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Preface 

Within the Laboratory of Seismics and Acoustics, the PRINCEPS consortium 
project for detailed poststack inversion was successfully completed at the end of 
1985. I joined prof. Berkhout's group in the beginning of 1986 as one of the mem­
bers of the PRINCEPS II continuation project, which focussed on elastic prestack 
inversion and lithologic inversion. After the integration with the structural TRI­
TON project, the work was continued within the newly formed DELPHI project. 
From that moment, my research activities have benefitted from the well defined 
DELPHI research plan as well as the greater interaction with the DELPHI col­
leagues. 

Within the PRINCEPS II project, I enjoyed many fruitful and not-so-fruitful dis­
cussions with colleagues Alex Geerling and Gerd-J an Lortzer. The many post-mid­
night report gluing sessions proved that working late can be fun and will not easily 
be forgotten. 

For my work within the DELPHI project, I relied many times on three of my col­
leagues: Greg Haime was always there when I needed finite difference data. The 
help of Eric Verschuur-master of the already infamous EV utilities-with many 
processing tasks was greatly appreciated. Finally, the p--r tandem with Cees de 
Bruin provided me with the required input data for my inversion scheme. The 
examples that are discussed in this thesis could not have been realized without 
their cooperation. 

Besides them I will kindly remember the other DELPHI colleagues Philippe 
Herrmann, Henk Cox, Berend Scheffers and Walter Rietveld, who always 
reminded me to stay "on top of the target". 

As it turned out, computing became one of my greater passions and I came up with 
more plans and ideas than ten wise programmers could implement. Only thanks 
to the aid of the B-team, Jan-Willem de Bruijn, Edo Bergsma, Leen Buitelaar and 
Henry den Bok, many of the projects were indeed successfully completed. 
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both gentlemen never failed to show me that also post-convention geophysics can 
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1 Introduction 

1.1 Seismic amplitudes 

For the longest part of the seismic exploration history, amplitudes have played a 
minor role in the processing and interpretation of seismic measurements. It was 
not until the 1970's that interpreters started to associate high amplitudes on 
stacked sections, so-called bright spots, with the presence of gas. This caused many 
oil companies to have a new look at their data. 

However, many of the drilled bright spots appeared to be due to other anomalies 
than the desired presence of hydrocarbons. Then, a decade later, the next hidden 
treasure was discovered: the amplitudes in the prestack data. It appeared that the 
amplitude variation with offset of the gas related bright spots was much larger 
than those of the non-gas related events. The classical papers of Ostrander, 
Ostrander (1982, 1984), were the first ones to describe the anomalous amplitude 
versus offset (AVO) behavior of the frequently encountered case of a gas sand 
embedded in shale. The AVO behavior of this particular sequence has been the 
basis of many AVO (inversion) techniques and, therefore, deserves a description in 
this introduction. 

Fig. 1-la, adopted from Ostrander (1984) shows an elastic model consisting of a gas 
sand embedded in shale. The values of the elastic parameters (P-wave velocity a, 
density p and Poisson's ratio a) are typical for an unconsolidated, young geologic 
section. The gas fill of the sand causes a strong decrease of the P-wave velocity, 
while the S-wave velocity remains practically unaffected, leading to an anoma­
lously low Poisson's ratio. Fig. 1-la shows the plane-wave reflection coefficients of 
the top and base ofthe gas sand as a function of the incident angle th. Observe that 
the absolute value of the reflectivity increases considerably with incident angle for 
both reflecting interfaces. If the gas sand would be replaced by a brine-filled rock 
with an equally low P-wave velocity, but the same Poisson's ratio as that of the sur­
rounding shale, the reflectivity would remain approximately constant, as shown by 
the striped lines in Fig. 1-lb. 
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For the AVO analysis at some specific locations for a specific target, it may suffice 
to do some forward modeling experiments in order to match the observed pres tack 
amplitudes. However, when one is interested in, say, the lateral extent of a reser­
voir, such a "manual" procedure would be too laborious. In such a case, automated 
rr~t>thn~C! th<>t -r<>l<>t<> tht> n-rt>C!t<>t>k <>rr~nllt.n~<><> t.n tht> t>l<:a<>t.1t> n<:a-r<>rn<>t<>-r<> <:an~ nlt1. -------..... ---, ----- ------ ---- r-------- ----r------- -- ---- ------- r---------- ----, ----
mately to the lithology are to be preferred. One can distinguish between AVO fea­
ture extraction methods and more sophisticated inversion methods, see Fig. 1-2. 
The first type of methods often accomplish no more than pre-selecting heterogene­
ities in the subsurface that, under certain assumptions, can be related to hydrocar­
bon accumulations: The feature is used as an indicator. Inversion methods yield an 
elastic image of the subsurface that would enable a quantitative lithologic analy­
sis. Before discussing the merits of both methods (in Sections 1.3 and 1.4), the 
inversion formalism will be discussed. 

1.2 Seismic inversion 

Seismic inversion is the process of inferring information about the subsurface from 
seismic measurements. In this thesis, elastic inversion will be discussed, meaning 
the retrieval of the elastic properties of the subsurface. The term inversion is some-

(a) (b) 
PP reflectivity 

0.3 

a=3000rn/s 0.2 

p=2.40gr/cm3 

0.1 o=0.40 / 
0.0 no gas, o=0.4 

a=2400rnls 
p=2.14gr/cm3 -0.1 
0'=0.10 -·····-············-~---·-····· 

-0.2 

-0.3 
a=3000rnls 
p=2.40gr/cm3 

0 
0'=0.40 

10 20 30 
Incident angle tj) 1 

40 

Fig. 1-1 (a) Some typical values for the elastic parameters of a gas sand embedded in shale in a 
young sedimentary setting, where a, p and C1 respectively denote P-wave velocity, density and 
Poisson's ratio. (b) The angle dependent reflection functions of the top and bottom of the gas sand 
show a strong increasing amplitude with increasing angle. The dotted lines show the practically 
constant reflectivity when the gas sand is replaced by a brine-filled rock with the same P-wave 
velocity and density but a Poisson's ratio that is equal to that of the surrounding shale (0.40). 



Introduction 3 

what ambiguous because it is used for two quite different methodologies. Let me 
introduce the mathematical formalism of the so-called forward model: 

d =g(x) + n (1-1) 

where dis the vector that contains the seismic measurements, xis the vector that 
contains all the subsurface parameters and g is the set of relations that constitute 
the forward model. The additive noise is represented by the vector n. 

1.2.1 Inversion by data fitting 

The most common type of inversion can be described as data fitting. This means 
that one seeks a set of parameters that minimizes some norm of the difference 
between the observed data and the predicted data. In general, the l2 norm of the 
data mismatch e is minimized, leading to the following objective function: 

(1-2) 

Often, extra mismatch terms and varying weights of the different terms are used 
in the objective function, see Section 5.2.2, but this is not relevant for the present 
discussion. The solution to the inverse problem is defined as the set of parameters 
x for which F(x) is the global minimum of the function F. 

In the general case of a nonlinear forward model, the objective function is mini­
mized by iteratively updating an initial guess xo of the model parameters. In each 
iteration, at least one forward modeling is needed to obtain the current residuals: 

(1-3) 

where the subscript n denotes the nth iteration. A general formulation for the 
update formula that describes the iterative parameter updates is, see Section 5.3: 

Prestack seismic data 

l 1 
AVO Feature Extraction Prestack Elastic Inversion 

1 l 
Feature image I Elastic image 

Fig. 1-2 The amplitude information in the prestack data can be analyzed through AVO feature 
extraction or through-more sophisticated-inversion methods. 
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(1-4) 

where an is the "step length", Hn is a positive definite "conditioning" matrix and 
Jn is the Jacobian matrix offirst order derivatives of en. The last two terms are the 
gradient of the objective function: grad F = J ~ t e~. The different optimization meth­
ods differ with respect to the choice for the step length an and, most importantly, 
the matrix Hn. 

For a linear forward model, d =Ax, the well known Gauss-Newton equation yields 
an analytical solution for the parameters: 

(1-5) 

In this thesis, inversion by means of data fitting will be used to estimate elastic 
subsurface models. 

1.2.2 Direct Inversion 

For the other, less frequently used type of inversion, a series of mathematical 
transformations-often involving various approximations-is used to manipulate 
the forward relation (1-1) into an inverse relation: 

x = g-1 (d) (1-6) 

In seismology, the term inverse scattering is generally used to denote the direct 
inversion methods. The inverse scattering approach basically consists of applying 
a sequence of mathematical operators that convert the observed data into a model. 
These operators are derived from the conventional forward scattering theory. 
Layer stripping methods for 1D media belong to this general class of inverse scat­
tering methods. This "direct inversion" can only be accomplished for relatively sim­
ple forward models, e.g. the 1D acoustic situation. Note that the data fit concept 
does not play a role here, which can lead to a surprisingly poor match between 
observed data and the synthetic data of the estimated model. 

Sofar, the discussion has been limited to inversion for an image of the subsurface. 
In a broader context, inversion includes many model based processing algorithms, 
e.g. deconvolution and redatuming, since here too, a forward relation is inverted. 
The result of such an inversion is a new dataset. Direct inversion is well suited for 
such processing algorithms, because wave propagation is a linear process. The sub­
surface parameters, however, determine the seismic response in a nonlinear fash­
ion, which makes the data-fitting inversion approach more feasible for the 
determination of subsurface models. 

1 .2.3 Parametrization 

A second distinction that can be made, concerns the representation of the subsur­
face in the vector x. A very straightforward way of representation consists of sam-
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piing the subsurface properties on a regular grid. In this gridded inversion, no 
assumptions are made about the structure of the subsurface, which can be consid­
ered a pro. On the negative side, the number of parameters (the length ofx) is typ­
ically very large and the solution will be bandlimited. 

Its counterpart is parametric inversion which means that the subsurface is param­
etrized with a number of distinct layers. The layer boundaries are then assumed 
to be parametric functions (e.g. splines) of the lateral position. The elastic proper­
ties within a layer can either be constant or parametric functions of the lateral 
position and, sometimes, depth. A simpler layered parametrization is shown in 
Fig. 1-3 where the model is gridded in the lateral direction. In the vertical direc­
tion, the model consists of homogeneous layers. In Section 2.2, it will be argued 
that an inversion per lateral position is attractive and feasible for well-behaved 
subsurface geometries. Assuming that the elastic quantities of interest are e.g. the 
P-wave velocity a, S-wave velocity f3 and density p, the parameter vector at position 
j!l.h will be: 

(1-7) 

Now that the principles of inversion are outlined, the discussion of the AVO and 
prestack inversion methods continues. 

