the amplitude and phase behaviour of the different types of DMO 
operators. 

II.2 CLAIMS FOR DMO 

The process of DMO can be defined in several ways. The most elegant one is to define 
DMO as the process which — in combination with NMO correction for zero-dip (see next 
section) — corrects each event on an offset trace according to the traveltime along the 
normal incidence ray to the corresponding reflection point and the surface location of this 
ray. 
This implies that the DMO processing in constant velocity media — at least with respect to 
traveltimes — produces a stack which is very similar to a real zero-offset section. 
It has already been shown in figure 1.2 that a CMP stack does not necessarily produce a 
proper zero-offset section because of the reflection point smearing for dipping events. 
In chapter I we mentioned two major claims for DMO when included in the conventional 
CMP processing stream. 
A rather complete list of the claims for DMO is given by Deregowski (1986). According to 
that paper a perfect DMO operator would achieve the following: 
1. Each trace is migrated to zero-offset so that each common offset section becomes a zero 

offset section. 
2. This implies that after DMO, but before stacking, CMP gathers contain reflections from 

common depth points as defined by normal incidence rays. That is, reflector point 
dispersal for non-zero offset traces is removed, see figure ILL 

3. Stacking velocities become independent of dip, so that correct stacking of simultaneous 
events with conflicting dips is made possible, see figure II.2. Also fault plane 
reflections will be better imaged, see figure n.3. 



ü.2 CLAIMS FOR DMO 43 
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K 

Figure II.l Consider a reflector dip in a constant velocity medium and one CMP gather. The raypaths 
for the different offsets are shown in a. Note the smearing of the reflection points. In 
CMP processing all data related to the same input CMP gather will contribute to one 
stacked trace (b). In CRP processing each individual trace of the single CMP gather is 
corrected according to its own specific reflection point, implying that the input data of 
one CMP gather will be spread over several traces in the output space (c). 

4. Velocity analysis is improved, and provides velocities which are more appropriate for 
migration as well as stacking, see figure II.2. 

5. Coherent noise with inconsistent steep dip is removed, without the artificial alignments 
often associated with dip filters, and at the same time steeply dipping fault planes are 
better imaged alongside horizons with smaller dips, see figure Ü.4. 

6. The signal-to-noise ratio is improved, especially at large offsets, see figure n.4. 
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3500 m / s 

without DMO 

3250 m/s 3000 m/s 

with DMO 

Figure II-.2 After application of DMO (and removal of the preceding NMO correction) the stacking 
velocities become independent of dip. This can clearly be seen for the events between 2.0 
and 2.1 s. 
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without DMO with DMO 

Figure II3 Steeply dipping fault planes are better imaged by application of DMO. 

without DMO with DMO 

Figure n.4 Coherent noise with inconsistent steep dip is removed by application of DMO. 
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7. Cross-line ties are improved because a zero-offset trace is the same regardless of the 
direction of the offsets from which it is derived. 

8. Dead traces are interpolated according to local time dips without those dips having to 
be estimated by a separate operation, see figure Ü.5. 

9. Diffractions are preserved through the stacking process so as to give improved 
definition of discontinuities after poststack migration, see figure H.6. 

10. Poststack time migration becomes equivalent to prestack time migration, but at 
considerably less expense. 

stacked input conventional interpolation interpolation by DMO 

Figure II.5 Dead traces are interpolated according to local time dip by DMO. a: input after stack; 
b. interpolation by trace averaging; c. interpolation by DMO. 
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Stack without DMO 
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Stack with DMO 

Figure n.6 Diffractions are preserved through the stacking process by application of DMO. 
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So far Deregowski; in addition the following claims are also valid: 
11. Since — as will be shown later — the reflection point smear is compensated via the 

midpoint smear, DMO — partly — addresses the binning problem in conventional 
CMP processing. 

12. (Related to item 5). Aliased energy in the stack and migrated sections is reduced, 
provided that the DMO processed traces are mapped on a finer output trace spacing, 
see figure Ü.7. 

zero-offset DMO stack 

Figure' II.7 Aliased energy is reduced in the stack, provided that DMO processed traces are mapped on 
a finer output grid. Note that the steeply dipping event in figure a. is aliased, whereas it is 
not aliased in figure b. 

We see that some of the advantages have to do with a better definition of parameters such 
as prestack migration velocity analysis. The main advantage of application of DMO, 
however, is the better result we get from the poststack depth migration. Since the DMO 
stack is a better approximation to the zero-offset section and conflicting dips and 
diffractions have been preserved, the poststack depth migration will show superior results 
with respect to structural definition as well as resolution. 
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Since the DMO concept — developed in this chapter and currently used in the industry in 
production processing — is based on a constant velocity assumption, all the claims for 
DMO will only partly be fulfilled in practice. Practical experience has taught that a constant 
velocity DMO stack can even be worse than a CMP stack. The theoretical evidence for this 
statement will be given later in this dissertation. DMO is therefore — although more 
sophisticated — less robust than CMP processing. 

Note, that — although different strategies should in the end lead to the same result — the 
first claim in the list suggests that the DMO process is a process applied on constant 
offsets. As has been pointed out in the introduction to this chapter the DMO process is 
indeed normally described in such a way. 
We will therefore have a closer look at the DMO impulse response in the constant offset 
domain. 

II.3 KINEMATIC ASPECTS OF THE DMO IMPULSE RESPONSE 

In order to determine the impulse response of a DMO operator we assume one constant 
offset gather with a single impulsive event — all other constant offset gathers are zero — 
and determine the geometrical structure which would give rise to such an observation. It 
can be shown (Deregowski et al., 1981) that this geometrical structure is an elliptical 
reflector in the subsurface with the source and receiver placed in the focal points of the 
ellipse, see figure II.8a. 
Figure II.8b shows the prestack dataset acquired from this elliptical reflector. After zero-
dip NMO correction (and stacking) (figure II.8c) and poststack migration we obtain a 
semi-circle (figure n.8d) which is obviously not the elliptical subsurface reflector. 
Application of DMO to this conventional CMP sequence should yield a DMO stack which 
in this homogeneous velocity case should be equal to the zero-offset section. 
Therefore we first determine the zero-offset section corresponding to the elliptical reflector. 
Figure II.9a shows the zero-offset raytraces and figure II.9b shows the corresponding 
zero-offset section. 
The poststack depth migration result is shown in figure n.9c. This result does indeed show 
the elliptical reflector. 
Let us now compare the zero-dip NMO corrected dataset which is shown in figure n.8c 
and the zero-offset section shown in figure n.9b. Since DMO is defined as a migration 
process which maps multi-offset data-NMO corrected for zero-dip- into zero-offset data, 
which can be subsequently stacked, we can conclude that the zero-offset section shown in 
figure II.9b must be the DMO impulse response for a certain offset. The offset is 
determined by the distance between the focal points of the ellipse. 
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J 
hï" 

■W-

Figure It.8 In a. an elliptical reflector in the subsurface with the source and receiver placed in the 
focal points of the ellipse is shown. The resulting data set consists of one impulsive 
event, shown in b. Figure c. shows the same event after NMO correction (and stacking). 
By application of a poststack migration we obtain a semi-circle (d). 
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Figure II.9 a. zero-offset raytracing experiment on an elliptical reflector. 
b. resulting zero-offset section. 
c. poststack depth migration result. 
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The formula which describes the zero-offset section corresponding to the ellipse should 
therefore be the same formula which describes the DMO mapping process. Deregowski 
(1981) has shown that this formula reads 

tcip^m' ~ haAO, 
l (Xm-*o) (n.i) 

where — see also figure 11.10 — x0 denotes the midpoint of the input trace, xm - x0 

denotes the spatial distance and xh is the half offset. The zero-offset traveltime after DMO 
correction is called t (XjJ. 
The maximum value to which xm is bounded is 

2xf 
x = 

max c t 
w i * X m a x ^ X h , (II.2) 

where cDMO is a cut-off velocity which can be chosen equal or larger than the medium 

ÏIW 

Figure 11.10 Visualization of the application of DMO. First an input trace (a) is zero-dip NMO 
corrected (b). Then a constant velocity DMO is applied (c). 
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Figure n.11 DMO operators for different times and offsets. 
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velocity. A larger value of cDMO may be used to avoid aliasing. In an entirely different way 
to that followed by Deregowski (1981) formulae (II.l, 2) will be derived in chapter III and 
appendix B. Note, that the cut-off velocity simply specifies the maximum time-dip in the 
output data. With respect to the maximum time dip, Deregowski (1986) makes the 
important remark that applying DMO does not increase the time dip, since the output is still 
immigrated time. 
Another important property of the DMO operator is that its shape only depends on the shot-
receiver direction. That means that the 3D DMO impulse response is identical to the 2D 
response but with the horizontal axis in the azimuth of the shot-receiver offset. Outside this 
plane the 3D DMO operator is zero. 
Finally figure 11.11 shows a number of DMO operators for different offsets and times, 
revealing their dependency on these parameters. 

II.4 IMPLEMENTATION ASPECTS OF DMO OPERATORS 

CRP processing can be implemented in several ways. Since a DMO operator can be 
described as a kind of migration operator, it is plausible that the type of implementations 
used for migration algorithms are also applicable for DMO algorithms. 
For migration, we can distinguish the following implementation schemes: 

1. Integral method (Kirchhoff summation migration) 
2. Phase shift method (phase shift migration) 
3. Mapping method (KF-migration) 
4. Finite-difference method (finite-difference migration in (x,f) of (x,t)) 

These methods have indeed been used for DMO applications. All methods, except the 
phase shift method, are used in production processing environments. A phase shift 
formulation of DMO has been pioneered by Yilmaz (1979). 
In this section we will discuss the other three schemes in general, using flow diagrams. It 
should be realized that for ideal (error-free) operators the form of an impulse response 
within the output space is independent of the type of DMO algorithm that generated the 
impulse response. 
This statement may be true for the kinematic aspects. However, because no closed relations 
can be formulated for the amplitude characteristics, different implementation schemes will 
lead to different amplitudes. Therefore we first review the main types of DMO algorithms, 
before we discuss the amplitude and phase behaviour of DMO operators. 
Since DMO is a linear procedure, the DMO impulse response contains all the information 
required to understand the properties of the DMO operator. 
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11.4.1 Integral type formulation 
DMO is normally thought of as being applied in the constant offset domain. However, if 
we choose an integral type of implementation, DMO can also be applied in the CMP 
domain or the shot domain. The CMP domain has the advantage that the data already has 
been sorted into CMP gathers for application of NMO correction. 
First the data is NMO corrected for zero-dip. Then each individual input trace, 
characterized by a (half-)offset xh and CMP position x0 is mapped to a number of traces in 
the output space, according to formulae (II. 1) and (H.2): 

P(X0'VNMO> T PCWcrp)' X0-Xmax^Xm^X0 + X
m ax • 01.3) 

where tNM0 denotes zero-dip NMO corrected time for zero-dip and xmax is the maximum 
absolute value of xm - Xg. Note, that an integral implementation has an important advantage 
that it makes the operator independent of the input or output grid of the data. However, 
care should be taken with respect to aliasing problems. A flow diagram of the integral 
implementation is shown in figure 11.12. 

11.4.2 Mapping method 
DMO became well known when Hale (1983) published a Fourier representation of dip 
moveout. 
The derivation is simple and elegant. It starts with (I.47c): 

A 2 A 2 

2 2 ^h ^h 2 
t
h

=to+— r s i n a • < I L 4> 
c c 

where a is the apparent dip angle in the zero-offset domain and ̂  is the zero-offset time. In 4x2 chapter I it was explained that the term — - represents the NMO correction for zero-dip 
c2 

4 x2 

while the term sin2oc represents the DMO correction. For a single dip a the DMO 
c2 

zero-offset time is therefore denoted by t0. For a multi-dip expression the DMO zero-offset 
time is denoted by tCRp, see figure II. 13a. The reason for the difference in notation is the 
fact that for a single dip compensation for the reflection point smearing is superfluous and 
the zero-offset time t0 does not need to be corrected for smaller zero-offset times from 
updip reflection points corresponding to larger offsets. For a multi-dip problem the 
compensation for reflection point smear needs to be done and the actual zero-offset time 
tCRp along the normal incidence ray to the surface is used. This phenomenon will also be 
discussed in section Ü.4.3. 
Consider the subsurface structure depicted in figure II. 13a. 
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p(x„„xhIz=0,terp) 

multi-offset DMO-ed data 

DMO processed stack 

Figure n.12 Flow diagram of the integral implementation of DMO. 

Expression (Ü.4) describes the hyperbolic traveltime trajectory for a dipping reflector. The 
hyperbolic moveout curve for the flat reflector, having the same offset traveltime th for 
offset 2 xh reads: 

A 2 

2 2 Ŝi 
th = tNMO+ 7~ 

(Ü.5) 

where tj^Q denotes the zero-offset traveltime for a flat event. 
Note the difference in traveltime trajectories in figure II. 13b. 
Since the offset traveltimes are equal for offset 2xh, we may combine (II.4) and (Ü.5), 
yielding 
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Figure 11.13 Subsurface structure denoting several traveltimes (a) and corresponding traveltimes in the 
CMP gather at x 0 (b). For the flat reflector DMO does not alter the traveltimes, so 
lNMO = ' c rp ' F o r m e dipping reflector the zero-offset ray from the CMP midpoint XQ has 
a traveltime tg, while the zero-offset ray from the reflection point has the traveltime t _ . 

In this geometry the configuration has been chosen such that for offset 2xh the offset 
traveltimes from the dipping and flat reflector are equal. 

2 2 4 x h . 2 
tNMO = t 0-^- S i n a for x. = x. n n (II.6) 

Equations (II.4), (11,5) and (II.6) imply that dip-corrected NMO may be applied in two 

steps: 

1. NMO correction by mapping from t to ifn.Q-

(II.7) hmo x / \ i 



58 H CRP PROCESSING BY CONSTANT VELOCITY DMO 

2. DMO correction by mapping from t ^ Q to tj,: 

2 2 
2 4 xjj sin a 

lNMO+ 2 <n.8) 

The DMO correction should be repeated for all possible dips a. Note, that the slope of a 
reflector in the zero-offset domain reads 

dx_ 
sina (II.9a) 

con 
(II.9b) 

This means that the double Fourier domain (km,co0) is particularly useful for performing 
DMO, since all events having a particular slope in (xm> IQ) transform to a single radial line 
kjj/cOf, = constant in the (^.COQ) domain. 
The DMO correction expressed in (II. 8) can be transformed to the following multi-dip 
expression in the Fourier domain (see Hale, 1983): 

P * m ' V W c r p ) = J J p ( V V N M o ) X e X P [ _ J W ^ t ^ ° A + J k m X m ] d t N M O d X m • (11.10) 

where p(xm,xh, t ^ g ) is the NMO corrected for (zero-dip) input data and A reads 

A
 dtNMO 

dt 
crp 

(dt ) 

V mJ 

2 2 
Xh 

2 

l , 2 2 

k x, 
1 i m ^ 1 ' 2 2 

0) t. 
crp 71 JMO 

1/2 

1/2 

(Il.lla) 

(II. lib) 

(II.llc) 

Note that DMO is really done by the term -IOCTJNMOA m m e exponent. The amplitude 
scaling is done by the Jacobian of the transformation 

dt 
crp 

dt NMO 

Hale's algorithm is, however, not really used in the industry since this implementation 
makes DMO computationally as intensive as full prestack migration. The reason for the 
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inefficient implementation is clear if we realize that (II. 10) is an integral transformation in 
which the integral over tj^o cannot be expressed as a Fourier transform and therefore has 
to be evaluated numerically. 

A flow diagram of DMO processing in the Fourier domain is shown in figure II. 14. Figure 
n.15 shows some typical impulse responses. 

II.4.3 Poststack DMO 
A very interesting alternative to the DMO process in the Fourier domain has been proposed 
by Jakubowicz (1985). Jakubowicz noticed that if we consider only one dip in the data, the 
integral transformation (11.10) reduces to a simple Fourier domain expression of the data, 
NMO corrected for the specific dip angle, according to (n.4). Note, that this means that 
DMO reduces to a single trace process when the input data contains only one dip. 
This all implies that the Fourier domain can be abandoned altogether. 
Since seismic data always contains multi dips (a reflectivity variation along a reflector 
already implies multi-dip data), the data should be KF filtered, to remove all energy not 
related to the specific dip angle. Note, that it is the KF-filter which compensates for the 
reflection point smearing. This can be witnessed in figure 11.16 which shows two 
examples of a poststack DMO constant offset operator. It is clearly seen how the DMO 
impulse response is built up for a number of dip ranges. 

Summarizing, a practical poststack DMO processing scheme would look as follows: 
1. Produce a CMP stack using a dip-dependent moveout correction for a certain dip 

(range). 
2. Remove all other dips ranges by KF-filtering. 
3. Repeat step 1,2 for different dips. 
4. Stack all results. 

The width of a dip range to be passed by the KF-filter and the number of dip ranges should 
be determined in practice. Since a limited number will be needed in practice the method will 
be much faster than Hale's scheme. 
A flow diagram of the method is shown in figure 11.17. 

We see that poststack DMO really produces a DMO impulse response. 
Without KF-filtering the DMO stack would reduce to a wide angle CMP stack. 
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Figure 11.14 Row diagram of DMO processing in the Fourier domain. 
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Figure 11.15 Typical Fourier domain DMO operators as proposed by Hale (after Liner, 1988). The 
offset is 800 m. The trace spacing is 25 m. 

«. 
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Figure II.16 Example of a poststack DMO operator (a), the offset is 1500 m and the dip filter 
increment is 10 degrees, b. shows the corresponding integral DMO operator. 
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Figure 11.16 (continued); Offset: 200 m; dip increment: 10 degrees. Note that the crosspoints of the 
different dip filters indicate the zero-offset time after NMO correction for the 
corresponding dip. 
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Figure n.17 Flow diagram of poststack DMO. 

II.4.4 Finite-difference method 
Bolondi et al. (1982) proposed a finite-difference implementation of a partial differential 
equation which approximates the DMO ellipse for a limited dip range. For high dip angles 
the solution to this equation will deviate from the DMO operator. The DMO 
implementations discussed sofar, are non-recursive implementations. They directly map the 
offset data into the zero-offset data plane. 
However, the finite difference scheme is by nature recursive in all dimensions. This means 
that not only the time and CMP space axis need to be regular — which is normal practice 
— but also the offset distribution. 
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An advantage of recursive DMO is that each offset plane does not need to be converted to a 
zero-offset plane. Starting with the maximum offset, this constant offset section will be 
mapped to the nearest smaller offset section- and successively stacked. Then die mapping 
starts over again with the new constant offset plane being mapped to the following nearest 
smaller offset, and so on till the complete multi-offset data set has been mapped to zero-
offset. 
Because the DMO operator is applied recursively, it is also called "offset continuation". A 
flow diagram of a finite-difference scheme in the space-time domain is shown in figure 
11.18. 

p(xm,xh,z = 0,tnmo) 

compute 
p(xm,xh-Axh)z=0,tnin<>) 

add result to 
existing data 

p(xm,xh-Axh,2=0,tnmo) 

Pzo(Xm,Z = 0,tcrp) 

DMO processed stack 

Figure H..18 Flow diagram of a finite-difference implementation of DMO. 

A typical DMO operator, generated with a finite-difference scheme is shown in figure 
11.19. 
Points of concern for finite difference implementations are the instability and the inaccuracy 
for larger dips (dispersion). 
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Figure 11.19 Example of a typical finite-difference DMO operator. The offset is 1250 m (after Ristow 
(1988)). The number of continuation steps used is 200 (Ah = 12.5). 

II.5 AMPLITUDE AND PHASE CHARACTERISTICS IN DMO 

It has already been pointed out that DMO cannot be derived from the wave equation 
without approximations. While the traveltime characteristics of DMO are correct for 
constant velocity, the amplitudes will only be approximated. 
In this section three descriptions of DMO amplitude weighting will be discussed. They can 
be considered as more or less representative of different types of approaches used to arrive 
at a proper amplitude and phase definition for DMO operators. 

II.5.1 Wave-theoretical approach 
Hale has made the most distinct attempt to put the ray-theoretical DMO process on a 
stronger wave-theoretical foundation. According to Hale, theoretically correct downward 
extrapolation and subsurface imaging can be described as follows. 

1. Let P(km,kh,z=0,co) be the recorded wavefield at the surface, expressed in the 
wavenumber-frequency domain. 

2. Apply the double square root downward continuation operator F (I.33), to the wavefield 
P: 

P^.k^Az.oa) = F(km,kh.Az,a>) P(km,kh,z=0,(u) . (11.12) 

3. Apply the imaging condition 

p(xm>xh=0,z,t=0) l—j J J P(km,kh,Az,CD) exp[-jkmxm] d l ^ d c o • (H.13) 
(2JC) 
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The DMO algorithm can now be derived by showing that each step in the conventional 
CMP processing sequence is precisely represented in equations (11.12) and 11.13). The 
process remaining after successively eliminating the NMO correction, stacking and 
poststack migration processes from (n.12) and (11.13) must then represent the difference 
between conventional CMP processing and prestack migration. This leftover process is 
defined as DMO. In other words, DMO added to conventional CMP processing yields 
exactly the same subsurface image as prestack migration via equations (11.12) and (II. 13). 
Notice that this only holds for constant velocity media. 
The dissection of prestack migration as a cascade of CMP processes is quite lengthy and 
will not be given here. It turns out that no closed expression for DMO can be given. Only 
when we apply a high frequency approximation do we arrive at an expression for DMO 
which confirms the integral transformation (11.10), apart from an extra constant phase shift 
7t/4 and an entirely different amplitude term. 
It can be shown that the latter amplitude term for flat data — where DMO should do 
nothing — simplifies to 

S 7 < % > (H.14) 
where S is a constant, absorbing all frequency-independent parameters. 
Note, that for flat data the amplitude term 1/A in (11.10) will become equal to one. So, the 
1/A term is at least correct for flat data. 
Expression (11.14) is apparently wrong, since it implies that DMO amounts to an amplitude 
boost of 3 dB per octave on flat data. 
The reason why the wave-equation based amplitude term is incorrect may be found in the 
way Hale has derived DMO from the wave equation. For instance, one problem that 
remains is that Hale does not account for a spherical divergence correction while on the 
other hand he applies an amplitude scaling in the NMO correction. A further investigation 
of this problem is beyond the scope of this dissertation. 
It is remarkable that — although entirely based on ray-theory — DMO performed by 
(11.10), including the amplitude term, has widely been accepted as a reference for other 
DMO algorithms. This applies to kinematic as well as amplitude aspects. 
Because the amplitude term 1/A is still an expression in the wavenumber-frequency 
domain, it is convenient to derive the corresponding space-time domain expression. This 
enables us to compare this weighting with other ones. Liner (1988) and Berg (1984) both 
determined this amplitude weighting in the space-time domain and arrived at 
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(H.15) 

Deregowski (1985) showed that, in addition to the amplitude term (11.15), a windowed 
half-differential reversed time filter should be applied. This window ensures that the phase 
along the DMO operator changes in a time variant manner from 45 degrees at high offsets 
to zero at very small offset. This time variance is dictated by wave-theory (Deregowski 
(1985). Details are given in appendix A. 
A clear comparative overview of the amplitude characteristics of several existing constant 
velocity DMO schemes is given by Liner (1988). He uses the DMO scheme of Hale 
(expressions (11.10,11)) as a reference for the other schemes. However, Liner does not 
come up with an amplitude weighting which is based on the wave theory. 

II.5.2 Heuristic approach 
An amplitude weighting for DMO operators which is based on heuristic arguments and 
appeals very well to physical intuition is given by Beasley (1988). We will pay ample 
attention to his method, because it gives a clear insight into the proper amplitude behaviour 
of DMO operators. An important aspect of the weighting proposed by Beasley is that not 
only the amplitude within a single DMO operator is balanced for different dips, but also 
diat DMO operators for different offsets and times are mutually balanced. Balanced means 
that amplitudes are related on basis of certain (heuristic) arguments. The derivation of 
Beasley's weighting scheme is as follows. 
Consider the DMO procedure proposed by Jakubowicz and described earlier. Provided that 
enough dips are used, this procedure should be equivalent to Hale's kinematic DMO 
scheme. According to Jakubowicz (and Hale) the DMO corrected wavefield, which we will 
denote by Vuuo'can ^ approximated by a sum over a number of wavefields 

PDMO = SPD(i)A D ( i ) • (H.16) 

where pD(i) is the input wavefield, NMO corrected for a single dip D(i) and AD(i) is the dip 
range surrounding D(i). 
From equation (11.16) a proper balancing of the amplitudes within a DMO operator can be 
derived. This is done by choosing AD(i) such that each trace in the DMO impulse response 
can be identified with a single term in equation (11.16). The determination of AD(i) goes as 
follows. 
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If t is the DMO corrected zero-offset time, the dip D along the DMO ellipse reads 

m 

For AD it follows that, using expression (II. 1), 
3D „ 

AD = rr AX , d\ m 
m 

(H.17) 

a2t 

3x' 
H^Ax 
2 m 

^ O — Ax 
3/2 m 

(Ü.18) 

A proper weighting — for one DMO operator with offset 2xh and time t ^ o —»balanced 
to unity at the center of the operator (that is for flat events) is thus approximately 

W i [xm®' V hmo) ~ AD(1) (11.19) 

where x^i) denotes the midpoint coordinate or trace position corresponding to dip D(i) in 
the DMO operator. AD(1) corresponds to the center of the operator (where the dip angle 
and therefore xm equals zero in expression (ü.18)): 

A D ( l ) = - ^ A x (11.20) 

Hence 

W I ( X « . W ' V N M O ) = 
ADQ) 
AD(1) 

(n.21) 

Expression (11.21) ensures that, for a given offset 2xh and time tNMO, dipping events are 
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balanced in relation to flat events (within one operator). 
An additional weighting has to be applied to balance DMO operators for different offsets 
and traveltimes mutually. 
A valid criterion for balancing operators for all offsets 2xh and traveltimes I ^ Q is mat flat 
events in the stack should pass the DMO processing unaltered. 
Therefore we compute the first Fresnel zone associated with the dominant frequency fd in 
the data. 
Consider a DMO operator depicted in figure 11.20. For the dominant frequency fd in the 
data, the width of the first Fresnel zone is defined by 1/2 td = l/2 Vfd and xf (see figure 
Ü.20 for the symbols used). 

Within ± xf and At < 1/2 td all energy adds constructively. Recalling expression (II.l), 
setting x0 to zero: 

tcn/Xm) - tNMO-' cip 

we can write 

1 - (11.22) 

crp 2 d 

(II.23a) 

lNMO *" 2 ld * (II.23b) 

-» 1 - -EL > 1 -
^dWlO 

(ü.23c) 

lcrp 

Figure 11.20 Determination of the width of the first Fresnel zone for a DMO operator. 
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If we define s = (2fdtNMO) l, then (I.23c) can be expressed as 

,2\ 

>d-sr . (n.24a) 

-» x m < x h V 2 s - s 2 . (II.24b) 

The number of traces Nx that add constructively within the first Fresnel zone is therefore 

V2s - s2 

Nx = 2Int | 
Ax_ 

+ 1 , 

where Int is the real to integer conversion function and Axm is the trace spacing. 
Therefore normalizing the operators is done by multiplying the operators by 

(11.25) 

W 
Ax 

n(xm>VNMo) - Reai(N 

where Real is the integer to real conversion function. 
The total weighting, as proposed by Beasley, therefore reads 

^'Sn'VWlo) = Wl(Xm'Xh , tNMCp Wn(Xm'Xh'tNMC>) * 

(11.26) 

(n.27a) 

Ax 
,3/2 

1 m 
Xu 

Ax + 2\.J2s-i 
i n » 

(II.27b) 

For realistic values of the different parameters, the following relation holds with good 
approximation 

2 
2s » s 

This means that the second part of W can be rewritten as 

Vm^W ' 
Ax 

(11.28) 

(11.29) 
( A x m + 2xh^) 

The Axm in the denominator acts as a stabilization of the denominator. For realistic 
parameter values the second term in the denominator will be larger than Axm: 

2 x h / 2 s " » A x m . (11.30) 
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This means that Wn can be rewritten as 

wn(xm ,xh ,tNMo) ~ 
Ax_ 

Ix.Jls (II.31a) 

= ^ A x r a y ^ . 

Using these approximations, W can be rewritten as 

(II.31b) 

W ( X m > V N M 0 ) = # ^ ZXh 
Ax (Ï. 

mV d 
(11.32) 

Apart from the exponent 3/2 and some constants this weighting is quite similar to the 
weighting proposed by Hale, and given by (11.15). We may therefore expect a good 
agreement between both algorithms in practice. 
The weighting defined by expressions (11.27) and (11.32) is one based on a constant trace 
increment Axm. So far we followed Beasley (1988). 
A similar kind of weighting could be derived for a constant dip or dip angle increment. 
The easiest way to arrive at such a weighting is to start with expression (II.27b) and 
transform that expression into one for constant dip or angle increment. 
The relations between these increments are given by 

dx_ 
Ax = 3D 

where a denotes the dip angle. 
Since 

(n.33a) 

(II.33b) 

3 x m 
m 

3D 

a2t ^ 
crp 

3x 
(11.34) 

m j 

(see also 11.18)), it follows that 
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,l\ 
3/2 

1 -
3x 

m 
~3D~ 

V lxhj / 
Wio 

(H.35) 

Multiplying this Jacobian with the weighting (11.27) leads to the following expression 

2 Ax 
m 

(11.36) 
W ( D ' X h ' t N M 0 ) = t-°(Axm + 2xh72W) 

Note, that although the dip increment does not explicitly appear in (11.36), the weighting 
holds for a constant dip increment. The increment is just defined by the trace spacing of the 
output grid of the data. 

Going to angle increments implies incorporating 

H = Af 
3a 

3 O 
crp 3a 1 3x 

3 f 2 sin a 
3a 

- 2 cos a 

(II.37a) 

(II.37b) 

(11.37c) 

The absolute value of this Jacobian should be taken, for reason of symmetry for positive 
and negative dip. 
The weighting factor now becomes 

W<an.'VNMO> = 
xh 2 cos a Ax 

hmo (Axm + 2xhV2s^7) 
(n.38) 

Note that results (11.36) and (11.38) could also have been derived direcüy following a 
similar strategy as was used in the derivation of expression (11.27). 
Expression (11.38) can be approximated by again using assumption (11.28), that is 2s » 
s2. Together with the (realistic) assumption 

Ax « 2x.-J 2s - s h V : 

the weighting factor becomes 
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SUMMARY OF MAIN RESULTS 

The following weighting factors have now been derived: 

Constant trace increment 

(11.40) 

W< W l J M O > = 
Ax 

v3/2 

i_ L» 
I xt 

[AKm + 2xj2^7j 

(n.41a) 

f Wj*6***\ 
.3/2 

1 -

yWio 

Constant angle increment 

W( (X'Xh' tNMo) = 

xh 2 cos a Ax 

'V-'"C (Axm + 2xhV^7) ' 

[Jh Axm cos a ] xh 

(II.41b) 

(n.42a) 

(II.42b) 
^ C J V W ' 

A closer look at the weighting factor (11.41 a) reveals the following properties: 
- For an offset going to zero the weighting becomes one, assuming xm « xh. In other 

words, the weighting leaves zero-offset traces unaltered. 
- For large times, xm as well as s will go to zero. This means that the weighting again 

goes to one. 
- Note, that the Ax in the denominator acts as a kind of stabilization factor for xh = 0. 
- The weighting will increase for higher dips. 
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Figure 11.21 Set of DMO operators with weighting scheme (II.42a) implemented. Note that the 
operators are well balanced. 
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Comparing weighting (II.41a,b) to (H.42a,b) leads to the following conclusions: 
- The major part in expression (II.42b) Xh/YtNMO is exactly the reverse of the 

corresponding term in (II.41b). This can be explained by considering that for smaller 
offsets energy for all dip angles is mapped to a decreasing number of traces. In the limit 
all energy is mapped to one trace. Therefore the weighting for smaller offsets should be 
smaller than for larger offsets. Conversely, in the expression for constant trace 
increment, a summation of energy over different traces is accomplished. For larger xh, 
the width of the operator is bigger, so the weighting should decrease for larger offset. 