1.3 AVO feature extraction 

Feature extraction methods generally assume NMO corrected CMP data as input. 
Usually, the data are processed to correct for source/receiver directivity and ampli-

(j-llM (j+l)t.h 

jt.h 
lateral position h 

Fig. 1-3 Subsurface model with a gridded representation in the lateral direction A cross­
section of the elastic properties in the vertical direction is assumed to be a piecewise 
constant function. 
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tude loss due to the divergence of the wavefield. Often some extra processing--e.g. 
surface consistent amplitude corrections and inverse-Q filtering-is done to insure 
that the observed amplitudes pertain to the local lithology and not to effects of 
propagation and data acquisition, see e.g. Yu (1985) and Mazzotti (1991). 

Most feature extraction methods are based on a weighted stacking procedure, a 
term that was introduced by Smith and Gidlow (1987). The weighted stack derives 
its name from the fact that every sample of its output trace-corresponding to a 
certain two-way traveltime-is a weighted sum of the samples in the NMO cor­
rected CMP gather, at the same traveltime. By comparison, for the normal stack, 
all the weights would be equal to unity. The used weighting function depends on 
the incident angle. The latter one is a function of traveltime and offset and is usu­
ally obtained by ray tracing in a macro velocity model. 

The weighted stacking methods are based on approximations of the angle depen­
dent reflectivity functions that are linear in the relative parameter contrasts, see 
Section 3.6.2. In its simplest form, the plane-wave reflection coefficient for P-waves 
can be approximated with: 

(1-8) 

where ()is the incident angle. Often, a higher order approximation with an extra 
sin4 8 term is used, see e.g. Smith and Gidlow (1987) and Shuey (1985). Other 
authors, e.g. Balogh et al. (1986), Ursin and Dahl (1990), have introduced the offset 
(instead of the incident angle) as the independent variable in the reflection coeffi­
cient approximation. 

For the above approximation, the weighted stacking procedure actually fits rela­
tion (1-8) to every line of samples of constant two-way traveltime in the CMP 
gather and yields a normal incidence a trace and a gradient b trace. Since the for­
ward model (1-8) is linear in the parameters a and b, this fitting can be done by 
applying the Gauss-Newton relation (1-5). So, the weighted stack can be consid­
ered a data fitting inversion method with a linear forward model and a gridded (in 
terms of traveltime) subsurface representation. 

By itself, the normal incidence and the gradient trace can already serve as useful 
features. But they can be combined in order to highlight the typical gas sand AVO 
behavior pictured in Fig. 1-1. According to Treadgold et al. (1990a,b), the product 
of the a and b traces is commonly used as an indicator of hydrocarbons. Clearly, 
this product trace has a strong positive response when the normal incidence and 
gradient trace are strong and have the same polarity, as is the case for the top and 
base reflectors of Fig. 1-1. Reflectors without AVO variations (b=O) simply disap­
pear on the a*b section. 
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Smith and Gidlow (1987) opted for a procedure that is based on empirical relations 
between the elastic parameters to highlight the presence of hydrocarbons: Using 
the Gardner relation between P-wave velocity and density and the Mudrock rela­
tion of Castagna et al. (1985) between P- and S-wave velocity, they derive a 
weighted stack for their so-called fluid factor, that highlights deviations with 
respect to the aforementioned empirical relations; these deviations are assumed to 
be due to gas fill. 

Weighted stacking has two main advantages over more sophisticated nonlinear 
inversion methods: 

1) The computational cost is small so that complete 2D and even 3D sections, 
see Vail et al. (1990), can routinely be processed. 

2) There are no numerical problems like slow convergence and local minima 
that often occur with nonlinear inversion. 

On the other hand, weighted stacking is based on quite restrictive assumptions: 

1) The subsurface model is assumed to be approximately 1D, so that the inci­
dent angles and the geometrical divergence factor can be easily calculated 
as a function of the offset and the two-way traveltime. Furthermore, the 
lD assumption is needed to insure that the CMP data is related to one lat­
eral position (no reflection point smear). 

2) The NMO correction has to be very accurate. It has been shown, see Spratt 
(1987), that the gradient and higher order traces are very sensitive to 
residual NMO errors. Interfering reflections with a different AVO behavior 
will cause a phase change with offset of the observed waveform. This will 
appear as a residual NMO effect but should not be corrected for. So there 
is a fundamental problem with judging the accuracy of the NMO correc­
tion. 

3) Moderate angles (pre-critical) and moderate parameter contrasts. 

Even if the above conditions are satisfied, there is a problem with the interpreta­
tion of the results. Gas sands do not always exhibit the strong AVO behavior as pic­
tured in Fig. 1-1, see Rutherford and Williams (1990). On the other hand, a strong 
AVO behavior need not always be due to the presence of gas, see Ball (1987). From 
a physical point of view, this is perfectly understandable: The angle dependent 
reflectivity of an interface between two elastic media depends solely on the elastic 
parameters of both media and many parameter combinations will cause a strong 
AVO behavior. 
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So, a possible strategy would be to estimate the elastic parameters from the 
observed amplitudes and use them, in a second step, to infer the lithology. This is 
indeed the approach that is followed in the DELPHI project of our group, see Chap­
ter 2. There is little chance though, to obtain independent estimates of all three 
eiastic parameters from weighl.~::d si.aeking: Swan {1990) demonst:ra~d that, 11sing 
angles up to 30", the noise on the P-wave velocity (,1a/a) and density (L1plp) traces 
is 5 to 50 times higher than the noise on the prestack data! Some authors, e.g. 
Lortzer and Berkhout (1990) use stabilization to obtain less noisy results. A draw­
back of weighted stacking remains, however, that it is based on a linear formula­
tion that is valid for small offsets, whereas the large offsets actually contain the 
information that is needed to resolve all parameters independently. 

1.4 Nonlinear prestack inversion 

Contrary to the conventional AVO methods described in the previous section, non­
linear inversion of prestack data is still in the research stage. As already men­
tioned in Section 1.2, it is sensible to make a distinction between direct inversion 
methods and data fitting inversion methods. In this introduction on prestack 
inversion, only inversion by means of data fitting will be discussed. 

1.4.1 Gridded Inversion with the adjoint-state technique 

Most of the published least squares inversion methods for pres tack data are grid­
ded ones. In all the gridded inversion methods, the same clever method is used to 
calculate the gradient of the objective function. A brute force calculation, by per­
turbing the gridded model parameters one by one and using a finite difference 
approximation to obtain the derivatives, would lead to an insurmountable compu­
tational burden, since it requires N forward modeling steps, where N is the-typ­
ically huge-number of parameters. 

This clever method is the so-called adjoint-state technique, which requires only 
two forward modeling steps to calculate the gradient. Some authors use the terms 
adjoint equation or adjoint Green's function to denote this technique. It is a general 
mathematical tool that can be applied to optimization problems related to the solu­
tion of (partial) differential equations. McGillivray and Oldenburg (1990) give a 
general overview of techniques to calculate the Jacobian matrix J for a discrete 
parameter space and its equivalent, the Frechet derivatives, for the continuous 
case and give many references of applications in a variety of disciplines. The 
adjoint-state method is one of those techniques and, as they describe on pp. 511-
512, it can be modified to solely calculate the gradientJte of a least-squares objec­
tive function using only two forward modeling steps. 

The introduction of this technique to the seismic inverse problem is due to Bam­
berger, Chavent, Hernon and Lailly (1982), where it was applied to normal-inci-
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dence acoustic impedance inversion. The prestack 1D acoustic problem was first 
addressed by Lailly (1983). He demonstrated that the gradient follows from the 
correlation of the forward propagating source wavefield and the reverse-time prop­
agating data residuals. This process resembles conventional prestack migration. 

A lucid treatment of the adjoint-state technique applied to the general (multi-shot, 
2D or 3D) prestack acoustic case can be found in Tarantola (1984a). The elastic 
case was subsequently solved by Tarantola (1984b). Mora (1987) gives a less for­
mal but better comprehensible treatment of the elastic case. Also for the general 
acoustic/elastic case, the gradient is found by a correlation of the forward propa­
gating source wavefield and the reverse-time propagating data residuals. 

1.4.2 Acoustic grldded Inversion 

The actual application of prestack least squares inversion using the adjoint state 
gradient calculation started with the computationally least demanding case of the 
1D acoustic problem. Kolb, Collino and Lailly ( 1986) inverted a synthetic shot 
record in the h-t (offset- traveltime) domain for the velocity, assuming a known 
density. Kolb and Canadas (1986) extended that experiment to invert for both 
velocity and density. Helgesen (1991) augmented the 1D method to account for 
source and receiver arrays. 

Since the number of parameters for the 1D problem is relatively small (500-5000), 
it is computationally feasible to use a Quasi-Newton optimization scheme where 
the matrix H in (1-4) approximates the inverse Hessian, see Section 5.3.2. In the 
above mentioned papers a Quasi-Newton scheme is used indeed. 

Some authors have applied the adjoint-state technique in the p-'t (ray parameter­
intercept time) domain. For acoustic wave propagation in a 1D medium, every 
trace of constant p can be described by a separate one-dimensional wave equation 
and an impedance function Z{p,'t). In Chapel, Kolb and Canadas (1989) and Kolb, 
Chapel and Picart (1989), this property is used to estimate the primary reflectivity 
as a function ofp. Pan et al. (1988, 1989) apply the adjoint-state technique in the 
p-'t domain to invert for the density and the velocity. 

1.4.3 Elastic grldded Inversion 

Judged by the number of publications, there is nowadays more research in elastic 
inversion than in acoustic inversion. The present emphasis on elastic inversion is 
fully justified in the authors opinion: The properties of the subsurface-at least at 
depths that are of interest to petroleum exploration-are obviously more elastic 
than acoustic. Furthermore, the angle dependent reflectivity of an elastic contrast 
is generally quite different from that of the corresponding acoustic contrast, see 
Section 3.6.2. This means that acoustic methods are not suitable for analyzing the 
prestack amplitude information in a quantitative manner. 
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Another trend is the increasing popularity of 2D elastic inversion over 1D inver­
sion. Subsurface structures that are of interest to petroleum exploration are often 
not approximately one-dimensional. 2D (and ultimately 3D) inversion methods 
therefore hold a much greater promise to become valuable exploration tools than 
their lD counterparts. 

The present bloom of 2D gridded elastic inversion based on data fitting is mainly 
due to Albert Tarantola of the Paris based Institute de Physique du Globe. 
Together with co-workers, more than twenty-five papers have been published on 
this subject; a convenient bibliography can be found in Tarantola et al. (1990). 