- The same argument also holds for larger traveltimes, since the energy for many dip 
angles is then mapped on fewer traces. 

In chapter III, section 2 we will relate the density of the dip angle sampling to the density 
of the spatial increment sampling. 

Weighting scheme n.42a has been used in generating the DMO impulse responses depicted 
in figure 11.21. We see that the DMO operators are well balanced, mutually as well as 
individually. Figure 11.22 shows a close up of one of the operators, for offset 1500 m. 
We see that the amplitude along the operator is well balanced. It can also be seen that at the 
steep dip part of the operator the response has a lower frequency contents, due to anti-alias 
protection. The anti-alias protection has been applied per dip angle and per temporal 
frequency. 
For any dip, given the spatial Nyquist frequency, the aliasing temporal frequency is easily 
computed using the DMO expression (11.22) in combination with the normal definition of 
dip in the zero-offset domain in terms of wavenumber. 
The importance of anti-alias filtering will be shown with synthetic data examples. 

II.5.3 Simple amplitude tapering 
An entirely different weighting has been proposed by Deregowski (1985). He suggests that 
the DMO operator should simply be weighted according to the requirement that the 
amplitude goes to zero at the maximum time slope of the operator: 

[ x2 \ 
I — 5 s - , (II.43a) W(Xm'V th) : 

with 

X 
max 

2 
X . <; 

x = -^—— 
max r» t * 

"■DMOTi 
already defined in (Ü.2). 

(II.43b) 
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Figure II.22a DMO operator (offset 1500 m), with weighting (II.42a) applied. No anti-alias protection 
has been implemented. This can be seen in figure II.22c. 

Figure n.22b As a., but with an anti-alias protection, see d. 
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Figure II.22c KF-spectrum of the left part of the operator of figure 11.22a. Note the aliasing energy at 
the right side. 
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Figure II.22d KF-spectrum of the left part of the operator in figure II.22b. Note that no aliasing energy 
is present 
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Figure II.22e For comparison, a DMO operator with the weighting (11.15), proposed by Deregowski, 
has been implemented. Note that the steep dips are relatively surpressed. 

An example of this weighting is shown in figure II.22e. 
The only argument for using this weighting is to avoid truncation effects along the 
operator. 

II.5.4 Summary 
A proper choice for an amplitude weighting is difficult, since a correct wave equation based 
balancing (if possible) has not yet been derived. 
The question of how important a proper weighting scheme is, is difficult to assess. This 
especially holds for real data, where the approximations made when we use a constant 
velocity scheme are probably a magnitude of order larger than the approximations made in 
the different amplitude weighting schemes. 
On the other hand, however, many spurious events can be generated by a wrongly 
balanced DMO operator. We could think for instance of aliasing noise, insufficient 
cancellation of energy, checker board effects etc. These events are often seen on real data 
especially in the shallow parts. 
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A proper weighting of amplitudes is also essential for amplitude versus offset analyses. 
This also holds for migration velocity analyses on DMO processed multi-offset data. 
We have chosen — and adapted to a constant dip increment — the weighting proposed by 
Beasley, because this weighting is based — albeit heuristically — on clear amplitude 
balancing considerations. 
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III 

CRP STACKING IN CONSTANT 
VELOCITY MEDIA 

ffl.l INTRODUCTION 

In the previous chapter it was shown that the DMO concept is derived on constant offset 
sections. 
Such a derivation such does of course not imply that the DMO algorithms are necessarily 
applied on constant offset sections. 
In a DMO algorithm we can recognize two essential parameters: 
1. the apparent dip angle; 
2. the offset 

If DMO is applied per constant offset, it means that for a chosen offset the dip angle is 
varied. 
In this chapter we will again derive a DMO algorithm for constant velocity media. But now 
the underlying concept is that for a chosen dip angle the offset is varied. For constant 
velocity media this seems to be a superfluous exercise, since interchanging the offset loop 
and dip angle loop in a DMO algorithm will not alter the output. For inhomogeneous 
media, however, the description of DMO in terms of an operator per dip angle for varying 
offset will be of fundamental importance. 
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To stress the difference — even for constant velocity media — between the role of dip and 
offset, we will from now on only use the name Common Reflection Point (CRP) stacking 
if multi-offset operators are used. The name DMO will only be used to indicate the constant 
offset algorithms for constant velocity models derived in the previous chapter. 

This chapter starts with a derivation of CRP stacking for constant velocity media based on 
kinematic arguments. The reflection point smearing formula derived by Levin (1971) is the 
starting point. Having described CRP stacking, the relationship with the DMO formulation 
presented in chapter II will be shown. In section 3 attention will be paid to the amplitude 
characteristics of CRP stacking. In section 4 the possibility of prestack migration by CRP 
processing is discussed and illustrated with a synthetic data example. In section 5 examples 
will be shown, to illustrate the concepts. Finally, in section 6, a summary together with the 
main conclusions will be given. 

III.2 A KINEMATIC DERIVATION OF CRP STACKING 

In section 2 of chapter II, it was stated that after DMO processing, CMP gathers contain 
reflections from common depth points as defined by normal incidence rays. That is, 
reflection point dispersal for non-zero offset traces is removed. 
This claim will now be the starting point for an alternative look at DMO. 
We therefore consider a dipping reflector in a constant velocity medium, see figure ÏÏI.1. 
In this figure a zero-offset and a non-zero offset travelpath, belonging to the same CMP 
gather, are depicted. Conventional CMP processing would involve a traveltime correction 
of offset traveltime th to the zero offset time t0 followed by stacking. This means that the 
reflection point smearing 1 is included in the process. 
The reflection point smearing can only be removed by a traveltime correction of offset 
traveltime th according to the zero offset time t along the normal incidence ray to the 
reflection point. This implies that the corresponding surface midpoint position is "smeared" 
over a distance xm - x0, from midpoint x0 to the new midpoint xm. In other words, in CRP 
processing the data from one CMP gather is mapped to other CMP gathers. 
This has been visualized in figure III.2. 
A more quantitative analysis of the reflection point smear versus the midpoint "smear" will 
now be given. 
According to Levin (1971), the distribution of reflection points along a reflector is defined 
by 
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Figure in.1 Dipping reflector in a constant velocity medium. 

J reflection point smear 

"midpoint smear' 

Figure III.2 In CMP processing the data from one common midpoint is corrected and stacked, thus 
causing the reflection point to be smeared (a). In CRP processing the data from one CMP 
gather is mapped to other CMP gathers, thus causing the midpoint to be "smeared" (b). 
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= reflection point smear 
= surface midpoint of normal incidence ray to reflection point 
= CMP midpoint 
= half offset 
= medium velocity 
= zero offset traveltime 
= dip angle of reflector 

(HI.1) 

(ni.2) 

Furthermore the offset traveltime th is related to the zero-offset travel tg by the well known 
hyperbolic moveout equation 

4x2 

2 2 h 2 
th = t0 + ̂ - c o s a . (m.3) 

c Finally, from the geometry in figure III. 1 it can be determined that the relation between tg 
and t (the latter 1 
point) is given by 
and t (the latter being the zero-offset time along the normal incidence ray to the reflection 

/ . sin a . . 
W ^ ' o —<-*m-xo> ■ (IIL4) 

2" 
Using these formulae CRP processing can be described as follows: 
1. Choose a dip angle a. 
2. Apply a a-dependent moveout correction to the CMP data. 
3. Apply for each offset 2xh a lateral shift according to (in.2) followed by a temporal shift 

according to (Ul.4). 
4. Repeat the process for the next dip angle. 
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Figure m.3 CRP processing applied on one CMP gather, a: input CMP gather; b: CRP V-pattern. 

This procedure is visualized in figure DI.3 for one dip angle. 
For a single CMP gather we cannot discriminate between positive and negative dip, as can 
be witnessed in expression (ÜI.3). 
If we process such an isolated CMP gather — with one hyperbolic event — for a single dip 
plus or minus a, the CRP processing transforms the CMP gather into a kind of V-pattem 
in the zero-offset domain, figure III.3b. The branches of the V-pattem correspond to the 
negative and positive a dip respectively. 
The slopes of the branches of the V-pattem in the zero-offset domain can be determined 
using formula (111.4) and read 

dt crp 
dx. 

-sin a 
c/2 

(m.5) 

Since the dip of a single reflector in the zero-offset domain is described by 

dx = ± sin a 
c/2 (HI.6) 

(the sign also depends on the convention used in the dip definition), we see that one branch 
of the V-pattern has a slope identical to the slope of the zero-offset reflector. This is not 
surprising, since CRP processing as presented here performs a traveltime correction and 
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lateral shift according to the normal incidence ray paths to the reflector surface. The same 
normal incidence raypaths also constitute the zero-offset traveltimes of the reflector. 
The other branch has a slope in the opposite direction. A synthetic data example is shown 
in figure ni.4a. In a constant velocity medium the reflectivity data from one reflector, for 
one CMP gather has been CRP stacked, showing a V-pattern. Figure III.4b shows a 
sparse set of CRP stacked CMP gathers. 
In figure III.4c all traces have been CRP stacked. Note that nearly all energy of the 
branches opposite to the reflector dip has been cancelled. 
The question remains how the CRP stacking process described here, can be related to the 
constant offset DMO operator described in chapter II by expressions (II. 1) and (11.2). 
In order to answer this question we imagine the following experiment. 
Suppose we have a constant velocity medium with one reflecting interface. The dip angle 
of the normal incidence ray to the reflector is unknown. Now we acquire a dataset 
containing one offset trace — with offset 2xh — for a certain CMP gather at position x0. 
The offset trace will contain only one impulsive event at time th. 
According to the same arguments used in section H.4.2, we can define the relation between 
the zero-dip zero-offset time tNMO and dip dependent zero-offset time tg, both 
corresponding to a fixed value of th. The relation reads: 

4x2 

2 2 ^ x h . 2 
W i o ^ o - — s i n a • (ni.7) 

c 
Using this relation in combination with expressions (III.2) and (III.4) yields (see appendix 
B): 

With the maximum value of xm - XQ equal to 

x — ± . (ni.9) 
max c t h 

Expressions (III.8) and (III.9) are identical to the integral representation of the constant 
offset DMO algorithm, given by expressions (II. 1) and (II.2). 
This confirms that — for constant velocity media — both methods will yield identical 
results. Deregowski (1982) also showed — using an alternative approach — that the 
application of the integral DMO operator (III.8) just compensates the reflection point 
smear. 
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Figure III.4 CRP processing of reflectivity data obtained from one dipping reflector in a constant 
velocity medium. (The corresponding macro model is shown in figure IV. 1, chapter IV). 

a. Data corresponding to one CMP gather after CRP processing 
b. A sparse set of CRP processed CMP gathers. 
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Figure III.4c All CMP gathers CRP processed. Note that all V-pattem branches with opposite slope to 
the reflector have been cancelled. 

Apart from the mathematical confirmation of the compatibility of the different approaches to 
CRP processing, we can also evaluate both approaches geometrically. 
The geometrical link is easy to understand if we realize that the dataset we started with (that 
is one impulsive event on one offset trace in only one CMP gather) is the one we would 
acquire from a semi-elliptical subsurface structure. This was explained in section H.3. 
It follows then that the single reflector with an unknown dip angle a is just the tangent at 
any point on the (hypothetical) elliptical structure. The geometrical relation is shown in 
figure HI.5. 
It follows that in the zero-offset domain the dipping reflector is also tangential to the 
reflection event corresponding to the elliptical reflector. Since the latter is the DMO impulse 
response, it is clear that for a given reflector dip a the DMO operator should be tangential 
to the dipping reflector. This can be shown as follows. 
Starting with the description of the DMO impulse response given by (in.8), the time-dip in 
the zero-offset domain is given by 

3tcip - f r m - y w x 
_2P ^ . ( m 1 0 ) 



m.2 A KINEMATIC DERIVATION OF CRP STACKING 89 

Substituting (m.2) and (III.7) we arrive at the expression 

3t 
crp _ 

3x " 
m 

sin a 
c/2 

(ffl.11) 

which is identical to the reflector dip (III.5). 

The remaining question is how the DMO impulse response builds the V-pattern shown in 
figure m.4a. 
Let us therefore consider a CMP gather with a sparse set of traces, acquired from the 
dipping reflector geometry shown in figure m.6. Then zero-dip NMO plus DMO involves 
smearing along a set of DMO operators — corresponding to the different offsets — which 
are all tangential to the reflector in the zero-offset domain. 
The tangent points will be distributed in agreement with the reflection point smearing 
depicted in figure m.6; see figure HI.7. 
If we consider all traces in the CMP gather we end up with the envelope of the sum of all 
DMO operators, that is the V-pattern depicted in figure m.4a. See also Bolondi and Rocca 
(1984). 

An item that needs some consideration is the density of dip sampling versus the density of 
lateral sampling used to build a DMO (or a CRP) operator. This relation is worked out in 
appendix C. It turns out mat, especially for small zero-offset traveltimes, large offsets and 
small dip angles, the spatial increment corresponding to a constant dip angle increment may 
become too large. This means that in this situation a finer dip angle sampling should be 
chosen, to avoid empty traces in the operator. 

Figure HI.5 Geometry and relevant traveltime parameters of an elliptical and dipping reflector. 
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Figure m.6 Sparee set of travelpaths in a single CMP gather. 

Figure III.7 Superposition of a sparse set of (three) DMO operators corresponding to different offsets 
(2xh = 740,1340,2340 m respectively). 

Because CRP processing ensures proper multi-dip correction, diffraction energy will be 
handled correctly. This can easily be deduced from the theory developed so far. Consider 
for instance figure IU.5. Let the CRP point be a diffractor. For the specific shot-receiver 
pair in this figure and the traveltime tj,, the diffractor lies on the ellipse and has an apparent 
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dip angle a. Therefore mapping from th to t (xm) will properly correct the diffraction 
energy. For any other shot-receiver pair — with respect to position as well as offset — and 
corresponding travel time th a similar ellipse can be imagined, going through the diffractor 
and leading to a proper correction. We conclude that CRP processing guarantees a correct 
treatment of diffraction energy. This will also be shown in section III.4 by means of a 
synthetic data example. 

111.3 AMPLITUDE AND PHASE CHARACTERISTICS OF CRP 
STACKING 

The same conclusions derived for DMO operators for constant offset sections hold for the 
CRP stacking scheme discussed in this chapter. 
Therefore it is sufficient to apply the different amplitude weightings (and phase 
characteristics) directly to the V-patterns of the CRP stacking impulse response. 