In the majority of the papers, the conventional least squares criterion is minimized 
to estimate the gridded subsurface parameters. Since a 2D slice of the subsurface 
is inverted for, the data vector will contain a number of shot gathers at the surface. 
Since the number of parameters N is also very large (typically, N> 105), full NxN 
matrices which are needed for Newton type optimization methods are far too big 
to fit even on the largest computer systems. This is why conjugate gradient algo­
rithms, for which the matrix H in (1-4) is diagonal, are generally used for the 2D 
inversion problem. The required gradient is calculated with the aforementioned 
adjoint-state technique. 

The idea of using all available seismic data simultaneously in one big inversion 
scheme is conceptually simple. It is also an attractive idea, because the informa­
tion that is present in multiples, surface waves and converted waves, is not dis­
carded but actually used in the inversion. However, there is one major problem 
with such large-scale inversion methods (the term large-scale being used as oppo­
site to target-oriented): They are generally unable to retrieve the low-wavenumber 
velocity model (the trend). This low-wavenumber information is present in the 
travel times of the reflections. But since the forward model is strongly nonlinear 
with respect to the velocity trend, the gradient-based optimization technique will 
usually not converge to the true model. 



2 Target oriented inversion: the 
DELPHI approach 

2.1 The DELPHI scheme for elastic processing and inversion. 

Within the Laboratory of Seismics and Acoustics, the seismic inverse problem is 
solved in a hierarchical manner. In the Delft Philosophy on Elastic Inversion 
(DELPHI), see Berkhout and Wapenaar (1990), three mechanisms determine the 
seismic response: Surface interaction, propagation and reflection. Rather than 
inverting the total seismic response with a single algorithm, each of the three parts 
of the seismic response is processed or inverted by optimally chosen algorithms. 

After the first phase of exploration, one is interested in the detail of specific parts 
of the subsurface, e.g. a potential reservoir. It is therefore sufficient to invert only 
for the detail of such a target zone instead of inverting for the detail of the whole 
subsurface. Target oriented inversion is one of the key strategies that underlie the 
DELPHI scheme, pictured in Fig. 2-1, which consists of the following 6 modules: 

1a) Wave field decomposition of the multicomponent shot gathers into shot 
gathers that correspond to pure P- or S-wave sources and receivers, see 
Wapenaar et al. (1990). For the 2D case this means that the input gathers 
Ux't'xz, Uz't'xz• Ux't'zz and Uz't'zz are decomposed into PP, SP, PS and SS gathers, 
where the first symbol denotes the receiver type and the second symbol 
denotes the source type: 
't'xz, 't'zz: 

Ux, Uz: 

P: 
S: 

shear, tensile stress on a horizontal surface, 
horizontal, vertical particle velocity, 
P-wave potential, 
SV-wave potential. 

1b) Surface related multiple elimination. Since the free surface is a very strong 
reflector, the surface related multiples can completely mask the primary 
reflections from deeper interfaces. The elimination procedure consists of 
an adaptive direct inversion process, see Verschuur (1991). It uses the pre-
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stack data itself in the multiple prediction operator and therefore requires 
no knowledge about the subsurface. 

2a) Macro model estimation. The propagation through the subsurface is 
mainly determined by the macro velocity models (both for P- and 8-waves). 
The macro models are estimated with a focussing and/or imaging analysis, 
see Cox (1991). 

2b) True amplitude, prestack redatuming of the PP, PS, SP and SS shot gath­
ers, using the estimated macro models, see de Bruin et al. (1990). In this 
procedure, the propagation effects are removed from the data by direct 
inversion, and data acquisition just above the targetzone can be simulated. 

(multicomponen9 
shot gathers 

"" Decomposition in P- and 8-
waves 

• 
surface multiple elimination 

_1 ~ 
estimation P-wave estimation 8-wave 

macro model macro model 

j_ ~ 
redatuming P- redatuming 8-

response response 

_! .L 
elastic stratigraphic inversion 

.L 

lithologic inversion 

l 
rock and pore~ 
parameters 

Surface related 
preprocessing 

Macro-oriented 
inversion 

De-propagation 

Target oriented 
inversion 

Fig. 2-1 The hierarchical DELPHI scheme for elastic processing and inversion. 
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3a) Elastic inversion of the redatumed gathers. This is the module that is dis­
cussed in this thesis. 

3b) Lithologic inversion of the previously estimated elastic parameters for the 
rock and pore parameters, see Lortzer (1990), Lortzer and Berkhout 
(1992). 

Modules 1a) and 1b) are the surface related preprocessing steps. The parameters 
of importance are the source and receiver characteristics and the near surface 
properties. It is important to note that no information about the subsurface is 
needed. Modules 2a) and 2b) deal with the propagation properties (traveltime and 
amplitude) of the overburden. These are mainly determined by the macro proper­
ties of the subsurface. IDtimately, modules 3a) and 3b) aim at retrieving the 
detailed elastic and lithologic properties of the targetzone. 

The multiple elimination (1b) and redatuming (2b) steps are based on linear wave 
propagation, so that a direct inversion approach is appropriate. The macro model 
estimation (2a) and elastic and lithologic inversion (3a,b) are based on nonlinear 
forward models which calls for a data fitting inversion approach. 

(a) Acquisition surface (b) 

Simulated acquisition surface 

~1 a1 fh P1 

Az2 il2 P2 P2 

~3 a3 /33 P3 

~ /34 

a5 /35 

Fig. 2-2 (a) 7Wo-dimensional subsurface model with target zone. The dotted lines indicate the 
redatuming levels. (b) At the redatuming level, (the simulated acquisition surface) the 
targetzone looks like a ID model. 

---------------------------------
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2.2 Concept of a locally lD target 

Consider the 2D subsurface model pictured in Fig. 2-2a. Treating the surface data 
with lD processing and inversion algorithms would certainly lead to erroneous 
results. It will be argued now, that, given appropriate preprocessing, it is still pos­
sible to make use of a lD elastic inversion algorithm for the targetzone. To that 
end, the redatuming level, see step 2a) of the DELPHI scheme, is chosen just above 
and parallel to the local layering of the targetzone as pictured in Fig. 2-2a. Subse­
quently, the redatumed data are reordered into CMP gathers. These two steps 
guarantee that the reflection point smear is small for the targetzone reflectors. In 
other words, the information in the CMP's is related to one lateral position. At the 
redatuming level, the CMP's are transformed to the p--r domain. As will be argued 
in Section 4.1, it is computationally advantageous to perform the inversion in the 
p-'r domain. Note that each reflectivity type (PP, PS, SP or SS) is independently 
redatumed to yield one CMP gather of the same type at the new datum. 

Assuming small conflicting dips within the targetzone, the targetzone can locally 
be parametrized by a lD elastic model, see Fig. 2-2b. This allows the use of a lD 
inversion algorithm for the data at a certain lateral position along the target. In 
the redatuming stage, one specifies the positions where the local p--r data are to be 
generated. Subsequently, the elastic inversion is carried out at these locations. Any 
combination of the four different reflectivity types can be used (e.g. PP only, PP and 
SS or all four). Finally, the individual solutions must be integrated to form a con­
sistent 2D (or 3D) targetzone model, see Fig. 2-3. 

Layered elastic target model 

DELPHI, 
step 3a 

Fig. 2-3 Integration oft he solutions at individual midpoints to form a 2D or 3D targetzone 
model. 
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The choice of inverting for a layered elastic model is an important one. An advan­
tage over gridded inversion is that layers with a thickness smaller than the domi­
nant seismic wavelength can be resolved. A second advantage is the smaller 
number of parameters, which generally leads to a better determined inverse prob­
lem. A third and major advantage is that the-geology based-parametrization in 
terms oflayers allows for the specification of geology based prior information. 

Although the proposed parametrization in terms of locally lD layered models 
should be quite adequate for many situations that are encountered in practice, 
there are some exceptions: 

• In structurally complex areas, e.g. with many faults, the lD assumption 
will not hold. 

• If it appears from logs that the elastic parameters show strong vertical gra­
dients within a layer or that important layers are just not homogeneous 
enough, the parametrization in terms of homogeneous layers is not accu­
rate. 
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3 Scattering of plane waves at 
a horizontal boundary 

In this chapter, the scattering of plane waves at a horizontal boundary between 
two homogeneous isotropic elastic media will be discussed, the term scattering 
denoting both reflection and transmission. The reflection and transmission coeffi­
cients that will be derived, are used in the forward modeling scheme that is dis­
cussed in Chapter 4. Approximation formulas, that give an insight in the 
dependence of the angle dependent reflectivity on the medium parameters are dis­
cussed at the end of the chapter. 

3.1 P- and S-waves 

In this section, the scattering matrix (i.e. the matrix that contains the reflection 
and transmission coefficients) for a horizontal interface between two homogeneous 
isotropic elastic media will be introduced. Besides compressional waves (P-waves), 
elastic media support the propagation of shear waves (S-waves). The terms P- and 
S- do not originate from pressure and shear but rather from global seismology 
because the P(rimary) waves propagate faster and are earlier recorded than the 
S(econdary) waves. Apart from the evanescent part of the wave field, P-waves are 
longitudinal waves, meaning that the direction of particle motion coincides with 
the direction of wave propagation. Under the same restriction, S-waves are trans­
verse waves, meaning that the direction of particle displacement is perpendicular 
to the direction of wave propagation. These properties are only valid in homoge­
neous isotropic elastic media. For a more extensive discussion, the reader is 
referred to Section 3.3.3. 

For two-dimensional media (i.e. the medium is invariant in they-direction), one 
can distinguish between two types of S-waves, depending on their polarization: 

• SH -waves are horizontally polarized, the particle motion is in the horizon­
tal (x-y) plane. 
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• SV-waves are vertically polarized, the particle motion is in the plane that 
is defined by the vertical and the direction of wave propagation. 

In this thesis, only line sources (in they direction) over lD or 2D media will be con­
sidered, see Fig. 3-1. Consequently, the elastic wave fields will also be invariant in 
they direction. In that case, the propagation ofSH-waves is an independent prob­
lem (no wave conversions), that can be described by a single, scalar wave equation. 
Although reflections ofSH-waves certainly exhibit angle dependence, a choice has 
been made for this research to consider only P- and SV-waves. 

3.2 The wavenumber--frequency and plane-wave domains 

Before continuing the discussion of the scattering of elastic waves, the definitions 
of the various domains that play a role in this thesis will be introduced. Since the 
discussion in this thesis is limited to elastic media and wave fields that bear no 
y-dependence, the spatially varying functions have only x- and z-dependence. The 
notation convention for the various domains that play a role in this thesis is sum­
marized in Table 3-1. Any function in the space-time domain (x, z, t) will be denoted 
by a lowercase symbol. The corresponding function in the space - frequency domain 
(x, z, OJ) will be denoted by the corresponding uppercase symbol. The corresponding 
function in the wavenumber- frequency (kx, z, OJ) domain will be denoted by the 
corresponding uppercase symbol with a tilde(-). To denote functions that depend 
on the horizontal slowness p, another typeface is used, see Table 3-1. Functions in 
the horizontal slowness - intercept time domain (p, z, 't') are denoted with a lower-

X 

Fig. 3-1 Line-source over an elastic medium of which the properties do not vary in the 
y-direction. 
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case symbol. The corresponding function in the horizontal slowness - frequency 
domain (p, z, OJ) is denoted by the corresponding uppercase symbol. 