111.4 PRESTACK MIGRATION BY CRP PROCESSING 

The derivation of CRP stacking presented so far in this chapter, reveals an important 
property of the depth oriented approach, not shared by the time-oriented DMO approach. 
Namely, the underlying Levin formula (III. 1) that contains all ingredients necessary to 
carry out a direct mapping of multi-offset data to their correct lateral and vertical position in 
depth. This can be seen as follows. Consider a constant velocity macro model and a normal 
incidence ray to a (hypothetical) reflector. If the ray has an emergence angle a, to the 
surface at position x0 and the medium velocity c and the zero-offset traveltime t0 are 
known, then the endpoint of the ray on the reflector is completely determined. Now 
Levin's formula (III.l) dictates the amount and direction of the reflection point smear for 
all offsets in the CMP gather at x0. So this formula indeed can be used to carry out a 
prestack migration, which we will call CRP prestack migration. 
Note that CRP prestack migration will also migrate diffraction energy properly. An 
example of this will be shown in figure in.9. 

An example of the migration properties of the CRP algorithm is given in figure ffl.8. This 
figure shows the CRP prestack migration result of the input data and model depicted in 
figure 1.3. Note, that the output grid is more finely spaced than the input grid. 

This reveals the very important property of CRP processing that it is in fact a repositioning 
process. Data is repositioned according to its real reflection point in depth (CRP prestack 
migration) or to its real normal incidence ray with respect to traveltime as well as surface 
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Figure III.8 CRP prestack migrated shot record. The input record is shown in figure I.3b. Compare 
this result with the result of wave-equation based shot record migration, figure I.3c. 

position (CRP stacking). This repositioning need not necessarily be done on the same grid 
(trace spacing) as the CMP stack. It should be done on a much finer grid, thus 
acknowledging the dense subsurface sampling accomplished by multi-offset data (see also 
Bolondi (1982)). 

I I I .5 EXAMPLES OF THE APPLICATION OF CRP PROCESSING IN 
CONSTANT VELOCITY MEDIA 

Although the DMO schemes described so far are based on a constant velocity assumption, 
they are widely used in the industry, with more or less success. A number of examples 
have already been shown in section n.2 . 
In this section we discuss two examples of CRP processing of data from a constant 
velocity medium. 
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The first example contains data from a single diffractor, see figure III.9a. Figure III.9b 
shows a sparse set of CMP gathers. Selection of one constant offset from all CMP gathers 
yields the common offset section depicted in figure m.9c. CRP processing of this common 
offset section results in the zero-offset diffractor response depicted in figure in.9d. Note, 
that two other phenomena can be observed. Due to the finite length of the diffraction tails in 
figure III.9c we get some edge effects at the apex of the diffraction. The second 
phenomenon is the aliasing energy remnant in the CRP zero-offset result. Since the CRP 
operator has a built-in aliasing protection the aliasing energy stems from the input data . 
Figure III.9f shows the result of CRP prestack migration of the common offset input 
section. Note, that very good focusing has been accomplished. Finally the sparse set of 
input CMP gathers — shown in figure HI.9b — has been CRP processed. We see, see 
figure m.9e, that the well known V-patterns appear together building the shape of the 
zero-offset response. Note, that the branches of the V-pattern do not form straight lines, 
but instead follow the slope of the diffraction tails. The branches opposite to these tails will 
cancel when all CMP gathers are processed. We may conclude that diffraction energy is 
correctly processed by CRP processing schemes. 

x t 

T Ï Ï ! Ï Ï I Ï Ï , „ 

• 

Figure IH.9a Diffractor model, showing 9 CMP locations. 
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Figure III.9b Sparse set of CMP gathers containing diffraction energy. Four CMP gathers at the left 
side are not shown. 

Figure m.9c Constant offset response of diffractor. 
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Figure III.9d Zero-offset section resulting from CRP processing of the constant offset section. 

Figure ni.9e Zero-offset section after CRP processing of a sparse set of CMP gathers. 
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Figure III.9f CRP prestack migration result of input data shown in figure 9c (that is the constant offset 
section). 

The second example contains (multi-offset) reflection data from the subsurface geometry 
depicted in figure III. 10a. Note that no diffraction energy has been modelled. The 
geometry is meant to resemble one reflecting interface which contains a (reflecting) fault 
plane. The dominant frequency contents of the modelled data is chosen such that in the 
zero-offset section, shown in figure III. 10b, the fault plane reflection is aliased for this 
frequency whereas the interface reflection is not. This can be seen in the KF-spectrum of 
the zero-offset section, shown in figure in. 10c. The aliasing is also very visible in the 
depth migrated zero-offset section, see figure ni.lOd. Note, that the zero-offset section as 
such will never be available in a real world situation, since in each single channel recording 
in the field a field pattern is used. The summation over individual receiver groups will to 
first order approximation act as an anti-alias filter. 
In conventional CMP processing, the stacking velocity applied, will be correct for the 
dipping interface reflection. For the fault plane reflections the stacking velocity will then be 
too low, resulting in an overcorrection of NMO and a misstacking (and smoothing) of the 
fault plane reflection. As a result the aliasing of the fault plane reflection will be less, 
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Figure III. 10a Subsurface geometry with homogeneous overburden. The velocity of the overburden is 
2000 m/s. 

Figure Ed.10b Zero-offset section. Note that no diffractions have been modelled. 
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Figure HI.lOc KF-spectrum of zero-offset section. 

Figure m.lOd Poststack depth migrated zero-offset section. 
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Figure m.lOe CMP stack. 
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Figure m.lOf KF-spectrum of CMP stack. 
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Figure ULlOg Poststack depth migrated CMP stack. 

relative to the total energy in the section. The conventional CMP stack is shown in figure 
HLlOe. The corresponding KF-spectrum and the migrated CMP result are depicted in 
figures HLlOf.g. The aliasing energy has indeed been reducedi If we now apply CRP 
processing we may expect that the CRP stack will again be aliased, due to correct 
traveltime compensation of bodi the interface reflection and die fault plane reflection. 
Figure m.lOh shows a CRP stack (and KF-filter) obtained by application of an anti-alias 
protected CRP operator (see also figure II.22b). Figure ULlOi shows the result when no 
anti-alias protection has been implemented in the CRP operator (see figure n.22a). Note 
that without anti-alias protection the CRP stack indeed contains more aliased energy than 
the CMP stack. This is due to the fact that die CRP process does not smear the data and 
dierefore does not apply a sort of spatial low pass filtering. However, instead of mapping 
the data to an output grid equal to the input grid, we could map the data to a finer output 
grid. This means that we acknowledge the fact that reflection point smear is a dense 
subsurface sampling, which can be exploited by a CRP algorithm. 



m.5 EXAMPL. OF THE APPL. OF CRP PROC. IN CONST. VELOC. MEDIA 101 

-P.40 -0.50 0,00 0,50 

zo m 
O-J 

-< 

N s 

-inrvi 
r- -r-

>-

in a 
LU 

-0.40 -0.30 0.00 
WHVE NUMBER ( 1 / U N I T ) 

0.20 0.40 

Figure IlI.lOh Top: CRP stack with anti-alias protected operator. 
Bottom: coiresponding KF-spectrum. 
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Figure Ill.lOi Top: CRP stack without anti-alias protection of the operator. 
Bottom: corresponding KF-spectrum. 
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Figure ni.lOj CRP stack with a finer output grid. 
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Figure m.lOk KF-spectrum of CRP stack with finer output grid. 
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Figure m.10 £ CRP prestack migrated section; finer output grid. 

An example of CRP processing including mapping to a finer grid than the input CMP grid 
is shown in figure III.lOj. Figure ül.lOk shows the corresponding KF-spectrum and 
figure ULlOfi shows the CRP prestack migration result. 
Note, that both the CRP prestack migration and die CRP stack have a higher resolution 
than the corresponding CMP processes! 

We conclude that CRP processing uses the multi-offset data: 
1. to enhance the signal to noise ratio of die resulting stack (not shown here, but very 

important for real data); 
2. to take full advantage of the dense subsurface sampling of the different offset recordings 

by repositioning individual traces to their actual surface location or, in other words, to 
go to a finer grid of stacked traces. 
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III.6 SUMMARY AND CONCLUSIONS 

So far we have presented two DMO schemes for constant velocity media, or homogeneous 
macro models. The conventional DMO scheme presented in chapter II and the CRP 
stacking scheme developed in this chapter should yield identical results when applied in 
homogeneous macro models. The approach of both schemes is, however, entirely 
different. 
In the conventional DMO operator, the dip angle is varied for a chosen offset, see figure 
m.1 la, leading to an elliptical shaped impulse response. 
In the CRP stacking scheme, the offset is varied for a chosen dip angle, leading to a 
V-pattern shaped impulse response, see figure III. 1 lb. 
The conventional DMO process is based on a typical time (migration) approach. 
The CRP stacking process is on the contrary based on a typical depth oriented approach. 
The emphasize in this approach is put on a macro model in which the reflection point 
smearing needs to be removed. This leads to a description of CRP processing as a very 
natural extension to the conventional CMP process. 

Figure III.11 Two alternative DMO processing schemes: 
a. DMO impulse response for varying dip angle a and fixed offset 2xh. 
b. DMO impulse response (or, better: CRP impulse response) for varying offset and fixed 

dip angle ± a. 

We will show in the next chapter that the CRP stacking process — unlike conventional 
DMO processing — can be extended very easily to inhomogeneous macro models. 

Before we start with a generalization of the theory presented so far, we once more show 
the differences between CMP, CRP and CDP processing on basis of figure III. 12. In this 
figure a single dipping reflector with a constant velocity overburden is shown. 
The column at the left side shows the conventional CMP processing. Multi-offset data is 
sorted according to a common midpoint. 
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Figure 111.12 Simple subsurface geometry showing the principal differences in the CMP, CRP and 
CDP methods. 
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Consequently, the reflection points corresponding to the different offsets are smeared. The 
sorting is followed by a normal moveout correction according to the normal incidence ray 
from the surface midpoint. Next stacking is performed. Note, that although for one single 
dip the events from the different offsets stack in phase, the reflection point smear is not 
compensated. Finally the CMP stack is migrated poststack using an exploding reflector 
migration algorithm. 

In CRP processing (see the middle column of figure III. 12) data from a certain shot-
receiver pair is corrected according to the normal incidence ray from the specific reflection 
point to the surface. If we repeat this procedure for each shot-receiver pair and all apparent 
dip angles in combination with dip filtering we get a final CRP stack in which all dips have 
been stacked properly without any reflection point smear. Hence diffraction energy is also 
stacked properly. This is especially important with respect to optimum poststack migration 
results. Note, that the second picture in the middle column shows that the input for the 
stacking consists of traces having the same traveltime, midpoint and reflection point. 
A logical consequence of the CRP method is that it is a multi-trace process. Data from one 
CMP gather is mapped to other CMP gathers. 
In fact the reflection point smear in CMP processing is transformed to a surface midpoint 
"smear" in CRP processing. 

In CDP processing the full acoustic wave equation — for constant velocity media the DSR 
equation — is applied directly to the prestack data. The preferred domain — probably the 
only practical domain for 3-D applications — is the shot-receiver domain. 
The extrapolation can be carried out per shot record (figure in.12, column at the right). 
The CDP method is the only applicable method when media becomes arbitrary complicated 
and the hyperbolic moveout assumption does not hold anymore. 

Going from left to right in figure III. 12 we conclude that the methods use less assumptions 
and/or approximations and become more sophisticated. The price we have to pay for that is 
that the methods also become less robust, more complicated and computationally more 
intensive. 
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IV 

CRP STACKING IN INHOMOGENEOUS 
MEDIA 

IV.l INTRODUCTION 

This chapter deals with the generalization of CRP stacking to inhomogeneous media. The 
DMO and CRP algorithms discussed in the previous chapters are all based on the 
assumption that the medium velocity is constant. 
For real data this is quite a crude assumption. On the other hand if the subsurface 
constitution is not too complex, the NMO correction for zero-dip will make the input to 
DMO approximately velocity-independent. This explains the relative success of 
conventional DMO in areas of moderate complexity, that is without distinct lateral and 
vertical velocity variations. 
However, statements like "applying constant velocity DMO is probably better than 
applying no DMO at all" (Hale, 1983) are too optimistic. There is a growing awareness that 
application of constant velocity DMO can lead to results that are worse than the results of 
conventional CMP processing. This will be shown in section 2 of this chapter. 

Several attempts have been made to adapt the constant velocity DMO concept to more 
complicated media, e.g. a stratified earth model. Some start with the formulation of 
constant velocity DMO, others entirely reformulate the problem of DMO. In section 3 an 
overview is given of some typical generalizations. It is remarkable that there is a strong 
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parallel with the way thinking about migration evolved. In the 70's people tried to adapt 
time-migration algorithms to inhomogeneous media. This route proved to be unsuccessful 
and it was concluded that the whole migration concept needed to be reformulated in terms 
of depth technology. 

We will therefore present an alternative strategy in section 4, which is fully based on depth 
technology concepts. The nucleus of the concept is: 

Use the apparent dip angle at the surface as a parameter and compute for 
variable offsets the lateral and temporal shift needed to compensate for the 
reflection point smear. The computation of the shifts is based on a given macro 
model. The choice of the apparent dip angle as principal variable is essential. 

In section 5 CRP stacking for inhomogeneous media will be evaluated and compared with 
results of CMP stacking and constant velocity CRP stacking, using synthetic data 
examples. 
A real data example will be shown in the next chapter. 

In this chapter the name DMO will refer to CRP stacking for constant velocity media. 

IV.2 THE NEED FOR GENERALIZATION OF CRP STACKING 
The need for generalization of the CRP stacking concept can be clearly demonstrated with a 
synthetic data example. CMP stacking and conventional DMO processing will be evaluated 
in a typical, simple situation. 
Consider a dipping reflector with a time dip corresponding to a dip angle a and an 
inhomogeneous overburden, see figure IV. 1. A normal incidence ray to the reflector has a 
dip \rQ at the surface. The NMO velocity along this raypath and the zero-offset traveltime 
are cstack and ^ respectively. 

We now consider the data from one CMP gather at xm = x0 and apply both CMP 
processing and DMO processing. 
CMP processing would involve application of NMO correction according to 

i i 4 x h 
th = t 0 +

 2 > (IV.1) 
Cstack <Vo> 
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Figure IV.1 Inhomogeneous macro model with normal incidence ray. 

followed by stacking over all offsets. The argument \\r0 for the stacking velocity cstack 

denotes that the stacking velocity is optimal for this apparent dip angle. 
Conventional DMO processing would involve two sequential steps: 
1. Application of an NMO correction according to 

t? = t2 -
Ti lNMO 

4xf 

stack (0) 

where cstack(0) denotes the zero-dip stacking velocity. 
2. Application of DMO correction according to 

t (x ) = t, 
NMi 

(Xm-X0> 

(IV.2) 

(IV.3) 

In other words, conventional DMO processing assumes that the process can be split into a 
velocity-dependent part (correction with velocity cstaclc(0)) and a velocity-independent part 
(correction for all dips\|/). 
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For a dipping event in a constant velocity medium there will be no discrepancy between the 
two methods, since there is a relation between the stacking velocities for the different 
(apparent) dip angles. 
This relation reads 

cstack(°) = c <IV.4a) 

S u c l W = C
stack(°)/COSV0 (IV.4b) 

= c/cos\|;0 (IV.4c) 

and is visualized in figure IV.2a. 
In an inhomogeneous medium these stacking velocities are in general related to raypaths 
going through an entirely different part of the subsurface macro model, where relations 
(IV .4) do not hold at all. 
This can be illustrated with the following example. Consider the surface location xQ = 
1200 m in figure IV. 1. The zero-dip stacking velocity at this location for the second 
reflector is defined by the stacking velocity along the image ray. The image ray hits the 
reflector at zero-offset time equal to approximately 2 seconds. This stacking velocity is 
approximately equal to 5000 m/s. Conventional DMO processing would therefore imply an 
NMO correction with velocity 5000 m/s followed by DMO to account for the dip-
dependency. The stacking velocity versus dip angle curve, related to figure IV.2a is shown 
in figure IV.2b. Application of DMO implies that this curve is assumed to be true! 
Now we compute the actual stacking velocity versus dip angle curve using the stacking 
velocity formula of Shah (see section IV.4.1), still for x0 = 1200 m and ^ = 2s, as 
suggested by figure IV.2c. The curve is shown in figure IV.2d. Figure IV.2e shows die 
same data, but now each stacking velocity has been multiplied by the cosine of the 
corresponding apparent dip angle. 
Note, that this curve in figure IV.2d bears no relation at all to the idealized curve in figure 
IV.2b! The left abrupt boundary in figures d and e is a result of rays reaching the left 
boundary of the model. At small positive start angles, the rays reach the critical angle. The 
right most part of the figure corresponds to rays that always stay at times smaller than 2 
seconds in the first layer and do not reach the interface. (This can be understood by looking 
at die cosine-normalized stacking velocities for that same range of dip angles, given in 
figure IV.2e; the stacking velocities then become equal to the interval velocity of the first 
layer. 