The temporal Fourier transform of a space- and time dependent function is defined 
by: 

A(x,z,OJ) = a(x,z,t)e t. I -irotd (3-1) 

Considering only real functions a(x, z, t), it suffices to consider only positive fre­
quencies in the inverse temporal Fourier transform 

1 [+- l a(x,z,t) = ;Re [ A(x,z,OJ)eirotdOJ . (3-2) 

It is convenient to define the spatial Fourier transform with the opposite sign in 
the exponent as compared to the temporal Fourier transform 

(3-3) 

Its inverse is 

A (x,z, OJ) 1 I - -ik,x 

21t A (kx, z, OJ) e dkx. (3-4) 

Table 3-1 Notation convention for the different domains that play a role in this thesis. The 
quantities in the x-t, x-mand kx·mdomains are represented through the serif typefaces 'New 
Century Schoolbook' and 'Symbol'. The quantities in the p-1: and p-m domains are represented 
through the sans·seri{typefaces 'Helvetica' and 'New Greek Helvetica'. 

DOMAIN SCALAR VECTOR MATRIX 

(x, z, t) a, f, lP. 1fl a, f, ~. 1fl not used 

(x, z, OJ) A, F, 4t 'l' A,F,<r>,'P not used 

(kx, z, OJ) .A,ff,lb,lfr .A,i,dl, .P A,:F,«i»,-P 
(p, z, t') a, f, cp, tJI a, f, tp, 1/1 not used 

(p, Z, OJ) A, F, f/>' (J.J A, F, fJ, cp A, F, ~.'II 
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This sign convention causes a plane-wave with positive kx to propagate in the pos­
itive x-direction. Besides the wavenumber- frequency domain, the horizontal slow­
ness - frequency (p, z, ro) domain is convenient for the derivation of the scattering 
matrix. The horizontal wavenumber kx is related to the horizontal slowness p 
through 

kx=mp. (3-5) 

A function in the (p, z, ro) domain can simply be derived from the corresponding 
function in the (kx, z, ro) domain by substituting (3-5) for kx: 

A(p, z, ro) = A.(rop, z, ro). (3-6) 

Applying an inverse Fourier transform to A(p, z, ro) over ro yields the corresponding 
function in the horizontal slowness- intercept time (p, z, -r) domain: 

1 [+- l a(p,z,r)=;Re [A(p,z,ro)eiandco. (3-7) 

It is interesting to note that a(p,z,t) can also be obtained by the well-known slant­
stack procedure. From (3-3) and (3-6) it follows: 

+-

A(p,z,ro) = J A(x,z,m)irupxdx. (3-8) 

Applying an inverse temporal Fourier transform to both sides and making use of 
the shift property, yields the slant-stack expression: 

+~ 

a(p,z, r) = J a(x,z, r + px)dx. (3-9) 

Note that the depth dependence is explicitly expressed in the above definitions. 
Often, one wants to describe registrations on a certain horizontal acquisition sur­
face. For convenience, the z-dependence is then omitted from the notation. 

3.3 Elastic wave equations 

3.3.1 Definition of the Lame potentials for P- and 5-waves 

The various reflection and transmission coefficients are most easily defined in 
terms of the so-called Lame potentials for P- and 8-waves. Following appendix B 
of Wapenaar et al. (1990), the elastic wave equation for the particle velocity in a 
homogeneous elastic medium reads in the space - frequency domain: 

(A. + 2,u) V( V · V)- .u V x V x V + pro2V = 0, (3-10) 
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where A and J.l are the Lame coefficients. 

In order to arrive at separate wave equations for P- and S-waves, the velocity is 
defined in terms of the Lame potentials tP and Y'( '!'is a 3x1 column vector): 

1 
V=--. -(VtP+ Vx '1'). 

UJJp 
(3-11) 

The factor -(iropr1 is different with respect to the usual definition. It is used here, 
because it makes tP equal to the acoustic pressure in the limiting case of J.l--+0, i.e. 
an acoustic medium. Substitution of(3-11) in (3-10) yields: 

(3-12) 

Since the velocity has three components and tP and Y' together have four compo­
nents, equations (3-11) do not uniquely define the Lame potentials. In order to do 
so, the convenient choice is made that both terms within braces in (3-12) are zero: 

(3-13a) 

(3-13b) 

Applying the divergence operator to (3-13b) and making use of the general relation 
V. ( V x f) = 0 , yields 

V· '1'=0, (3-14) 

which is the result of the particular choice that was made before. Relation (3-13b) 
can be simplified by making use of the general property 

-Vx Vxf+ V(V·f)= V2f. (3-15) 

Because V· '1'=0, it follows that Vx Vx 'l'=-V2 '1', so that (3-13b) transforms 
into: 

The definitions of the P-wave velocity a and S-wave velocity f3 are given by: 

a= ~(A+ 2p)fp, 

f3 = ~J.lfp. 

(3-16) 

(3-17) 

With (3-17), equations (3-13a) and (3-16) can be rewritten in the familiar form of 
the independent wave equations for P- and S-waves in homogeneous, isotropic 
media: 
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(3-18) 

As was mentioned before, the elastic models and wave fields that are considered in 
this thesis are invariant in they direction. Because only P- and SV-waves are con­
sidered, there is no particle motion in they direction. Because Vx(V<P)=O (this 
is a general property), applying the rotation operator to (3-11) yields: 

1 
VxV = --. - Vx Vx '1'. 

lWp 

Together with (3-13b), the following simple relation results: 

VxV = im 'I' 
J.l. 

Expanding the rotation of the velocity field yields: 

JVz _ JVY 

o/=(i)=~ 
dy ()z 

dVx _ dVz 
y lW ()z dx 

'l'z dVy _ dVx 
dx dy 

(3-19) 

(3-20) 

(3-21) 

Since Vy and all derivatives with respect toy are zero, it follows that '~'x= '1'2=0 and 
that 'l'y completely describes the SV-waves. For convenience, the subscript y will 
be dropped and the scalar If'(= 'l'y) will denote the SV-wave potential. In the 
remainder of this thesis, the term S-wave will be used to indicate an S-wave with 
SV polarization. 

3.3.2 Downgolng and upgolng P- and S-waves 

Using the definition (3-4) of the inverse spatial Fourier transform and relation 
(3-5) between kx and p, it follows that the transform pair for the x-derivative of a 
function is given by: 

~ A(x,z,m) H -impA(p,z,m). (3-22) 

Using (3-22), (3-18) reads in the horizontal slowness- frequency domain (p, z, m): 
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(3-23) 

Similar as above, the scalar I.IJ =I.IJy is defined as the only non-zero element of the 
S-wave (vector) potential C/1: 

(3-24) 

The general solution is comprised of downgoing and upgoing P- and 8-waves: 

(/) = cp+ + cp-' 

I.IJ= w + vr, (3-25) 

where a superscript'+' indicates that the wave is traveling downward in the posi­
tive z-direction. Likewise, a superscript '-' indicates that a wave is traveling 
upward in the negative z-direction. The downgoing and upgoing waves that satisfy 
(3-23) are defined by: 

cp±(p,z,m) = Aj exp{+icazpz}, 

W(p,z,m) = A~exp{+iaq8z}, (3-26) 

where the factors A are arbitrary complex constants andqp and q8 are the vertical 
slownesses ofP- and S-waves respectively, which obey: 

P2 +q! = l/a2, 

p2 + q~ = 1/ {32. 

3.3.3 Propagating and evanescent plane waves 

(3-27) 

One can distinguish between propagating and evanescent plane waves. Propagat­
ing waves have a horizontal phase velocity p-1 that is larger than or equal to the 
corresponding propagation velocity (a or {3). They are also called homogeneous 
plane waves, because the amplitude is constant over a wavefront, the latter one 
being defined as a surface of constant phase. In accordance with (3-26), the hori­
zontal slownesses of propagating waves are defined as real, positive quantities: 

q P = ~ 1/ a2 - p2 for p2 s.l/ a2 , 

q s = ~ 1/ {32 - p2 for p2 s.l/ {32 . (3-28) 
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Evanescent or inhomogeneous waves have a horizontal phase velocity p-1 that is 
smaller than the corresponding propagation velocity. For theses waves, the verti­
cal slownesses are defined as negative imaginary quantities: 

qP = -i~ p 2 -1/ a2 for p 2 > 1/ a2
, 

qs = -i~ p2 -1//32 for p2 > 1//32. (3-29) 

Substituting (3-29) in (3-26), it follows that the amplitude of a "downgoing" evanes­
cent wave decreases exponentially with increasing depth. This is only true for pos­
itive frequencies, but then, only positive frequencies are considered in the 
definition of the inverse temporal Fourier transform (3-2). Likewise, the ampli­
tudes of an "upgoing" evanescent wave decrease exponentially with decreasing 
depth. Note that evanescent waves cannot exist in an unbounded source-free 
homogeneous elastic medium because of the exponential depth dependence. 

The terms "downgoing" and "upgoing" are somewhat inappropriate for evanescent 
waves, because their wavefronts propagate horizontally. The amplitude over a 
wavefront is not constant (exponential depth dependence), hence the term inhomo­
geneous waves. As will be shown in Appendix A, an evanescent P-wave is not a 
pure longitudinal wave because its particle motion has a a nonzero z-component. 
Likewise, an evanescent 8-wave is not a pure transverse wave, because its particle 
motion has a nonzero x-component. 

For an extensive discussion of propagating and evanescent waves, the reader is 
referred to Wapenaar and Berkhout (1989), Section 1.4.2. 

az, /3z, Pl 

(/)+ 
u 

z =zo 

Fig. 3-2 An incident P-wave in the upper half-space causes reflected ((/)u -, lPu -)and 
transmitted ((/)l +, lPtJ waves. The subscripts u and l denote upper and lower half-spaces. 
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3.4 Definition of the scattering matrix 

Consider an interface between two elastic half-spaces, as pictured in Fig. 3-2. An 
incident P-wave (C/Ju +)will cause reflected and transmitted P- and S-waves. The 
reflection and transmission coefficients are defined in terms of the potentials: 

(/J~(p,zo,OJ) = Rft(p)l/J:(p,zo,w)} 
Reflection 

1./{(p,zo,OJ) = R2t(p)l/J; (p,zo,w) 

l/J{(p,zo,w) =Tit (p)l/J; (p,zo,ro)} 
Transmission 

11/{(p,zo,w) = T2i (p)l/J;(p,zo,w) 

(3-30) 

The incident and scattered waves are defined at z0 , the depth of the interface. The 
subscripts u and l indicate wether the particular wave propagates respectively in 
the upper or lower half-space. As will be shown in Section 3.5, the scattering coef­
ficients are independent of frequency. All waves in Fig. 3-2 obey Snell's law, i.e. 
they all have the same horizontal slowness p, also called the ray parameter: 

sinif>u sinlj)z sin lflu sin lfll p=--=--=--=--
au az f3u f3z . 

(3-31) 

The reflection and transmission coefficients are actually elements of reflection and 
transmission matrices. The general case of scattering of plane waves at an inter-

al, f3l, Pl 

vr u 

Fig. 3-3 The general case of scattering of plane waves at a lwrizontal interface between two 
elastic media. At the left are the four incident waves; at the right are the four scattered waves. 
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face between two elastic half-spaces is pictured in Fig. 3-3. Incident P- and 
S-waves exist in both half-spaces. 

It is convenient to group the downgoing and upgoing waves in 2xl vectors lP and 
o- respectively: 

(3-32) 

The 4x4 scattering matrix is then defined by: 

(3-33) 

Scattering matrix 

As pictured in Fig. 3-3, the 2x2 submatrices R+ and r describe respectively reflec­
tion and transmission of a downgoing wave field in the upper half-space. The same 
is true for 2x2 submatrices R- and I, but now for an upgoing incident wave field 
in the lower half-space. If there is only an incident P-wave in the upper half-space, 
lPu + is the only nonzero element of the incident-wave vector, and the system of 
equations (3-33) reduces to (3-30). 

3.5 Derivation of the scattering matrix 

The scattering matrix for the P-SV problem of a plane interface between two homo­
geneous isotropic elastic media follows from the boundary conditions at the inter­
face, which state that the particle velocity and the traction be continuous. In this 
section, the relations between the total elastic wave field (in terms of particle veloc-

(a) 

Fig. 3-4 Definition of the sub matrices of the scattering matrix. (a) Scattering of an incident 
wave field (P and S) in the upper half-space. (b) Scattering of an incident wave field (P and 
S) in the lower half-space. 
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ity and traction) and the one-way wave fields (in terms of the Lame potentials) will 
be derived. From these relations, an expression for the 4x4 scattering matrix can 
be derived. 

3.5.1 Composition and decomposition matrices for elastic wave fields 

The derivation of the composition and decomposition matrices that is given here, 
is largely based on Appendix B of Wapenaar et al. (1990) and Chapter IV of Wap­
enaar and Berkhout (1989). One difference is that here only particle motion in the 
x-z plane is considered (i.e. the P-SV problem). A second difference is that Wap­
enaar's expressions are in the kx-W domain, whereas the ones here are in the hor­
izontal slowness- frequency domain. This has the advantage that the frequency 
drops out of the relations for the (de)composition matrices. 

Since only the P-SV problem is considered, there is no wave motion in the y-direc­
tion. Neither do the wave fields vary as a function ofy. So, the velocity v and the 
traction 'C both have two components: 

(
vx(x,z,t)) 

v(x,z,t) = ( ) , 
Vz x,z,t 

(3-34a) 

(
'rxz(X,z,t)) 

'f(x,z,t) = ( ) . 
'Czz x,z,t 

(3-34b) 

With definition (3-34a) and transform pair (3-22), it follows that relation (3-11) 
which relates the particle velocity to the Lame potentials reads as follows in the 
horizontal slowness- frequency domain (p, z, w): 

-1 [-ipw4J- (}liJJ 
V=- (}z 

iW"' ()4) · "' . "" --zpw.,., 
()z 

The z-derivatives of the up- and downgoing wave fields follow from (3-26): 

~ 4J±(p,z,w) = +ioxzp4J±, 

~ W(p,z,w)=+iwq8 W. 

(3-35) 

(3-36) 

Substituting (3-25) in (3-35) and making use of(3-36), yields the following relation 
for the composition of the particle velocity from down- and upgoing P- and S-wave 
potentials: 

(3-37) 
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with the composition matrices defined by: 

L± = .!( p =FpqB). 
1 p ±qp 

(3-38) 

The relation between the traction and the velocity in the space - time domain 
(x, z, t), see Wapenaar and Berkhout (1989), p69, reads as follows: 

(3-39) 

Using the transform pair for the temporal derivative 

~ a(x,z,t) H imA(x,z,ro), (3-40) 

and transform pair (3-22) yields the corresponding relation for the traction in the 
horizontal slowness - frequency domain: 

[ 
avx · v J J.L-a;- - zropJ.L z 

T= av · 
-iropA.y., +(A. +2J.L) i)zz 

(3-41) 

Substituting (3-35) for the velocity in (3-41) and making use of the relations (3-36) 
for the z-derivatives yields the following expression for the composition of the trac­
tion from downgoing and upgoing P- and S-waves: 

T =LiD++ L2D- , 

with the composition matrices defined by: 

L~ = f32(+2pqP q~- p2). 
p2 -q~ =F2pqs 

(3-42) 

(3-43) 

Relations (3-37) and (3-42) can be combined to yield the composition of the total 
elastic wave field from downgoing and upgoing P- and S-waves: 

(v)=(L~ LJ:JD+) 
..!_ L~ L2 o-
Q L p 

(3-44) 

or 



Scattering of plane waves at a horizontal boundary 29 

Q= LP. (3-45) 

Decomposition of the total elastic wave field into downgoing and upgoing P- and 
S-waves is achieved by the inverse of (3-44): 

(o+) = (Nt N~)(v) 
o- Ni N2 T 

(3-46) 

or 

P=NQ, (3-47) 

with N = L -l. The expressions for the decomposition matrices are given by: 

(3-48) 

and 

(3-49) 

3.5.2 Boundary conditions 

At a boundary between two elastic media, the traction and particle velocity vectors 
have to be continuous. Fig. 3-3 shows the general situation of four incident and 
four scattered waves. The boundary conditions state: 

lim(V(p,z,ro)) = lim(V(p,z,ro)) 
zJ..z0 T(p,z,ro) ziz0 T(p,z,ro) · 

(3-50) 

Denoting the limits in the upper and lower half-space with the subscripts u and l 
respectively and making use of (3-44) yields: 

( ~~:: ~~::X ~f) = ( ~i: ~~::X ~f l (3-51) 

After rearranging terms, the following relation for the scattering results: 

(~n = ( ~~: ~~J( ~~: ~~:r~n. (3-52) 

4x4 scattering matrix 

which can be compared with (3-33): 
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(3-53) 

After some manipulations, the following expressions result for the 2x2 submatri­
ces of the scattering matrix: 

(3-54a) 

+ ) ""( + + )-1 T (p = £.J N;,uli,l , (3-54b) 
i=l,2 

(3-54c) 

r(p) = L(Ni,zLi,ut. 
i=l,2 

(3-54d) 

Explicit expressions for the sixteen elements of the scattering matrix can be found 
in Cerveny and Ravindra (1971) and Aki and Richards (1980). In both references, 
however, the scattering matrix is defined in terms of particle displacements rather 
than potentials. In Appendix A, relations are developed between the two types of 
scattering coefficients. In appendix B, explicit expressions for the potential coeffi­
cients are given. 

3.6 Some properties of the scattering coefficients 

3.6.1 Dependence on the elastic parameters 

The explicit expressions for reflectivity and transmission of Appendix B are useful 
for an efficient computer implementation. However, some basic properties of the 
scattering coefficients can not easily be observed from these expressions. To reveal 
these properties, the system of equations that determines the scattering coeffi-
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cients for the case of Fig. 3-2, an incident P-wave in the upper half-space, is given 
below: 

sinlf>u au _puau sinif>l Puau cos 'l'l rii( 1/>u) -sinlf>u f3u COS 'lfu 
Plal Ptf3t 

-coslf>u au . _puau COSI/>t - Puau sin 'I' I '2+1( lf>u) -coslf>u -Sln 'l'u 
f3u pzaz Ptf3t 

sin21f>u 
a2 a2/32 a2 

til(lf>u) sin21f>u ---fcos2'1fu --1LLsin21{>z -......!Lcos2'1fz 
f3u a2/32 {3~ l u 

COS2l/fu -sin2'1'u -COS2l/fz -sin2'1'1 t~l( 1/>u) -coS2'1fu 

(3-55) 

These equations have been derived from the general case as given e.g. by Aki and 
Richards (1980) and by substituting the relations between particle velocity and 
potential coefficients that are given in Appendix A. The corresponding equations 
for the particle displacement coefficients are widely known as the Zoeppritz equa­
tions. 

Note that the scattering coefficients in (3-55) are defined as a function of the inci­
dent angle if>u instead of the ray parameter. All other angles are related to if>u 
through Snell's law (3-31). This means that all angles are related to each other 
through the ratios of the velocities. Note that also in the other terms of(3-55) only 
velocity ratios appear. Also the densities appear solely in the terms as the ratio 
Pulpz. This means that the scattering as a function of the angle is completely deter­
mined by three velocity ratios (e.g. aulaz, f3ufau and f3zlaz) and the density ratio 
Pul pz. Of course, any other set offour parameters that is uniquely related to these 
four can equally well be considered to completely determine the angle dependent 
scattering. This result is not limited to the four scattering coefficients of(3-55), but 
is true for all sixteen scattering coefficients. 

When considering the scattering as a function of the ray parameter instead of the 
incident angle, the absolute velocities become important. This is because the ray 
parameter is the ratio of the sine of the angle and the absolute velocity. So, the 
p-dependent scattering is effectively determined by five parameters: the four veloc­
ities and the density ratio. 

3.6.2 Approximation formulas 

The general behavior of the reflection coefficients as a function of the incident 
angle and the way they depend on the medium parameters can not easily be envis­
aged from the exact expressions of Appendix B. Fortunately, approximation formu­
las exist, that provide a good insight in the behavior of the reflectivity. Such 
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formulas have been published by a.o. Bortfeld (1961), Aki and Richards (1980) and 
Shuey (1985). The approximations are accurate for small parameter contrasts. 
They are not valid for postcritical angles. 