The conclusion is therefore, that even for a single dipping reflector in an inhomogeneous 
medium DMO will lead to erroneous results. This will be illustrated later in section IV.5 in 
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Figure IV.2a,b 
a. Raypaths and corresponding expressions for the stacking velocities. The medium is 

considered to have a constant velocity. 
b. Stacking velocity versus dip angle curve. 

a complete study of the processing of data acquired from the geometry in figure IV. 1. The 
CMP stacking on the other hand, is dip-selective, but this means that in any case at least 
one dip is properly stacked (provided that the hyperbolic moveout assumption is still 
valid), as will also be shown in section IV.5. 
Even for a horizontally layered earth, DMO may deteriorate a seismic section , when 
diffraction energy is involved. A well known example (see e.g. Bolondi, 1984) is given by 
the flanks of diffraction patterns, e.g. from salt domes. Due to the increasing apparent dip 
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Figure IV.2c Stacking velocities along different rays in an inhomogeneous medium. 

for increasing arrival time, the appropriate stacking velocity for a diffraction increases with 
arrival time. In conventional CMP processing this may coincide with increasing RMS 
velocity with increasing travel time. Since conventional DMO processing does not take the 
velocity gradient in depth into account, an extra correction for dipping reflectors is applied. 
This may just attenuate the diffraction energy from a shallow diffractor. An example is 
given in figure IV.3. Figure IV.3a shows a conventional CMP stack containing a shallow 
diffraction which crosses a flat reflection event. The horizontally layered velocity model is 
depicted at the right. The geometry has been designed such that the diffraction and 
reflection have exactly the same stacking velocity at the time that they cross. Conventional 
DMO will aim to add an extra correction to the dipping events, which is incorrect. As can 
be seen in figure IV.3b, the DMO stack is inferior to the CMP stack. Figure IV.3c 
anticipates the CRP scheme for inhomogeneous media that will be developed in this chapter 
and shows the result of its application on these data. We see that the crossing energy is 
again enhanced. 

We may conclude that it is necessary to generalize DMO processing to a CRP algorithm 
which is able to process data from inhomogeneous media correctly. 

IV.3 PREVIOUS ATTEMPTS TO GENERALIZE CRP PROCESSING TO 
INHOMOGENEOUS MEDIA 

Several proposals to generalize CRP stacking to inhomogeneous media have been reported 
in the literature. 
In this section we give a general overview using a rough classification of the different 
approaches. 
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Stacking velocities in the medium depicted in figure IV. 1. 
Stacking velocity, xQ = 1200 m, tg = 2 seconds, as a function of dip angle. 
Stacking velocities multiplied by the cosine of the apparent dip (giving "RMS" 
velocities) as a function of dip. Note that for a constant velocity medium this stacking 
velocity curve should be constant, equal to the medium velocity. 
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IV.3.1 CRP processing in depth-variable media 
For all the schemes presented in chapter II attempts have been made to generalize them to 
inhomogeneous media. 
Although these generalizations apply to depth-variable velocities as well as distinct shot and 
geophone velocities, most attention has been paid to problems regarding only depth 
variable velocities. The comparison with the way the thinking about time and depth 
migration evolved suggests itself again. Incorporating lateral velocity variations in time 
migration and constant velocity DMO necessarily implies crude approximations, whereas 
depth-variable velocities can be incorporated more easily. 
Since no results have been reported in the literature regarding DMO for lateral velocity 
variation we will concentrate on DMO for depth variable velocities only. 

The most complete treatment on CRP for depth-variable velocity profiles has been given by 
Hale (1983). Hale suggests the replacement of the constant velocity by the RMS velocity. 
The dip-dependency in the stacking velocity, that is in constant velocity media the cosine of 
the dip angle is now accounted for by the difference between the RMS velocity and the 
NMO velocity for a certain dip angle. The expression for the NMO velocity is given by 
Shah (1973) — see further on in this chapter — and is based on a wavefront curvature 
approximation. 

Hale (1983) confirms by synthetic experiments that a depth-variable velocity DMO leads to 
significant better results than the constant velocity DMO algorithm. According to Hale, 
however, the correction for depth-variable velocity is likely to be small in practice, 
compared with the total DMO correction. 
This statement illustrates once more that in practice a really significant improvement over 
the conventional CMP stack may only be realized by a rigorous generalization of DMO to 
inhomogeneous media that include lateral and vertical velocity variations. 

IV.3.2 CRP stacking in the midpoint-time-velocity space 
Fowler (1984) proposes a procedure which unifies velocity analysis and (full or partial) 
reflector imaging of the data in a velocity parameterized space. In his approach a sufficient 
number of constant velocity stacks is formed, filling a 3-D data cube in midpoint-time-
velocity, see figure IV.4. 
This cube is transformed to the midpoint wavenumber-frequency domain. Next DMO is 
applied by regridding the data along the velocity axis according to cstack = c/cos \\r0 or 
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kjjj being the midpoint wavenumber, and c the interval velocity. 
Before inverse transformation a Stolt migration can be applied. 

Finally in the midpoint-(DMO)velocity-time domain a zero-offset migrated section can be 
selected by interpolation between the constant velocity migrated sections. The migration 
step is optional. 
By applying the mapping described by (TV.5) to each velocity stack (that is more c-values) 
the method can be extended to depth-variable velocity media. 
Apart from the optional Stolt migration the method offers the same possibilities as the 
depth-variable DMO algorithm of Hale. 
The principal limitation of the method is unfortunately its inaccuracy in the presence of 
lateral velocity variations. 

IV.3.3 CRP stacking according to French 
French's method is a serious attempt to apply NMO and DMO in one CRP processing step 
for inhomogeneous media. Since his method may easily be confused with our CRP 
technique, which we will develop in the next section, we will present it here in some detail. 
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As we will see, the CRP stacking proposed by French only implies a proper CRP stacking 
to a number of selected events. 
The method is fully applicable to 3-D data. We will, however, in this section assume the 
azimuth angle to be zero. 
The basis of the method is Levin's formula (III. 1) which we give here once more: 

2 
Xh 

fl = (c/2)t S i " " C O S " ' ( I V 6 ) 

with a the reflector dip, c the medium velocity, tg the normal incidence two-way time, xh 

the half offset and 1 the reflection point smear on the reflector. 
For a homogeneous macro model, proper CRP processing would imply 
1. determination of a, 
2. application of a NMO correction using the velocity c and the dip angle oc, 
3. application of a DMO lateral and temporal shift, according to (TV.6). 
For an unknown inhomogeneous medium, French suggests the modification of relation 
(IV.6) as follows: 
1. replace a by the apparent dip angle y0 at the surface, 
2. replace the medium velocity c by the RMS velocity along the normal incidence ray to the 

reflector. In fact the name RMS is not correct. It is the NMO stacking velocity of the 
reflector, multiplied by the cosine of the apparent dip angle \|/0 in order to eliminate me 
dependency of \|/0. 

As a result, Levin's formula is generalized, yielding 

2 
x h 

Cstack(V0) COS V „ 
— s inv 0 cosy 0 . ( IV.7) 

The method of French goes as follows. First a surface location and surrounding CMP-
gathers are selected. Next NMO and DMO corrections are applied, according to (IV.6), for 
a whole set of dip angles and velocities. The velocities vary with time and should be 
chosen "within reasonable geological limits". Next the semblance or coherence of all 
corrected traces is computed for each combination of dip angle and velocity. The 
calculation is done over a small time window for each two-way reflection time in the 
manner of Taner and Koehler (1969). The coherence or semblance maxima are projected 
on to two coordinate planes, contoured and interpreted. In other words, in a 2-D situation, 
we get semblance contours of the dip angle versus the zero-offset travel time on one hand 
and the velocity versus the zero-offset travel time on the other. 
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Figure IV.5 Application of Levin's formula to inhomogeneous macro models. 
a. offset raytracing and (at the right side) a normal incidence ray to the 1* as well as the 4' 

interface. Note that the reflection point (RP) smearing (Axm) is in opposite directions. 

Interpretation of these results implies that for each zero-offset time an optimum 
combination of velocity and dip angle is chosen. Optimum implies that corresponding 
reflection points have been properly processed. 
The essential difference with the constant velocity DMO is that the DMO correction is now 
included together with the NMO correction in the velocity analysis, and subsequently 
applied in one step. 
A major drawback of French's method is that in case of conflicting dips, we should select 
more than one velocity-dip angle pair for the same zero-offset traveltime. In fact the method 
only properly CRP processes events which have been explicitly defined by the user. 
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xm=x0=500m xm = x0=500m 

Figure IV.5 (continued) 
b. application of Levin according to formula (IV.7) does not acknowledge the change in sign 

ofAxm. 
c. application of a correct CRP processing. 

Note: the input trace has a constant amplitude equal to one. The offset is 1000 m. 

The method may therefore become impractical for use as a DMO scheme (that is multi-dip 
scheme) for inhomogeneous media. 

Maybe it is even more important to note that the method may fail even in the absence of 
conflicting dips. The problem lies in the use of Levin's formula for an inhomogeneous 
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earth. The medium velocity cannot simply be replaced by a kind of RMS velocity, since in 
an inhomogeneous earth the reflection point smear is also greatly influenced by refraction 
according to Snell. This statement is illustrated by the following example. Consider the 
geometry depicted in figure IV.5a. At a certain surface midpoint a normal incidence ray to 
the first reflector is traced. The geometry has been designed such that the same ray 
coincides with the normal incidence ray to the fourth reflector. The normal incidence ray 
has an apparent dip angle V|/0 at the surface. Along the ray the NMO velocity will increase 
with time. Application of NMO correction followed by DMO correction according to 
relation (IV.7) would, apart from a traveltime correction, also imply a lateral shift. This 
shift will not be identical for both reflectors. They will, however, have the same sign, 
according to relation (IV.7), since the apparent dip angles are identical. Let's now apply an 
offset ray tracing to the first and fourth reflector, around the same midpoint. We 
immediately (figure IV.5a) see that the reflection point smearing for the two reflectors are 
in opposite directions. In order to visualize the compensation for reflection point smear 
expressed in terms of a lateral shift at the surface location, a trace at the midpoint location, 
with a constant amplitude equal to one, and having an offset of 1000 m, is processed both 
according to French's method and the correct CRP method, to be presented in this chapter. 
We see that for the first layer French's method is correct, but for deeper layers the method 
deviates considerably from the correct compensation. We therefore conclude that French's 
method cannot cope with this situation. French admits this possibility implicitly but plays it 
down wrongly by saying that "model tests indicate, however, that the reflection point 
divergence discussed by Levin persists in a predictable manner for realistic subsurface 
models". 

IV.4 A CRP STACKING SCHEME FOR INHOMOGENEOUS MEDIA 

In this section we present our CRP method. This method is macro model based and takes 
lateral as well as vertical velocity variations into account. Also the necessary approxi
mations underlying the method are presented. We start with a CRP stacking scheme that 
maps multi-offset data to zero-offset. Next a CRP prestack migration scheme is presented. 

IV.4.1 Mapping to zero-offset by CRP stacking 
The aim of CRP stacking in inhomogeneous media can be summarized as follows. 

"CRP processing is a procedure which aims to stack events which are related to 
a common reflection point. In CMP sorted data the reflection point is smeared 
in general. Therefore lateral and temporal shifts are applied to the data, together 
with normal moveout correction. These shifts may be determined by (zero-
offset) ray tracing in a macro model". 
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Inhomogeneous macro subsurface model. 
CRP stacking should map an event in a CMP gather at x 
traveltime th to a position in the zero-offset domain at xm and t . Repeating this 
mapping for all apparent dip angles \|/0 gives for this single event the CRP impulse 
response, denoted by the dashed line. 

This can be clarified using the subsurface model depicted in figure IV.6a. 
Let us assume that the reflection point R is part of a (small) reflector with (local) dip angle 
a. If we have a source at xs and a geophone at xd — and consequently a midpoint at x0 = 
(xd + xs)/2 — then the travel path of the energy reflected by point R is the continuous line 
xsRxd. The zero-offset (ZO) ray x0R' is also shown. 
In conventional CMP processing the offset ray xsRxd is transformed into the ZO ray x0R' 
by application of NMO. 
However, offset ray xsRxd should ideally be transformed into the ZO ray xmR. 
Therefore, the reflection event from subsurface point R should be shifted both in time and 
in space. This operation is shown in figure IV.6b for one dip \\r0 of the ZO ray. For the 
geometry of figure IV.6a the multi-dip result would produce a type of modified dip 
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moveout operator (see the dashed line in figure IV.6b). Ideally, the computations required 
for the transformation of the offset ray into the ZO ray J ^ R would involve an offset ray 
tracing followed by a ZO ray tracing J ^ R from R to the surface. The difference of the 
surface coordinates x„ and xm and the difference of the traveltimes along path XQR' and 
travel path xmR indicate the lateral and temporal shift, respectively. Undoubtedly this 
would be a very time consuming procedure, because the ray tracing has to be done for each 
angle yQ of interest to produce only one (modified) DMO operator. Because (modified) 
DMO operators are required for all ZO traveltimes, all offsets and all midpoints of interest, 
this procedure is not recommended for practical use. 

Deregowski (1985) also proposed this method, aiming to process specific target reflectors 
correcdy. 
We would like to adapt the process such that it becomes a practically applicable technique 
for processing every subsurface reflection point, regardless of whether there is a reflector 
or not. 
The main problem with respect to computer requirements of the method described earlier is 
the offset ray tracing for all offsets and all possible apparent dip angles. 
There is a way to avoid the offset ray tracing if we give up some generality. Let us 
therefore assume the following. 

1. In a CMP gather the traveltime versus offset trajectory is approximately hyperbolic. 
More precisely, we assume that the wavefront curvature approximation to the stacking 
velocity as proposed by Shah (1973) can be used. This implies that we assume that the 
medium locally consists of homogeneous layers, separated by plane, dipping interfaces. 

2. We assume that the offset is small compared to the depth of the reflection point. This 
assumption is already implied by Shah's stacking velocity formula. 