The published approximations are linear in the relative parameter contrasts 
&/x , with: 

t1x = x1-xu, 

x = ,%(xl +xu), (3-56) 

where xu and xz are the values of parameter x above and below the boundary. Aki 
and Richards (1980), give approximate expressions for all scattering coefficients. 
Only the approximations of the four reflection coefficients for an incident P- or 
S-wave in the upper half-space are reproduced below: 

rPP((ii) = Rit(p)"" ~(1- 4/.Pp2) L1_P + \ L1a 4jJ2p2 L1J!, 
p 2cos 4J a f3 

rsp (ii)) = RiMP) "" - p 7J-[( 1- 2JJ2 p2 + 2jj2 co~ iii co~ iii) L1_P 
2cos 'If a f3 p 

-( 47J2 P2 _ 4ip co; iii co; iii) t]. 
(-) _ R+ ( ) _ pa [(1 213-2 2 213-2 cos iii cos iii) L1p r s 'I' - 12 P - --- - P + ----=-~ -=-

P 2cos4J a /3 p 

+ ( 4-p2 p2 _ 4p2 co; iii co; iii )-1 J. 

rss(iii)= R22(p)"" _%(1-4jJ2p2)~ +( 1
2 _ 4jJ2p2 )L1/3J!, 

p 2cos 'I' 

with the average angles iii and iii defined by: 

iii= }12( 4Ju + 4Jt ), 

iii=~( 'l'u + 'l'z). 

(3-57a) 

(3-57b) 

(3-57c) 

(3-57d) 

(3-58) 

The original expressions of Aki and Richards (1980) are given in terms of particle 
displacements and the conversion relations of Appendix A have been used to trans­
form them into the potential coefficients of(3-57a-d). Note that a less formal nota­
tion has been introduced for the reflection coefficients: rpp• rsp• rps and r88 , where 
the first subscript denotes the type of reflected wave and the second subscript 
denotes the type of incident wave. 
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The PP approximation 

Looking at these approximations, it is readily apparent that only the PP reflectiv­
ity depends on the relative contrast lla/a of the P-wave velocity. The other three 
reflectivity types depend only on the relative contrasts inS-wave velocity and den­
sity. Making use of p = sin~ ta and the exact relation 1 I cos2 ~ = 1 +tan 2 ~, the 
expression for the PP reflectivity can be written as: 

(3-59) 

fluid factor shear factor 

In analogy with Hilterman (1983), the first (combined) term is called the fluid fac­
tor, since it is an approximation of the reflectivity of a fluid-fluid boundary, i.e. the 
acoustic reflectivity. The second term is called the shear factor, since it is propor­
tional to the relative contrast of the shear modulus Jl, one of the Lame coefficients. 
With (3-17), it follows J1=ptf2, so that the relative J1 contrast is given by: 

(3-60) 

For "normal" geologic layers, the magnitudes of the velocities and the density are 
correlated, so that the relative contrasts in a, {3, and p will generally have the same 
sign. This means that the multipliers of the sin2 and tan2 terms in (3-59) have gen­
erally opposite signs, implying that the angle dependence of the elastic contrast is 
smaller than that of the corresponding acoustic contrast (same P-wave velocities 
and densities, zeroS-wave velocities). Using sin2 ~ = tan2 ~ and assuming a typi­
cal value of 7J /a=_% in (3-59) yields: 

rpp(~) = x( ~ + tl: )+ x(tl:-~ -21}in2 ~, (3-61) 

which shows clearly the opposite effects of fluid and shear terms. 

As was already mentioned in Section 1.1, the strong angle dependence of reflec­
tions from gas sands has been one of the main reasons for the industry's interest 
in AVO techniques. This strong angle dependence can be easily explained with the 
above approximation formulas. As described in e.g. Ostrander (1984), gas fill 
strongly reduces the compression modulus k 

k =.It+ 2J1 3 , (3-62) 

whereas the shear modulus J1 remains practically constant. Since the P-wave 
velocity can be written as 
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a= ~k + 4J1./3 
p ' (3-63) 

the gas fill will cause a strong decrease in P-wave velocity. Considering a boundary 
between a gas-filled and a brine-filled sand, this causes a negligible shear factor in 
(3-59) that will hardly influence the strong AVO behavior due to the large P-wave 
velocity contrast (the tan2 ~ tenn). 

The SS approximation 

Using P "" sin iii /Ji and the exact relation 1 I cos2 iii = 1 +tan 2 iii, the expression for 
the SS reflectivity (3-57d) can be written as: 

(3-64) 

Assuming again parameter contrasts of the same sign, the nonnal incidence term 
and the sin2 term have opposite signs. Because the multiplier of sin2 iii is between 
3 and 4 times larger than the normal incidence term, the SS reflectivity will usu­
ally exhibit a polarity reversal at a certain angle. Although possible, this is quite 
uncommon for PP reflectivity. 

A second important observation is that for parameter contrasts of the same sign, 
the angle dependence of the SS reflectivity is much larger then that of the PP 
reflectivity, as can be seen by comparing the sin2 terms in (3-61) and (3-64) 

3.6.3 Examples 

It is instructive to plot some reflectivity curves in order to demonstrate some of the 
properties that have been derived in the previous section. Table 3-2 defines the 
elastic parameters of the models that will be used for the examples. Note that mod­
els 3 and 4 are obtained from models 2 and 1 by simply interchanging the upper 
and lower half-spaces. Likewise, models 7 and 8 are obtained from models 5 and 6. 
Models 1-4 are chosen such that 11/3/Ji = U,11a/a and 11p/p = 0 so that the tan2 

and sin2 terms in (3-59) will approximately cancel each other. The resulting exact 
and approximated PP reflectivity curves are shown in Fig. 3-6. The angle depen­
dence is indeed very small for angles up to 35•. It is also apparent that for precrit­
ical angles, the difference between the approximated and the exact reflectivity 
curves is negligible. The PP reflectivity curves of models 1 and 2 exhibit critical 
angles at <f>u=arcsin aulaz. Beyond these angles, the reflectivity becomes complex 
valued and is not plotted anymore in Fig. 3-5. 
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Models 5-8 have the same P-wave velocities as models 1-4. However, the S-wave 
velocity and the density are now anticorrelated with the P-wave velocity: 
11/3/13 = -.1a/a and !Jpfp = -lf211aja. According to (3-59), this should lead to a 
pronounced amplitude increase with offset, which can indeed be observed from 
Fig. 3-6. Now there is a marked difference between the approximated and the 
exact reflectivity, although the approximation is still very accurate. 

The accuracy of the approximation formulas is often not as good as pictured in Fig­
ures 3-5 and 3-6. Many elastic models with parameter contrasts comparable to the 
ones shown here, will have a larger error in the approximated reflectivity, see Bort­
feld (1961), Fig. 5. Another factor that contributes to the accuracy is that the 
approximated reflectivity is plotted as a function of the true incident angle t/Ju 
rather than as a function of the average angle (ij as defined by (3-58). When 
approaching the critical angle, the difference between these two becomes large. 

Of model 5, the amplitude and phase of the four different reflectivity types (PP, PS, 
SP and SS) are plotted in Fig. 3-7. Note that the SS reflectivity has two critical 
angles at 'l'u = arcsin f3ilXu and 'l'u = arcsin f3ufaz, respectively 38.T and 30·. At 
these angles, the converted P-waves in the upper respectively lower half-spaces 
become evanescent. Only when f3u<f3z, the SS reflectivity has a third critical angle 
at arcsin f3ulf3z. The zero crossing of the SS reflectivity, predicted by (3-64) is at 
26.5". Note that in the limit of t/Ju or 'l'u approaching 90·, the reflection coefficients 
rpp and rss are real and equal to -1. At this limit, there are no wave conversions; 
rsp =rps= 0. 

Table 3-2 The elastic parameters of the 'dual half-space' elastic models. 

Model 
f3u f3t No. au at Pu Pt O"u CYt 

1 0.8 1.0 0.447 0.500 1.00 1.00 0.273 0.333 

2 0.9 1.0 0.474 0.500 1.00 1.00 0.308 0.333 

3 1.0 0.9 0.500 0.474 1.00 1.00 0.333 0.308 

4 1.0 0.8 0.500 0.447 1.00 1.00 0.333 0.273 

5 0.8 1.0 0.500 0.400 1.00 0.89 0.179 0.405 

6 0.9 1.0 0.444 0.400 1.00 0.95 0.339 0.405 

7 1.0 0.9 0.400 0.444 0.95 1.00 0.405 0.339 

8 1.0 0.8 0.400 0.500 0.89 1.00 0.405 0.179 
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Fig. 3-5 Exact and approximated precritical PP reflectivity curves for models 1-4. The 
approximated and exact reflectivity curves practically overlie each other. 
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Fig. 3-6 Exact and approximated precritical PP reflectivity curves for models 5-8. 
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4 Forward modeling in the horizontal 
slowness - frequency domain 

4.1 Introduction 

As was already mentioned in Chapter 2, the horizontal slowness - intercept time 
domain (p-1:) has been chosen for the inversion. Since the iterative nonlinear inver­
sion procedure requires several forward modeling steps, it is important that the 
forward modeling is fast. Because of the full-waveform character of the inversion 
procedure, it is also important that the forward modeling correctly models phase 
shifts due to postcritical reflection as well as multiples and conversions. The 
so-called reflectivity method in the p-1: domain satisfies these two requirements. 

It is computationally advantageous to remain in the slowness domain. As will 
appear later, an integration over the ray parameter (or equivalently, horizontal 
wavenumber) is required to obtain the response in the x-t domain. For this inte­
gration, the ray parameter needs to be densely sampled to prevent aliasing in the 
x-direction. Since five parameters determine the reflectivity of an elastic boundary, 
see Section 3.6.1, only five traces with different ray parameter would theoretically 
suffice to estimate the elastic parameters of a layered model. In practice, one will 
use more traces in order to suppress noise, but the number of traces (say 10-25) 
will be typically more than ten times smaller then the number of traces that would 
be required for an inverse transformation. 

4.2 The reflectivity method 

4.2.1 Introduction 

The reflectivity method was originally developed by Fuchs (Fuchs 1968) to calcu­
late the x-t response of a medium with arbitrary depth dependent properties. In 
the original algorithm, the source is supposed to be located in either a top or bot­
tom half-space. Later, extensions have been developed to allow for a free surface 
and an arbitrary source location within the lD model, see MUller (1985). Kennett 
( 197 4) developed an elegant recursive formulation for the 1D problem. In Berkhout 
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(1982), Chapter 6, it is demonstrated that the same recursive formulation can also 
be applied to the general case of an inhomogeneous medium with arbitrary source 
and receiver positions. 