The model depicted in figure IV.6a is a typical example of a macro model for which Shah's 
stacking velocity formula holds. 
The wavefront curvature approximation of Shah is also known as the normal incidence 
point (NIP) wavefront curvature approximation (Hubral and Krey, 1980). 
For small values of the half offset xh, the traveltime along the reflected offset ray between 
source xs and geophone xd is well-approximated by the sum of times from x, to the NIP R' 
and from R' to xd. This approximation leads directly to the traveltime relation 

2 2 4 x h c o s 2 V 0 

V N ^ C N * i • 0V.8a) 
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with 

tQNCOS V„ n=l k=0UoS Vk 
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n n 

C - A t - • (IV.8b) 

where 
Cj, = NMO velocity for reflection N, 
tg N = total two-way zero-offset (ZO) traveltime between the surface and reflector 

cn = interval velocity in layer n, 
Atn = two-way interval ZO traveltime in layer n, 
V0 = emergence angle of ZOraypath at surface, 

¥o ' - Vo' 
Vk = refraction angle of ZO raypath at the kth interface, 
\\fk' = incidence angle of ZOraypath at the kth interface. 

Given expression (IV.8a,b) we are able to apply a traveltime correction from the traveltime 
th N along xsRxd, to the traveltime IQ along x0R'. As explained above, die aim of CRP 
processing is to apply an additional correction in time and in space, which we shall call 
AtQy, and x,,,. The additional time correction amounts to the traveltime difference between 
rays XQR' and x ^ . The lateral correction amounts to a lateral shift from xQ to xm. It turns 
out that it is possible to derive closed recursive expressions for these lateral and temporal 
shifts. They are based on the definition of a macro model and on the expression for the 
NMO velocity along the zero-offset ray CN. The derivation is quite involved and therefore 
given in appendix D. 
The general form of the expressions describing these shift reads 

Axm-QxJ (IV.9a) 

and 

crp U crp m 

= 2 Ax s iny n / c . . (IV.9b) 
m . u l 

where c t is the interval velocity of the first layer.Q is a rather complicated parameter which 
must be determined by zero-offset raytracing. 
Note that the following statements prove to be valid. 
1. The lateral shift is approximately proportional to the square of the half offset via a 

parameter Q. So, no offset raytracing is involved and for one apparent dip angle the 
zero-offset ray tracing and evaluation of expression (TV.9) lead to the compensation for 
reflection point smear of all offsets in one CMP gather. 
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2. For a constant velocity medium, expressions (IV.8) and (TV.9) reduce to the wellknown 
hyperbolic moveout relation and Levin's expression for a constant velocity medium 
respectively. Our CRP algorithm is therefore consistent with conventional constant 
velocity DMO algorithms in constant velocity media. 

IV.4.2 CRP prestack migration 
Just as in the constant velocity case, it is possible to exploit the CRP concept for direct 
mapping of multi-offset data to the correct position laterally and in depth. The key formula 
which describes the reflection point smearing at the reflector surface is given by (D-23a,b) 
in appendix D. 
The method is entirely parallel to the one in the constant velocity case. Given a surface 
location, an apparent dip angle, a corresponding normal incidence ray to a reflector and the 
traveltime along the ray, the reflector smear is computed and since the end point of the 
normal incidence ray is fully determined by the given parameters the corresponding 
reflection event for an offset can be mapped directly into the depth domain. Note, that the 
procedures for CRP stacking and CRP prestack depth migration are quite similar. Even the 
recursive expressions to be evaluated are the same. The only difference is that in CRP 
prestack migration we stay at the reflector and do not compute the surface midpoint 
"smearing". It is therefore not a surprise that CRP prestack migration is as fast as CRP 
stacking. 
This is a very important and interesting statement, since the benefits of CRP stacking really 
start to pay off after migration. 

Examples of the CRP method will be shown in section IV.5. 

IV.4.3 Summary of methods and description of the computational flow 
diagram 

The CRP processing method can thus be described as follows, see figure IV.7. 
1. Determine a macro model of the subsurface. Although the CRP method assumes the 

macro model to consist of plane dipping interfaces, locally within the shot-receiver 
range of a CMP gather, the complete macro model may be far more complex. 

2. Select a surface midpoint and read the CMP gathered data related to that midpoint 
3. Perform zero-offset raytracing for a particular apparent dip angle \jr0. Compute Q and 

the stacking velocity for all traveltimes. 
4. Compute for all offsets and all zero-offset time values t0 the complete traveltime 

correction (including mapping from offset time th to zero-offset time ^ and an additional 
CRP traveltime correction from zero-offset time t^ to CRP zero-offset time t ^ . 
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Figure IV.7 Computational flow diagram of CRP processing inhomogeneous macro models. 
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Compute also for each zero-offset time value ^ the reflection point smear at the surface 
of a hypothetical reflector perpendicular to the zero-offset ray at time t^ as well as the 
resulting midpoint "smearing" at the acquisition surface. 

5 a. Perform CRP correction and stacking, 
or, alternatively, 
b. Perform CRP prestack migration by direct mapping into the depth domain. 

6. Repeat from step 3 for all other dip angles \|/0. 
7. Repeat from step 2 for all surface midpoints. 
8. Stack the different "dip stacks" or "dip images". 
9. The result is either a CRP zero-offset section or a CRP prestack depth migrated image of 

the subsurface. 

IV.5 A SYNTHETIC DATA EXAMPLE OF CRP STACKING IN AN 
INHOMOGENEOUS MEDIUM 

In this section the CRP stacking scheme is evaluated on data acquired from the model 
depicted in figure IV. 1. We will consider reflections from both interfaces and compare the 
performance of conventional DMO processing to CRP processing. 

Figure rv.8a shows a zero-offset section, which will be used as a reference for the quality 
of the processing results. In figure IV.8b the result of CRP processing is shown. The CRP 
prestack migration result is shown in figure IV.8c. We see that the data set has been 
correctly processed. The amplitude variation along the reflector is a result of the decreasing 
fold towards the edges of the model. Partly due to the decreasing fold and partly due to 
rounding effects on the output grid, some noise remains at the right side of the model. 
Note, that in the region of full fold the wavelet is zero-phase (conforming to the phase of 
the input wavelet). 
Just below the first reflector, on the left-hand side some low frequency noise remains. In 
order to investigate this specific problem in particular and the result in general we CRP 
stacked (figure IV. 8d) a sparse set of CMP gathers. We also studied the CRP stacking 
impulse response (figure IV. 8e) and CRP prestack migration impulse response (figure 
rV.8g) for an offset of 1940 m. We notice the following phenomena. 
For the first reflector we detect low frequency events just below the left branch of the V-
patterns, which are not present in the V-pattern results of conventional DMO processing 
(see figure III.4b). If we look at the impulse response of the CRP stacking operator for one 
offset it becomes clear what happens for large negative dip angles (that is rays pointing 
towards left in the macro model). The normal incidence ray reaches the second layer and 



IV.5 A SYNTH. DATA EX. OF CRP STACK. IN AN INHOMOG. MEDIUM 129 

*. (">) -—-

Figure IV.8a Zero-offset section corresponding to the macro model depicted in figure IV. 1. 
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Figure TV Jib CRP stack of data derived from the macro model depicted in figure IV. 1. 
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Figure IV.8c Result of CRP prestack migration. 

finds another tq value which corresponds via the stacking velocity of that time to the offset 
time th. In fact we face the situation for one offset where we find crossing hyperbolic 
traveltime trajectories (see e.g. figure II.13b). In other words, one event with traveltime th 

on an input trace may correspond via formulae (IV.8) to different zero-offset traveltimes tp. 
These different u-values will lead to different corrections for Axm and At„„. The CRP TJ m cip 

operator therefore has to become "multi-valued". Due to the large velocity contrast between 
the first and second layers, the low frequency events are probably caused by stretching of 
the data. These events have to be considered as artifacts. 
Those (multi-valued) parts of the CRP operator that do not correspond to an existing event 
have to cancel. That is what we indeed see happen. Although not all energy is cancelled in 
the CRP stack (probably due to decreasing coverage) most of it is. 
Looking at the CRP stacking operator response for the second reflector we see that this 
operator consists of different parts. 
The event on the right-hand side, between 1.5 and 1.6 seconds arises from a zero-offset 
raytracing that stays entirely in the first layer. Due to the subsurface geometry, this can 
only be accomplished in the down dip direction of the layer. Figure FV.8h confirms this by 
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Figure IV.8d CRP stack of a sparse set of CMP gathers, and one single CMP gather (bottom) 
respectively. 
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Figure IVite CRP stacking impulse response; input: trace at x0 = 1200 m, offset 2xh = 1940 m. 

showing the impulse response for the same data, where the entire medium is assumed to 
have a constant velocity, equal to that of the first layer. 
The third branch — in the middle — of the V-patterns of the second reflector, see figure 
(IV.8d) is also explained by exactly the same argument, but now for a summation over all 
offset operators. 
As has been pointed out already, the evaluation of the CRP stacking scheme is done by 
comparing the CRP mapping to zero-offset — for all offsets — with the modelled zero-
offset section. It can be seen very clearly in figure IV.8a that all offsets align very well after 
CRP processing, thus building constructively the zero-offset reflection event. 
One could, on the other hand, also compare a specific CRP stacking operator for one time 
and offset with the operator based on full offset ray tracing. This is illustrated in figure 
IV.8h. The figure shows once more the CRP impulse response for the second reflector, 
depicted in figure IV. 8e, and the corresponding offset CRP operator. 
Note that in the modelling of the offset operator, no attention was paid to amplitude and 
phase characteristics. The following phenomena are observed: 
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Figure IV.8f CRP operator impulse responses for the second reflector; x0 = 1200 and 2xh = 1940 m. 
Top: CRP operator based on zero-offset ray tracing (identical to figure e). 
Bottom: CRP operator based on full offset ray tracing. 

The shape of both CRP operators — including the double event — is identical. The zero-
offset ray tracing based CRP operator ("ZO CRP"), therefore proves to be adequate in this 
situation. 
The ZO CRP operator is more extended than the offset CRP operator. This can be 
explained by realizing that the offset rays will reach a critical angle sooner than the zero-
offset ray. Although the larger width of the ZO CRP operator has no physical meaning, it 
will probably not harm us, because it allows the operator to go smoothly to zero, thus 
avoiding truncation effects. 
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Figure IV.8i DMO impulse response for the second layer only. The velocity has been chosen constant 
and equal to the zero-dip stacking velocity. Compare with the correct operator depicted in 
figure e. 

On the other hand, the second event between 1.5 and 1.6 s is more extended in the offset 
CRP operator. 
In other words, no general conclusions can be drawn with respect to the width of the 
operators. The shapes, however, match very well. 
Let us now investigate how conventional DMO would work out for the second reflector. 
According to what has been said in section IV.2, the constant velocity DMO operator is 
applied after zero-dip NMO correction. We compute the zero-dip stacking velocity at the 
location 1200 m for the appropriate zero-offset time and compute the constant velocity 
DMO impulse for an offset equal to 1940 m, after the zero-dip NMO correction. The result 
shows a very flat but symmetrical DMO operator (see figure IV.8i). Although the zero-dip 
stacking velocity varies laterally we kept this velocity constant. The DMO stack, shown in 
figure IV.8J, has been scaled according to the energy level of the same reflector in the CRP 
stack. We see that especially in the middle, where we have full coverage — and where the 
velocity is correct —, that the reflection event is highly dispersed. The different offsets do 
not add constructively, resulting in a low amplitude level. This can be seen even better by 
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Figure IV.8J DMO stack, scaled to the CRP stack in figure IV.8b (top) and normalized to its own 
maximum energy (bottom). The arrow indicates the location where the zero-dip stacking 
velocity has been determined. Note the significant difference between DMO and CRP 
(figure IV.8b) processing. 

processing only the largest offset, see figure IV. 8k. This reflection is completely 
mispositioned. We may conclude that application of constant velocity DMO will not 
enhance the signal to noise ratio expected by the stacking process, nor will correctly 
position events for offsets not equal to zero. 
Finally, the CMP stack of the second reflector is shown in figure IV.8Ê. The stacking 
velocity has been chosen constant, and equal to the stacking velocity at location 1200 m. 
We see that the CMP stack is far superior to the DMO. This is fully in agreement with the 
explanation given in section IV.2. 
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Figure IV.8k DMO stack, only one offset, 2xh = 1940 m, has been used. The continuous line indicates 
the true zero-offset reflection. Hence for inhomogeneous macro models DMO processing 
produces mis-aligned offsets. 
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Figure IV.8II CMP stack of second reflector. The stacking velocity has been kept constant and equal to 
the correct stacking velocity at 1200 m. 

CONCLUSIONS 

The synthetic data example discussed in this section clearly shows that application of CRP 
stacking (and prestack migration) — in comparison with CMP and DMO stacking — leads 
to superior results. All offset information is correctly positioned — contrary to constant 
velocity DMO — and contributes constructively to a final stack. 



138 



139 

V 

REAL DATA EXAMPLE OF CMP, CRP 
AND CDP PROCESSING 

V.l INTRODUCTION 

In this chapter a real data example is discussed (see also Van der Schoot et al. (1989)). The 
data were kindly provided by NAM, Assen. 
The purpose of this chapter is to show the differences in processing results due to 
application of the different processing schemes. 

The term prestack migration is used for wave-equation based migration by shot record 
inversion. 
Where CRP prestack migration is meant, it will be stated explicidy. 

V.2 REAL DATA EXAMPLE 

Figures V.l and V.2 show an unmigrated CMP stacked section and the corresponding 
time-migrated CMP section, respectively. The geological structure is severely affected by 
salt tectonics. The top salt is the interface between respectively the layers with velocity 
3650 and 4465 m/s, see figure V.3. 
Notice the large fault, which causes strong lateral velocity variations and makes proper 
imaging of the base salt reflector — at about 2.3 s — a problem, especially on the right 
side of the section. Time migration was applied using 90% of stacking velocities. 
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Figure V.l Unmigrated CMP stack. 

Next we digitized the main interpreted horizons and used these time picks together with the 
stacking velocities to build a macro model by an algorithm which inverts for traveltimes. 
Having derived a macro model we performed a poststack depth migration. We then found a 
small mismatch in the position of the fault. An update of the macro model led to a perfect 
match with the new CMP poststack migration result. 

The macro model is shown in figure V.3. The model shows the main geological 
boundaries and a velocity for each layer (the velocities are indicated without gradients). 
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Figure V.2 Poststack time migrated CMP stack. 

Figure V.4 shows the result of the corresponding poststack depth migration. The section is 
plotted in depth, as are all the depth-migrated sections which follow. We can see that there 
is indeed a very good match between the macro model and the poststack depth migration. 
In addition, the result of the poststack depth migration is superior to the time migration 
result. 

Note, for instance, that the fault defmition for the base salt reflector at 3300 m is far better 
on the depth-migrated section. 
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Figure V.3 Macro subsurface model. Velocity variations within a layer are not indicated. 

Next we used the macro model to migrate all shot records individually and stacked them to 
build a prestack depth-migrated section. 
Figure V.5a shows three successive shot records from the left end of the line. Migration of 
one such shot record should give us a single fold prestack migrated image of part of the 
subsurface, that part being determined by the geometry of the raypaths from the source to 
the receivers. The migrated shot records are shown in figure V.5b. We see that detailed 
subsurface information is available from only one migrated shot record. 

Having stacked all migrated shot records, the resulting prestack migrated section is shown 
in figure V.6. 
We see that, although the poststack depth-migrated section is good, the prestack depth-
migrated section is clearly superior. For instance, we see that the fault definition is much 
better. On the right side of the poststack depth-migrated section an anhydride reflection (at 
3200 m) could easily be misinterpreted as a high block of the base salt, although strange 
smiles indicate out-of-plane effects. However, on the prestack depth-migrated section the 
base salt seems to continue to the right as a low block. 
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Figure V.4 Poststack depth migrated section. 