For the inversion application that is discussed here, the data have been obtained 
through a redatuming procedure and it can be assumed that the source and receiv­
ers are effectively located in an upper half-space. Furthermore, it will be assumed 
that the (target) medium consists of a stack of homogeneous elastic layers with 
arbitrary thickness. The general situation of a stack of layers between two 
half-spaces is pictured in Fig. 4-1. As can be expected, the notion of reflectivity 
plays a crucial role in the reflectivity method. For downgoing incident waves in the 
upper half-space, the 2x2 global reflectivity matrix G is defined at any level z 
within the layered medium by: 

o-(p,z,ro) = G(p,z,ro)D+(p,z,ro), (4-1) 

Zo (acquisition surface) 
-----------------------------------------

a! /31 PI L1z1 
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~ ~ P2 ..1~ 
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Fig. 4-1 Layered medium consisting of N-1 
homogeneous layers between two half-spaces. 
Note that the interface indices run from 1 up 
toN. 

layer i 

P;,u ' P;,z 

layer i+l 

layer i+2 

Fig. 4-2 The wave fields P=(~+,IIJ+,~,-cp-j 
are defined at the interface locations as the 
limits coming from above (u) and below (l) 
the interface. 
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with o±""(cp±,(JJ±)t. The tenn global reflectivity is used as opposite to local reflectiv­
ity, i.e. the reflectivity of a single boundary. The reader is referred to Table 3-1 on 
page 19 for the notation convention. The global reflectivity matrix at level z 
describes all reflections (including multiples and conversions) that occur below z. 
Assuming that the source and the receivers are located at level z0 within the upper 
half-space, the plane-wave response of the stack of layers is given by G(p,z0,w). 
Using kx""PW, a double inverse transform yields the response in the x-t domain: 

d(x,z0 ,t)"" ---\-Re[j dweiox j d!!_!!!, G(p,z0 ,w)S(p,w)e-iwpx], (4-2) 
2n o -~ k 

X 

where Sis the source function. The integral over p requires an adequately small 
sampling to give an accurate, unaliased x-t section. As mentioned before, the inver­
sion procedure uses p--r data and therefore the integration over p is not needed. 
The p--r data are simply obtained by an inverse temporal Fourier transform: 

(4-3) 

Note that the source functionS is a 2x1 vector with a P-wave and an S-wave com­
ponent. By using a pure P-wave and a pure S-wave source consecutively, the four 
reflectivity gathers (PP, SP, PS and SS) are obtained. Note that exactly these four 
gathers are the output from the redatuming step in the DELPHI scheme of Fig. 
2-1. 

The main problem that needs to be addressed is the calculation of the global reflec­
tivity matrix. In Section 4.2.2, a simple procedure will be introduced, that allows 
a simple formulation of the global reflectivity. Unfortunately, this procedure is 
numerically unstable for the evanescent part of the wave field. A stable recursive 
formulation, due to Kennett (1974), will be discussed in Section 4.3. The latter 
algorithm will be used in the forward modeling part of the iterative elastic inver­
sion. 

4.2.2 The propagator method 

A conceptually simple scheme to calculate the reflectivity makes use of the 
so-called propagator matrices, originally introduced by Haskell (1953), see also 
Gilbert and Backus (1966). The method is usually presented in terms of stresses 
and particle velocities, but in this section, the potentials for up- and downgoing 
waves are used. 

Considering Fig. 4-2, it is supposed that the wavefield Pi+l,u just above boundary 
i+1 is known. As defined by (3-44), the 4x1 vector p;:;;((/J+, 11ft ,t/r, W)t contains both 
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up- and downgoing P- and S-waves. First, the wavefield is propagated upwards 
through layer i+l to a level just below the boundary i. With relation (3-26), it fol­
lows that the wavefield extrapolation can simply be accomplished with: 

(4-4) 

with 

W· =(Ftt-1 0 ) 
~+ 1 o w;- ' 

1+1 

Ft = diag{expilirlp,iL1zi ,eilirls,iL1zi }, 

w;- = diag{exp -illr[p,iL1zi ,e -ilirls,iL1zi }. L1zi = zi -zi-1• 
(4-5) 

where the vertical slownesses Qp, q 8 are defined by (3-28) or (3-29). 

Pi,l can be easily transmitted upwards through the boundary by making use of the 
boundary conditions (3-50) that state that the particle velocity and the traction be 
continuous. Making use of the composition relation (3-45), the upward transmis­
sion through boundary i is established with: 

(4-6) 

where the subscripts u and l denote the limits approaching from above and below 
the boundary: 

P;.u =lim P(p,z,m), 
· ztz; 

P; 1 =lim P(p,z,m). 
' z!z; (4-7) 

The composition matrices L only depend on the medium parameters (not on depth 
within the layer) and are subscripted with the layer number. 

Relations (4-4) and (4-6) together propagate the wavefield P exactly one layer 
upward. A repeated application of these equations, starting with Pi,l just below the 
deepest boundary, yields the following expression for the wavefield at the acquisi­
tion level z0: 

N 
P(p,zo,m)= Po= TI[W;Li~i+1]PN,l 

i=1 ' 
(4-8) 

X 
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with the obvious order for the matrix multiplications, i=1 on the left and i=N on 
the right. In order to obtain the global reflectivity at the surface, the "bottom to 
top" propagator matrix X is calculated. Using P=(o+, trl in (4-8) results in: 

( ~n = (~~: ~~:x ~t:J. (4-9) 

In the lower half-space, only downgoing waves can exist, so that D!v 1 = 0 . After 
elimination of D"N,t, the following relation results: ' 

D(j = X21X!~D6,t, (4-10a) 

so that the global reflectivity at the surface is given by: 

(4-10b) 

Unfortunately, (4-8) is numerically unstable for the evanescent part of the wave 
field. This is due to the inverse extrapolation operator F i + that has to undo the 
exponential decrease of amplitude with depth for the evanescent part of the down­
going wave field. For an evanescent P-wave in layer i, the vertical slowness Qp,i 

becomes imaginary according to (3-29), yielding 

(4-11) 

which is a real positive quantity that is larger than unity. To illustrate that this 
factor can easily get very large, the following example is given: Assume a layer of 
250m thickness with a=2000mls and /J=1000m/s and choose p such that the 
P-wave is evanescent while the 8-wave propagates under 45 degrees with the nor­
mal. At a frequency of 60Hz, equation ( 4-11) results in Ft (1, 1) = 2. 9 x 1020 so that 
small numerical errors will blow up. For the propagating 8-wave however, the 
action ofF/ is a mere phase shift. A numerical solution has been developed 
(Dunkin 1965) that involves the so-called Haskell-Dunkin 6x6 matrices, see Phin­
ney et al. (1987). However, the elegant recursive procedure due to Kennett (1974) 
is preferred here, since it requires a smaller programming effort and has a smaller 
operations count. 

4.3 Recursive reftectivity algorithm 

4.3.1 Theory 

In the method of the previous section, the total wavefield in terms of up- and down­
going waves is propagated upwards. In the recursive method of Kennett (1974), 
one can say that the global reflectivity matrix is "propagated" upwards. 
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Considering Fig. 4-1a, suppose that the global reflectivity just above boundary i+ 1 
is known: 

(4-12) 

The reflectivity is first propagated upward through layer i+ 1, i.e. from level A to B. 
With cF:(rt>±-,(Jft)t and using (4-4) and (4-5) yields: 

D~z = W~1D~1,u• 
D~z = f;~1Dt1,u· (4-13) 

As follows from (4-5), F;~ 1 is the inverse of W;~ 1 , so that the following expression 
results for the reflectivity at level B just below boundary i: 

(4-14a) 

or 

o-:-1 = G- 1D71 z., t, t, (4-14b) 

with 

(4-14c) 

Contrary to the propagation rule (4-4), the propagation of the global reflectivity 
only involves multiplications by w-. The modulus of the elements ofW- is smaller 

(a) (b) 
layer i layer i 

Diu Diu = G; uDi u '"-.. , , , 
C----------------?·-------------------· C---------~---/ .................... . 

+ - + ~ 
D;,z "-.. /' D;,z = G;,zD;,z B----------------------------------------· 

----+-----------_--------+ Zi 
D;,z "-.. /' Di,l = G;,zD;,z 

B ····························------------· 

layer i+l layer i+l 

Di+l,u Di+l,u = Gi+l,uDi+l,u 

A---------~---? .................... . 
-----------------------Zi+l -----------------------Zi+l 

Fig. 4-1 Upward "propagation • of the global reflectivity matrix G The levels A, B and Care 
actually infinitesimally close to the respective interfaces. (a) Propagation through a homoge­
neous layer. (b) Transmission through a boundary. 
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than or equal to unity for all ray parameters, so that (4-14c) will never introduce 
an instability. 

The next step is to transmit the reflectivity upward through the boundary i, i.e. 
from level B to Cas pictured in Fig. 4-1b. This involves the local reflection CRt, 
Rn and transmission matrices CTt, T() of the ith boundary. Rewriting (3-33) 
yields: 

D~u = Rt Dtu + Ti-D~z, 

Dtz = Ttotu +RiDiz· 
' ' ' (4-15) 

With the aid of(4-14b), Dt1 is eliminated from the above equations by substituting 
' 

D+ G-1o­
il= '[ il· ' ,, , 

From the resulting two equations, 0~1 is eliminated, yielding: 

D~u = [ Rt-Ti-(Ri- G~})-1Tt ]otu, 

(4-16) 

(4-17) 

which defines the global reflectivity Gi,u at position C, just above boundary i. The 
expression can be rewritten by making use of the matrix identity [P-1+Qr1 = 
P[I+QPr1 to yield: 

(4-18a) 

(4-18b) 

This equation is essentially identical to equation (30) of Kennett (1974). Equations 
(4-14c) and (4-18b) propagate the global reflectivity exactly one layer upwards. 

The calculation of the global reflectivity starts just above the lowest interface 
where the global reflectivity is equal to the local reflectivity for downgoing waves: 
GN,u = R:N. A recursive application of (4-14c) and (4-18b) will subsequently yield 
the global reflectivity G0=G(p,z0 ,ro) at the surface. 

4.3.2 An Interpretation In terms of rays 

The inverse term in (4-18b) can be expanded in a power series: 

Gi,u = Rt + Ti-Gi,l l(RiGi,l fTt. (4-19) 
n=O 

The first term ofthis expression, Rt, is simply the reflection from the ith boundary. 
As will appear shortly, the other term that contains the infinite series represents 
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all reflections below the ith boundary. In Fig. 4-2 the first three terms of this series 
are shown with their corresponding rays. Note that the matrix multiplications 
should be read from the left to the right to allow an easy comparison with the pic­
torial representation. The first term represents all ray paths that have two "legs" 
in layer i+ 1. The second term represents all ray paths that have four "legs" in layer 
i+ 1 and so on. The second order and higher terms represent all multiple reflections 
that involve the ith boundary and whose ray paths are completely below it. 

With the power series expansion, the modeling algorithm can be easily modified to 
generate only multiples up to a certain order or no multiples at all. Another option 
is to model without wave conversions, which can be accomplished by setting the 
off-diagonal terms of the local reflection and transmission matrices to zero. 