To appreciate the prestack depth migration, figure V.7 shows some close-ups taken from 
the poststack and prestack depth-migrated sections. Figure V.7a is a close-up of the upper 
part of the section. Of course, this is not an important target zone for which we would need 
to apply a prestack migration. Nevertheless, we can see that the prestack migration result 
shows far better lateral resolution. The small faults are very precisely defined. Figure V.7b 
is a close-up of the top salt horizon. 
The prestack migration shows good definition of the top salt (between 2.0 and 2.2 km), 
whereas one has to guess where it is on the poststack depth migration. 
Another close-up, shown in figure V.7c is rather self-explanatory. Notice the very sharp 
fault definition in the base salt reflector. 
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Figure V.5a Unmigrated shot records. 
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Figure V.5b Migrated shot records. 
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Figure V.6 Prestack migrated section. 

We now selected a portion of the complete data set and applied CRP stacking (figure 
V.8a), CMP stacking (figure V.8b) and conventional constant velocity DMO stacking 
(figure V.8c). 
A comparison leads to the following remarks. 
The top salt reflection appears to be continuous on the CMP stack, whereas in the CRP 
stack this reflection is a little broken. The DMO stack shows a result in between. In this 
area it is known — from interpretation of 3-D surveys — that a continuous top salt 
reflector is the most plausible interpretation. 
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Figure V.7a Comparison between portions of the poststack and prestack depth migrated sections. 
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Figure V.7b as in a. 
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Figure V.7c as in a. 



150 V REAL DATA EXAMPLE OF CMP, CRP AND CDP PROCESSING 

Figure V.8a CRP stack; the CRP scheme is based on the flow diagram depicted in figure IV.7. The 
macro model used in the CRP processing is depicted in figure V.3. 
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Figure V.8b CMP stack, based on NMO correction and stacking, using stacking velocities derived 
from conventional velocity analyses. 
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Figure V.8c Conventional (constant velocity) DMO stack. The data is zero-dip NMO corrected before 
application of ("velocity-independent") DMO. 
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Figure V.8d CRP prestack migrated section based on the flow diagram depicted in figure IV .7. 
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Figure V.9 
a. 

b. 

Unmigrated shot record. A split-spread configuration with a gap of 330 m in the middle 
has been used. For prestack shot record migration this gap should be filled with zero-
traces. The window indicates the data to be migrated. 
Wave equation based prestack migration of a portion of the shot record depicted in 
figure a. Part of the faults shown in figure V.7c can also be seen on this result. 
CRP prestack migrated part of shot record. Note that the strong smiling partly has to do 
with the zero-traces in the middle of the shot record. 
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At about 2 s in the left part of the CRP section an onlap reflection lines up very well, 
whereas this reflection is hardly visible on the other sections. 
In general the results of CMP, DMO and CRP processing are comparable. 

Next we applied a CRP prestack migration on the same portion of data. The result is 
shown in figure V.8d. A close up of the wave equation based prestack migration (figure 
V.6) is given in figure V.8e. The following comments can be made. 
The wave equation prestack migration shows a better fault definition in the base Zechstein 
reflector (at about 3.3 km). On the other hand, the preservation of character in the base 
Zechstein reflector on the CRP migration result and the overall appearance of the CRP 
migration are good. 

Finally, CRP prestack migration can also be used to migrate single shot records. The 
scheme will then be less efficient, since it is based — see figure IV.7 — on ZO raytracing 
at one CMP location for CRP processing of all offsets. 
An example of a shot record before (a detail of the shot record at the left side in figure 
V.5a) and — part of it — after CRP prestack migration is shown in figure V.9. The same 
part is also compared with wave equation prestack migration. It can be seen very clearly 
that the finite-difference wave equation migration result is dip limited. Furthermore the 
results are comparable. 

V.3 CONCLUSIONS 

As we expected, the best results are obtained by application of CDP processing. The 
poststack time migrated CMP stack gives a poor definition of the target zone, that is the 
base Zechstein reflector. The poststack depth migrated CMP stack gives a better result, 
although this result is still inferior to the CDP prestack depth migrated image. 
CRP processing gives good results. More experience still has to be gained in the choice of 
different processing parameters, such as the dip sampling. 
The conclusion can be drawn that CRP processing — stacking as well as prestack 
migration — can be a valuable and cost-effective tool. The CRP prestack migration is an 
interesting option, since the method is fast and accurate. 
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VI 

CRP STACKING IN 3-D MEDIA 

VI.l INTRODUCTION 

The main emphasize during the course of this research has been laid on understanding and 
exploiting the concepts of CRP stacking in 2-D media. 
However, it is worthwhile to indicate the possibilities of CRP stacking in three 
dimensions. 

VI.2 CRP STACKING IN 3-D MEDIA 

If we consider the generalization of the CRP concept we will restrict ourselves to 3-D 
media locally consisting of constant velocity layers separated by plane arbitrarily dipping 
interfaces around the normal incidence ray path of each shot-receiver midpoint. 
A macro model corresponding to such a medium is shown in figure VI. 1. 
We now use this model to investigate the characteristics of reflection point smear in 3-D 
media by raytracing. Although some theoretical studies have been carried out on this 
subject (see e.g. Krey, 1976) we will restrict ourselves to this raytracing experiment. 
Figure VI.l also shows a CMP location with a number of shot-receiver configurations. 
Figure VI.2a shows the reflecting raypaths to the first interface. Since the shot-receiver 
configuration is in the dip direction of this plane, the situation is a 2-D one and the 
reflection points clearly lay on a straight line in the vertical plane, see figure VI.2b. 
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F.gure VI.1 D macro model. A CMP location with a number of shot-receiver pairs is shown 
(A-CMP location, o = receiver, * = shot). The velocities are: C j = !500 m/s, c, = 
2200 m/s, c3 = 2500 m/s; the minimum offset is 60 m, maximum offset 2940 m 
multiplicity = 25. 

Next in figures VI.3a,b and VI.4a,b the raypaths and the corresponding reflection points to 
the second and third interface are shown. We see that the reflection point smearing still lies 
on one line, albeit that this line does not lie any more in the vertical plane defined by the 
shot-receiver positions. 

We may conclude therefore that it should be possible to generalize the CRP lateral and 
temporal shifting formula to 3-D media. Only an azimuth angle has to be added in the 
derivation to allow a rotation of the line of CMP reflection points outside the vertical plane 
The generalization itself should be rather straightforward. 
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Figure VI.2 Line of CMP reflection points on the first interface (a). A view from the model surface 
into (vertical) depth shows that shot-receiver pairs at the surface and reflection points at 
the first interface lie in the same vertical plane (b). (+ = reflection point). 
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Figure VI.3 As figure VI.2, but now for the second interface. The reflection points on the second 
interface still lie on one straight line, although not any more in the vertical plane of the 
surface shot and receiver locations. Note that the squares and triangle indicate part of the 
receivers and the midpoint of the CMP gather at the surface (compare with figure VI.1). 
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Figure VI.4 As figure VI.2, but now for the third interface. 
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A serious problem maybe, is that of course not only a zero-offset ray tracing has to be 
carried out for all dip angles but also for all azimuth angles. Even for zero-offset ray tracing 
this may become a cumbersome exercise. The dip sampling needed will have to be 
considered carefully, since computation time may be saved by using a rational choice. 
The good news, however, is that we get a CRP prestack migration result for the price of a 
CRP stack. 
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APPENDIX A 

THE HALF DIFFERENTIAL FILTER 
IN DMO OPERATORS 

Wave-theory dictates that in a DMO operator a time-reversed half-differential filter should 
be applied to compensate for a phase change due to the integration along the operator. 
The Fourier representation of a forward half-differential filter reads 

jco . (A.1) 
A time-domain representation is given by 

D l / 2 « 
1 /S(t) lH(t)] 

2 3/2 (A.2) 

where H(t) is defined as the Heaviside function. In discrete form this expression reads 

D1/2(n) = ■ 

7 2 n - l 72n + 1 

n < 0 
n = 0 

n > 0 
(A.3) 

To arrive at a time-reversed version of the filter, the filter coefficients should simply be 
applied in the decreasing time direction. The resulting filter characteristic is shown in figure 
A.1. Now the problem is that for zero offset, DMO should do nothing to the data. In other 
words if the offset of an input trace of the DMO process goes to zero the half-
differentialfilter should not alter the phase of the data. This could be accomplished by 
applying a tapering to the data (after Deregowski, 1985), such that the filter becomes a unit 
spike for offset zero. This taper is visualized in figure A.2a-e. The taper can be described 
by 
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Figure A.l Half-differential time-reversed filter. 
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Figure A.2 Visualization of taper, applied to half-differential filter. 
a. DMO impulse response, indicating the meaning of tj^Q and At,,,. 
b. taper B. 
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500., 

Figure A.2c shape of the taper as a function of offset 2xh and NMO time tNMQ. The velocity used is 
2000 m/s. 

Figure A.2d if AL becomes large compared to the significant length of the filter the taper B can be 
chosen constant, equal to 1. 
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500. 

2xh(m) 

Figure A.2e in this figure Atm is truncated to 40 ms, indicating the part where the taper B can be 
chosen equal to one. 

1 -
At fa,NMO-AtmS,

a,^ in cip NMO 
(A.4) 

, otherwise 

Note, that Atm is dependent on the shape of the DMO operator and therefore the offset and 
zero-offset travel time I ^ Q . 

To give an idea how the filter changes with offset and NMO time, a number of filters are 
shown in figure A.3. 

Finally a synthetic example of a DMO stack, containing one flat event is used to visualize 
the difference between using and not using a half-differential filter, see figure A.4. 
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a. input wavelet, t j^Q = 1 s, offset 2xh = 1200 m 

b. one DMO stacked trace, half-differential filter applied 

c. one DMO stacked trace, half-differential filter not applied 

A.4a,b,c 
In this figure the response of a flat reflector is computed and displayed for one offset of 
1200 m. Because all CMP gathers are equal, only one gather is shown. 
shows the DMO processed and stacked section, including the half-differential filter. Apart 
from a noise tail, which has not been cancelled — partly because only one offset is used 
— the phase has not changed. The wavelet is still zero-phase. 
shows the DMO stack which would result if we did not implement the time-reversed half-
differential filter. The wavelet has apparently changed in phase by -45 ' . 

r. 
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APPENDIX B 

DERIVATION OF DMO FORMULA 

In this appendix the integral formulation for constant velocity DMO will be derived. 
Given: 

x - x„ = —— sin a . C 
7«b 

(ni.2) (B.1) 

, x sin a , . 
t (x ) = L, (x„-x„) 
crpv m' T) Q v m (K 

2" 

(ni.4) (B.2) 

2 2 ^ x h . 2 
tKMO = t 0 - — S i n « 

C 

To be derived: 

(xm - xn) 
t < V X m ' ~~ ' N M O ^ / l 2 

(HI.7) (B.3) 

(B.4) 

Prove: 
Substitution of (B.1) into (B.3) yields 

2 2 ^ m ^(r (B.5) 
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Expression (B.5) can be written as 
>-l/2 

0 - t N M O 
t < x

m - x o ^ 

Rewrite (B.l) as 

sin a (x
m - x(p 

c/2 'o • 

(B.6) 

(B.7) 

This can be rewritten, using (B.6), into 

v-l/2 

sin a 
c/2 

x - x n l 
m 0 'NMO * ' 

( X m - V 

"h ; v h / 
Substitution of (B.6) and (B.8) into (C-2) yields 

-1/2 , , 

lcnf-Xn) ~ hmol * 
( X m " X o ) 

\ ) 
1 -

V V 

( X m - X 0 ) 

(B.8) 

VlMI 
(Xm-Xo) 

q.e.d. 

(B.9) 

Furthermore we can determine the maximum value of (x,,, - XQ) as follows. (xm - XQ) is 
maximal in (B.l) when a equals & So 

x = I x - xJ 
max m 0 max 2lo|« = f 

(B.10) 

If a equals E-, the offset traveltime th will be equal to tQ, as can be witnessed by 
substitution of a = 2. into expression (III.3). This means that (B.10) also can be written as 

(c/2)!,, 
(B.ll) 
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APPENDIX C 

THE RELATION BETWEEN SPATIAL 
AND DIP ANGLE SAMPLING 

This appendix addresses the relation between the spatial Axm sampling of a DMO operator 
and dip angle a sampling. 
The question is, for how many dip angles and for what angle distribution does the DMO 
operator need to be sampled to arrive at an equivalent constant spatial Ax,,, sampling along 
the operator. Therefore we start with formula (III.2), set xQ for convenience to zero and 
rewrite it as 

2 
2x. sin a 

VCtNMO + 4 x h s i n « 
Derivation of the derivative yields 

9xm _ 2 x S c 2 4 l O C O S a 

/ 2 2 2 2 A 
lCtNMO + 4 x h S l n «J 

3x so, Axm = -^- Aa can be computed and evaluated numerically. 

Figures C.la.b.c show the relation between Axm and Aa for a constant Aa increment of 
one degree. The different figures correspond to different zero-dip zero-offset times t ^ g . 
We see especially that Axm becomes large for shallow times, large offsets and flat events. 
An angle increment of one degree may then result in a too sparsely sampled operator, not 
with respect to aliasing but with respect to continuity of events. On the other hand, most of 
data space for large offsets and shallow times will normally be muted in practice. 
In figure C.lb we can see that for a zero-offset time of 2 s the angle increment of one 
degree would be sufficient for the whole offset range to map at least one sample of the 
operator on each output DMO stack trace, if we choose Axm smaller or equal to 20 m. 
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a (degr)-
Figure C.l The relation between the dip angle sampling Aa and the spatial sampling Axm, for three 

zero-offset times, as a function of offset and dip angle. 



173 

APPENDIX D 

DEPTH POINT SMEAR IN 
INHOMOGENEOUS MEDIA 

In this appendix (after C.P.A. Wapenaar) we analyze the depthpoint smear of common 
midpoint (CMP) rays in a 2-D inhomogeneous medium. We assume that locally the 
medium consists of homogeneous layers, separated by plane, dipping interfaces, see figure 
D.l. In the following we consider reflections from the N'th interface. The zero offset (ZO) 
ray has an emergence angle \|/0 at the surface and satisfies Snell's law at the interfaces, 
hence 

S i " Vn-l =
 S i n Vn-1 

Cn Cn-1 ' 

where Yn-i and \}/"I1_1 are the incidence and refraction angles, respectively, at interface n-1; 
c^.! and cn arc the propagation velocities above and below interface n-1. The length Jln of 
the ZO ray in the n'th layer equals cnAtJ2, where At,, is the two-way ZO traveltime in that 
layer. The ZO ray is perpendicular to reflecting interface N, hence, y^ = 0. Consider a 
CMP ray, with half offset 'xh' and depthpoint smear DN. In the n'th layer the angles of the 
downgoing and upgoing CMP rays relative to the ZO rays are 0n and 8„, respectively. In 
the following we assume that these angles are small for all n. Snell's law, applied to the 
CMP rays at interface n-1, yields 

c c . 
n n-1 

or, since 6* is small for all n, 

sin\i/ . ± 9 cosv i sin \ i / ' . ± 8 . cosw i 
Tn—1 n T n - 1 Tn—1 n—1 T n - 1 

Cn Cn-1 
(D.2b) 
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Figure D. 1 The reflection point dispersal in the CMP configuration is approximately described by the 

simple relationship D ĵfli) <=> 4K^h2, with KN defined by (D.23b). 
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Ln-1 n-1 

X". n-1 
rn-1 

B' 

Xn 

Figure D.2 Close-up of layer n. 

ML 

or, with relation (D.l), 

. c cos \\f' , + 

n-1 (D.3a) n c„_i c o s V n _! 

At the reflecting interface N the incidence angle Gjjj equals the reflection angle 6^. By 
applying (D.3a) recursively we may conclude that 9J" equals 6~ for all n. We define 

en = < = e „ • (D.3b) 
Figure D.2 shows a close-up of the n'th layer. At interface n-1, the offsets of the 
downgoing and upgoing CMP rays relative to the ZO rays are x„_i and Xn_i> respectively. 
They can be expressed in terms of %n and x~ as follows. Define p*, r* and s* (see figure 
D.2) according to 

p± = 5 ^ c o s v n , 

± n - ± . 

r = 0. + % sinw , 

s « p +r 0 . 

(D.4a) 

(D.4b) 

(D.4c) 
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Figure D.3 In the recursive computation of x„_i the midpoint displacement is neglected in all layers. 
Subsequently the errors are traced back to the N'th reflector (see also Figure D.S), thus 
yielding an estimate of the depth point smear. 
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Then, 

X* S* 
A , n - 1 s 

s in ( jc /2±6 n ) s in(7 t /2- V n _j + en) 

or, for small 0 

(D.5a) 

± 
± s 5C»-^^rT[1±ö»tan^] ' <D-5b> 

~n- l 
or, with relation (D.4) 

| x n cos yn + 6n ( ftn + X* sin V J | 
"-1 cos vn_x 

x { l ± e n t a n V n _ 1 } j . (D.5c) 

These recursive expressions relate the half offset xh (= Xo = Xö) t0 m e depth point smear 
DN(= XN = ~XN)- However, expressions (D.5c) contain three unknowns Xn and 6n, a nd 
therefore we follow a different procedure to relate the half offset to the depth point smear. 
We define 

A Xn_i + Xn_t 
Xn_! = 2 ' ( D - 6 a ) 

and 
+ -

AX n . 1 = X " - 1 ~ X " - 1 ■ (D.6b) 

Here x„_i represents half the offset between the downgoing and upgoing CMP rays at 
interface n-1; the correction term A x ^ represents the midpoint displacement relative to the 
ZO ray. We now make the following approximation. In the recursive computation of xh (= 
Xj = Xö) w e s t a r t a t interface N, assuming zero depthpoint smear DN (= XN = 0). ar>d 
neglect the midpoint displacement in all layers, see figure D.3. Next we trace the errors 
AXn_i down to the N'th reflector and sum all contributions, thus yielding an estimate of the 
depth point smear DN. Of course this approximation is only valid when Ax n _ 1 « X„_i f° r 

alln. 

Substitution of (D.5c) into (D.6a) and (D.6b), assuming Xn = Xn = X„> yields 

x « - i ~ ^ o 7 V T [ Z n C O S V " + e A ] (D-7a) 
Tn—1 
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and 

Ax-1 " ̂ T~ r n (cos Vn ̂  Vn-1"sin V J + 9nfin tan V n-J ' 
or 

e 
Ax , - 2 

"n-l 2 
COS V , 

Tn-1 

X n s in ( V n _ 1 - V n )+e n f i n s in V n _ 1 (D.7b) 

Note that Axn_j is indeed one order smaller than %n-v Recursive application of (D.7a) 
yields 

1 
*N-1 a . „ „, "N'N cos v N 1 

e„fiN , 

or, with relation (D.3), 

1 
cos \|AN_2 

cos VN-

cos v N 1 

- 0 £ +9 Ü. 

e N-l 
*-N-2 C N _ 1 « » V N _ 2 

COS VN-

cos y N 
CN*N + CN-1^N-1 

etc. This result can be generalized to 

V i 
c , cos V ■*—;. 

q+l ~q n=q+l 

n-l 

where 

N+l q+l 

and 

(D.8a) 

(D.8b) 

(D.8c) 

(D.9a) 

(D.9b) 

fi = c A t / 2 
n n n 

For q=0 we obtain 

^"^"rs^ri-W At« • 
where 

(D.9c) 

(D.lOa) 
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(n-

c = n cosy 

\I=o C0SV*j 
(D.lOb) 

and 

V 0 = V 0 • (D.lOc) 

Before we analyze the depthpoint smear, we compute the traveltimes along the ZO ray and 
the CMP ray. The total traveltime along the ZO ray is given by the sum of the two-way 
interval ZO traveltimes At^ hence 

N 

wrSX • (D.ii) 
n=l 

Figure D.4 The total traveltime along a CMP ray is most easily derived from a replacement model in 
which a secondary source in the subsurface radiates a spherical wavefront to the surface. 
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The traveltime along the CMP ray SRG (see figure D.3) is equal to the sum of the 
traveltimes along the rays RS and RG. For convenience we place a secondary source in R 
and assume that the wavefront which arrives at the surface is spherical. Figure D.4 shows 
the first layer with the spherical wavefront. From this figure we may conclude that the 
traveltime along the CMP ray is given by 

(D.12a) 

(D.12b) 

(D.12c) 

(D.12d) 

(D.12e) 

and 

'hj* = 

SS": 

GG" 
Since 

and 
SS' = 

S'S" 

= t0,N + 

= SS7 + 

= GGr 

= GG1 

= G'G 

SS"-GG" 
c i 

IPS71 

- GG" . 

M 

we may write (D. 12a) as 

or 

huN' 

2 

= t0.N + 

2 
= t0.N + 

2 S'S" 
* 

c i 

4tWS's' 
c i 

(D.13a) 

(D.13b) 

In order to compute S'S" we construct a virtual source R" at the center of the spherical 
wavefront. Referring to figure D.4, we obtain 

cos01=MRT/S1R i 7=MR r/(MRT+STS7 ï) (D.14a) 

and 

t a n e ^ y G ' S ' / M R ' . (D.14b) 

Assuming 0 t is small yields 

S 'S- ' - jG-S" 8, , (D.15a) 

where 
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G'S' = MS' + MG' , (D.15b) 
or 

Ö I S r - [ a n ( i i / 2 - v 0 - e i ] + s i n ( i ü / 2 - v 0 + e i ) J x h , (D.15c) 

or 

G'S'= 2 ^ cos v 0 , (D.15d) 

hence 

S ^ ^ y x ^ j c o s v o • (D.15e) 

Substitution of (D.15e) into (D.13b), using (D.lOa) yields 

VN^VN"1- — ' (D16a) 

(D.16b) 

where 

4—v- ±{4*. 
t0 ,Ncos \|/0 B-i 

with ĉ  defined by (D.lOb). Relation (D.16) represents a hyperbolic relationship between 
the offset and the traveltime along a CMP ray. The asymptotes are determined by the 
reciprocal of the effective velocity CN. Now we derive the relationship between the offset 
and the depthpoint smear. In the recursive computation of v _i w e neglected the midpoint 
displacement AY _J in each layer. For layer q this involves a lateral shift (in the opposite 
direction) of the normal incidence ray over a distance - A / , cos Yq_j, see also figure D.5. 
If we trace this distance down to the N'th reflector we obtain the partial depthpoint smear 
d (related to layer q only), according to 

N 
T-r cos y. 

d
q = _ A V i C O S X , V i l l i , (D.17a) 

j=q COSVj 
with 

VN=VN = 0 • (D.17b) 
For the total depthpoint smear we write 

N 

q=l 
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Figure D.5 The partial depthpoint smear d (related to layer q only) is found by tracing the error 
Axq_j back to the N'th reflector. 

According to relations (D.3), (D.7b) and (D.9) we may write for the midpoint displacement 
in layer q 

A%q_i<=Aq8* , (0.19a) 

where 
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A q 

q 2 2 2c. cos viz . 
l q- l 

with 

sin 
: 2ACnJ Atn + SinVllCqJ Atq 

COS \|/ n=q+l 
(D.19b) 

S(-) = o (D.19c) 
N+l 

and c„ defined by (D. 10b). Substitution of this result into (D.17) and(D.18) yields 

D N ^ X 
q=l 

N 2 - , 2 

F 7 c' At +G c' At q Z_f ^ n ; n q \, q,/ q 

where 

F =E 
q q 

s in (Vi -Vq) 

cosy 

(D.20a) 

(D.20b) 

G = E sin w , , 
q q T q - i 

with 

E =- n COS\|/. 

q „ 2 — 
2 c j COS \(f j=q COS \|/. 

This can be rewritten as 

N 

DN = e ; £ 
n=l 

' 1 
q=l 

[c | At T F +G |c'j At 
\ nj n X.U q n\ nj n 

or 
N 2 

D N - e ? Z ( H n + G „)Kj Atn • 
n=l 

where 
n - l 

H „ = Z F q • 
q=l 

with 

(D.20c) 

(D.20d) 

(D.21a) 

(D.21b) 

(D.21c) 

H j = 0 . (D.21d) 
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From relations (D.lOa) and (D.16b) we may derive 

2xhCl 
e i = -J ■ (D.22) 

Substitution in (D.21b) yields 

DN(xh) = 4 K N \ ' (D.23a) 

where 

2 N 2 
K N = 1 1 r£(Hn + G n ) ( C n ) A t n - (D.23b) 

Note that for a single layer configuration this expression reduces to 

2 s i n y 0 c o s V o 2 

i l X > 0 = c~l Xh (° - 2 4 ) 
y c l l0,l 

which is exact. 

Note that the total midpoint displacement xm - XQ at the surface reads 

N " cos \|/0 - ^ cos y n 
(D.25) 

see also figure D.1. Finally, note that the two-way traveltime toN along the dashed ZO 
raypath is given by 

2M N (x h )s in V o 

VN = to.N . (D.26) 

with ^ given by (D.ll). 

Improvements in accuracy may be expected when (D.2a) is expanded up to the second 
order. The first order approximation (D.3) is valid when terms like Gn - 9n_i are small 
compared to 8n. 
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SUMMARY 

Dip moveout or DMO is known to be a valuable tool in today's processing schemes. DMO 
can be seen as an extension to the conventional processing sequence of NMO correction, 
CMP stacking and poststack migration. Processing with DMO approximates the result of 
(time) migration before stack. DMO is generally based on the assumption that the medium 
velocity is constant, although approximate generalizations of DMO in the presence of 
depth-variable velocities have been proposed. All the efforts put into the development of 
the DMO algorithm are based on the concept of the "time-domain technology". We could, 
however, start with the concept of "depth-technology" (compare e.g. time migration versus 
depth migration). 
In this thesis a depth-oriented approach to DMO, which we call "common reflection point 
(CRP) stacking" is presented. In this approach, the CRP operator design is based on a 
macro model of the subsurface, in which ray tracing is performed. Lateral as well as 
vertical velocity variations are therefore allowed. To obtain an exact (with respect to travel-
times) CRP operator for the inhomogeneous media, offset ray tracing for all offsets should 
be done. It is shown in this thesis that the multi-offset ray tracing can be approximated by 
efficient zero-offset ray tracing, in combination with a simple mathematical relation. 
The derivation of CRP stacking also reveals another very important property of the depth-
oriented DMO approach not shared by the time-oriented approach. Namely, that it contains 
all the ingredients necessary to carry out a direct mapping of multi-offset data to their 
correct lateral and vertical position in depth. In other words, an approximated prestack 
depth migration can be accomplished by CRP processing, which is as efficient as CRP 
stacking itself. 

This thesis starts with a general introduction to CMP, CRP and CDP processing schemes. 
Next the CRP scheme is compared with conventional DMO schemes. Ample attention is 
paid to the evaluation of CRP stacking and prestack migration on synthetic and real data. 
Although the theory presented in this thesis is developed for 2-D media, indications are 
given of how the CRP concept can be extended to 3-D media. 
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SAMENVATTING 

Dip moveout (DMO) wordt algemeen gezien als een waardevolle processing stap, die 
optioneel in seismische data processing toegepast kan worden. DMO vormt dan een 
uitbreiding van de conventionele processing, die o.m. bestaat uit NMO correctie, CMP 
stacking en poststack migratie. Een processing sequentie waarin DMO is inbegrepen, 
benadert het resultaat van (tijd)migratie voor stack. In het algemeen zijn DMO schema's 
gebaseerd op de veronderstelling dat de snelheid van het medium constant is. 
Generalisaties van DMO voor diepte afhankelijke snelheidsverdelingen zijn ook wel 
voorgesteld. Alle inspanningen om dergelijke DMO schema's te ontwikkelen zijn 
gebaseerd op tijd-domein concepten. Het is echter beter om DMO opnieuw te formuleren 
op basis van diepte-technologie concepten (vergelijk bijvoorbeeld tijd- en diepte-migratie). 
In deze dissertatie wordt een diepte-georiënteerde benadering van DMO gepresenteerd, die 
we "common reflection point (CRP) stacking" noemen. In deze benadering is het ontwerp 
van de CRP operator gebaseerd op ray tracing in een macro (d.i. diepte-interval snelheids) 
model. 

Zowel laterale als verticale snelheidsvariaties zijn in dit macro model toegestaan. Om een — 
wat betreft looptijden — exacte CRP operator voor inhomogene media te bepalen, zou een 
offset ray tracing voor alle offsets moeten worden uitgevoerd. In deze dissertatie wordt 
beschreven hoe de multi-offset ray tracing benaderd kan worden door een combinatie van 
efficiënte zero-offset ray tracing en een simpele mathematische relatie. 

De afleiding van het CRP stacking concept brengt een belangrijke eigenschap van de 
diepte-georiënteerde benadering aan het licht, die niet gedeeld wordt door de tijd-domein 
georiënteerde benadering. In de diepte-georiënteeerde benadering zijn nl. alle ingrediënten 
aanwezig om een directe mapping van multi-offset data naar hun correcte positie, lateraal en 
in diepte, uit te voeren. Met andere woorden, met behulp van het CRP processing schema 
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kan een — zij het benaderde — prestack migratie uitgevoerd worden, die net zo efficiënt is 
als CRP stacking zelf. 

Deze dissertatie begint met een algemene introductie tot CMP, CRP en CDP processing. 
Vervolgens wordt het CRP schema vergeleken met conventionele DMO schema's. 
Uitgebreide aandacht wordt besteed aan de evaluatie van CRP stacking en prestack migratie 
op synthetische en echte data. 
Hoewel de theorie in deze dissertatie ontwikkeld wordt voor 2-D media, worden er ook 
indicaties gegeven hoe het CRP concept uitgebreid kan worden tot 3-D media. 
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STELLINGEN 
behorende bij het proefschrift 

"Common reflection point stacking, a macro model driven approach to dip moveout" 

1. Verschillende "common-offset" secties bevatten structured gezien naast 
compatibele ook complementaire informatie. De secties dienen daarom — voor of 
na migratie — niet zonder meer opgeteld ("stacked") te worden, maar 
gecombineerd te worden tot een fijner (lateraal) bemonsterde eind sectie. Eén en 
ander zal tot een significante economische verbetering in 3-D technieken leiden. 

2. De suggestie van Hale dat het toepassen van "constant velocity" DMO altijd beter is 
dan het niet toepassen ervan is door de praktijk achterhaald (Hale, 1983, Dip-
moveout by Fourier transform, Stanford University). 

3. Het is beter om van multi-offset data te spreken dan van prestack data. 

4. Interactieve processing is voornamelijk zinvol met het oog op het bepalen van 
snelheidsmodellen. Voor andere toepassingen biedt interactieve processing geen 
wezenlijke voordelen. 

5. Het testen van parameters in seismische data processing wordt onvoldoende 
ondersteund door geldige beoordelingscriteria. Parameter keuzes worden dan ook 
dikwijls meer bepaald door de mate waarin numerieke artefacten worden 
gereduceerd dan door de geofysische kwaliteit van het resultaat. 

6. Lawaai is een wezenlijk kenmerk van dit technologisch tijdperk. 

7. Kennis maakt de mens vrij, technologie daarentegen bindt hem. 

8. Ascese en vrijheid hebben alles met elkaar te maken. 

9. Volledig nihilisme is principieel onverenigbaar met het leven (naar H. Küng, 
"ExistiertGott?"). 

10. Het christelijk geloof is niet onredelijk, maar boven-redelijk, consistent en zeer de 
moeite waard. 

Delft, oktober 1989 Ad van der Schoot 