4.3.3 Implementation aspects 

Since the speed of the forward modeling largely determines the duration of the 
inversion, a discussion of some implementation aspects is appropriate. The gener­
ation of the p--r seismograms basically consists of two steps: 

1) Calculation of the global reflectivity G(p,O,co) at the surface for a number 
of ray parameters and frequencies. The frequencies are regularly sampled. 

2) Per ray parameter trace, a multiplication with the source function and an 
inverse temporal Fourier transform. 

Of these, step 1) mainly determines the computation time. As is shown in the algo­
rithm below, the calculation of G(p,O,co) consists of three loops: 

For all ray parameters do 

For boundary i = N, (-1), 1 do 

Calculate the local scattering matrix for boundary i. 

boundary i 

\mmJa .. ,.,,mrn·l.,,.,uJGu!~rEri+l 
boundary i+l 

~i:s;;:! , . . layer i+l + FG· 1R-:-G· 1T;r 
' t, l l, ' 

~S6G: myeri+l 

+ Higher order terms 

Fig. 4-2 Expansion of the multiple generating term of equation (4-19). 
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For all frequencies do 

Calculate G using (4-14c) and (4-18b). 

The local scattering coefficients are frequency independent and can therefore be 
calculated outside the frequency loop. The explicit expressions of Appendix B are 
used in the implementation. The frequency loop is chosen as the inner loop because 
this allows vectorization of the algorithm. If the boundary and frequency loops had 
been interchanged, vectorization would not have been possible because of the 
recursive nature of relation (4-18b). 

The recursive reflectivity calculation consists of 2x2 matrix operations. These can 
easily be expanded into expressions for the individual four components. Since the 
frequency loop is the innermost one, all matrix elements (including partial results) 
need to be stored in complex arrays of length NFREQ, the number of frequencies 
to be modeled. 

For the inversion application, the ray parameter range of the modeling should 
approximately match that of the input data. The ray parameter interval does not 
need to obey a strict sampling criterion. Using 10 to 25 different ray parameters is 
generally sufficient. The number of frequencies and the sampling interval depend 
in the usual way on the frequency content of the source and the duration of the 
response. 

4.4 Behavior at a horizontal slowness equal to the slowness of a layer 

For horizontal slownesses that are exactly equal to the reciprocal of the P- or 
S-wave velocity of one of the embedded layers, the plane-wave response cannot be 
calculated in a straightforward fashion. This problem is not due to the specific 
algorithm that is used, but is of a more fundamental nature. 

For the inversion application, it is necessary to model p--r data for horizontal slow­
ness ranges that one may encounter in practice in the redatumed gathers. For the 
SS gathers, this range will often include p-values equal to the reciprocals of the 
P-wave velocities. At such horizontal slownesses, the matrix 1-RiGi,l in (4-18b), 
whose inverse generates the multiples, becomes singular. As will be demonstrated, 
this is due to the P-wave multiples whose contribution becomes unbounded when 
p approaches 1/ a. 

From a ray theory point of view, an explanation can best be given using an acoustic 
example. Consider Fig. 4-3 where the case of a single layer embedded between two 
half-spaces has been pictured. The global reflection coefficient G1,u just above the 
first interface is given by the scalar equivalents of(4-14c) and (4-18b): 
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and 
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G - -2iC!Nl2.1zR+ 
1,1 - e 2 • 

T-G T+ 
G = R+ + 1 1,l 1 

1,u 1 1 R-G 
- 1 l,l 

where the vertical slowness q in a layer is defined by: 

and c is the acoustic velocity. 

(4-20a) 

(4-20b) 

(4-21) 

When the horizontal slowness approaches 1/c2, the vertical slowness q2 in the 
layer becomes zero. This means that t/J approaches 90 degrees, i.e. the waves in the 
embedded layer propagate almost horizontally. The two-way vertical traveltime 
2q2& in the layer approaches zero, so that all multiples (in the p--r domain) will 
have zero traveltime. For p approaching llc2 , the local scattering coefficients 
become: 

(4-22a) 

(4-22b) 

Fig. 4-3 Multiples in an acoustic layer that is embedded between two acoustic half-spaces. 
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Since q2=0, it results from (4-20a) that GI,l=-1 so that the numerator of the second 
term of(4-20b), 1-RiG1,z, is zero. 

The physical explanation for this is that all multiples have equal strength ( R~ = 
Ri = -1) and zero traveltime, so that all contributions are in phase and the sum 
over all orders of multiples-the acoustic equivalent of (4-19)-does not converge. 
When limiting the calculation to a multiples up to a certain order, the instability 
will not occur. 

The upward transmission r1- approaches zero, however, so that in equation 
(4-20b) a "zero divided by zero" situation results, for which the limit may exist. A 
numerical calculation of the global reflectivity G1,u for p=llc2±£, with a small, pos­
itive eyields effectively equal results. This supports the assumption that the limit 
for p approaching 1/c2 indeed exists. 

For the elastic case, the upper left elements ofthe local scattering matrices (the PP 
elements) behave as (4-22a) for p equal to the reciprocal of the P-wave velocity. 
Therefore, the acoustic discussion of this section also explains the behavior of the 
elastic case. If the actual elastic modeling algorithm encounters a horizontal slow­
ness that is equal to the reciprocal of a layer velocity, the value of the slowness is 
slightly altered, so that a numerical approximation to the limiting solution is 
obtained. At ray parameters equal to the reciprocal of the S-wave velocity of one of 
the embedded layers, a similar instability is encountered. The same procedure can 
be applied. As already mentioned in Section 4.3.2, the option also exists to use only 
a limited number of terms from the multiple series (4-19), in which case the insta­
bility will not occur. 

4.5 Example 

To illustrate some properties of the p--r gathers of the four different reflectivity 
types, an example will be given. The elastic model that is used, consists of a layer 
of 50m thickness embedded between two half-spaces; its parameters are given in 
Table 4-1. The registration surface is 50m above the first interface. For the model-

Table 4-1 Parameters of the elastic model used in the example. 

Layer a Ita {3 1!{3 p (J & 

m/s 10~s/m m/s 10~s/m gr/cm3 m 

1 2000 500 1000 1000 1 0.33 50 

2 3000 333 1500 667 1 0.33 50 

3 4000 250 2500 400 1 0.18 
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Fig. 4-4 Modeled p-1: gathers for the four different reflectivity types, PP, SP, PS and SS, where 
the first symbol indicates the receiver type and the second symbol indicates the source type. The 
elastic model is given by Thble 4-1 and a 150Hz central frequency Ricker wavelet is used. There 
is no free surface; sources and receivers are located in the upper half-space. All gathers are 
plotted with the same scaling. 
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ing, a zero-phase Ricker wavelet with a central frequency of 150Hz is used, so that 
the individual events can be easily identified. The resulting p--r gathers are shown 
in Fig. 4-4. 

Besides the primary events, labeled <D and (2), all gathers exhibit strong events that 
have been converted more than one time (multiple conversions). Normal multiples 
are also present, most pronounced near the critical angles, where the primary 
reflections become very strong. At 250xl0-6s/m the P-waves in the lower 
half-space become evanescent. At 333xl0-6 s/m the P-waves in the embedded layer 
become evanescent. Between these two ray parameters, the multiple conversions 
are very strong. Atp=lla2 (=333x10-6s/m), these conversions cease to exist rather 
abruptly, because the P-waves in the layer become evanescent. 
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Fig. 4-5 (a) A closer look at the middle part of Fig. 4-4d, where the multiple conversions are 
most pronounced, e.g. events@ and®. Events <D and@ are the SS primaries.(b) The type of 
wave conversion that is associated with event®. (C) The two types of wave conversion that are 
associated with event ®. 



52 Forward modeling in the horizontal slowness - frequency domain 

The p-values that are modeled are given by (n-l)Ap, n=1,2, ... ,101 with Lip = 
lOxl0-6. Since neither p=lla2 nor p=llfJJ. does belong to this set, the problem that 
was described in the previous section is not encountered. 

Fig. 4-5 shows a closer look at the range of ray parameters, indicated by the gray 
box superimposed on Fig. 4-4d. It is obtained by a modeling with a ray parameter 
increment of 4xl0-6

. Of two of the strongest multiple conversions (@and @), the 
ray paths are drawn in Fig. 4-5 b,c. Note that the amplitude of event@ is as strong 
as that of the primary events. In the x-t domain, such multiple converted events 
will only be partly present in the (limited aperture) SS-gathers, because the 
P-waves propagate under very large angles when p approaches 1/a. 

Event@ is still visible in a few traces after p=333xl0-6 s/m. This is due to the eva­
nescent P-wave field in the embedded layer. In Fig. 4-6, the evanescent part of 
event@, re-modeled with a small ray parameter increment, is shown in more 
detail. The wavelet broadening due to the frequency dependent damping of the 
evanescent waves is clearly visible. 

0.116 0.118 0.120 0.122 0.124 0.126 0.128 0.130 0.132 
traveltime (s) 

Fig. 4-6 The evanescent tail of event@ of Fig. 4·5a for ray parameters p=(333+k)x10-a s I m with 
k = 1,2, ... 5,just after the value p=333.333x10-as/m where the evanescent part commences. 
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Solving geophysical inverse problems by a data fitting approach, requires the min­
imization of an objective function, that is generally a nonlinear function of the 
model parameters. One of the problems that can occur is that the iterative mini­
mization, based on the local derivatives of the objective function, ends up in a local 
minimum. Starting close enough to the actual global minimum (which is suppos­
edly close to the true model) will often solve this problem. An alternative is the use 
of global optimization methods, based on Monte Carlo techniques, but these will 
not be considered here. 

The second problem is that, around the global minimum, the objective function can 
be quite flat in one or more directions. These are the so-called ill-resolved direc­
tions. Mathematical stabilization is one way to improve the resolution of the 
inverse problem. Adding a constant value to the diagonal elements of a (forward) 
matrix that needs to be inverted is an example of such a stabilization. Incorpora­
tion of extra information-if available-can be considered a better method to sta­
bilize inverse problems. Bayesian inversion is a methodology that combines the 
information in the data and the extra information in a statistically consistent man­
ner. 

5.1 Probability theory 

In this section, the probabilistic concepts that underlie Bayesian inversion will be 
discussed. In the Bayesian interpretation, probability is seen as a degree of belief, 
which can either be objective (representing a "state of affairs") or subjective (rep­
resenting someone's knowledge). The probability of an event can vary between zero 
and unity. 

5.1.1 Cumulative distribution and probability density functions 

The random variables that are considered in this thesis (model parameters and 
noise samples) can in principle assume every real value. The cumulative distribu­
tion function F x(x) of a continuous random variable X is defined by: 
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X 

Fx(x) = J p(u)du =P(X:::; x), (5-1) 

where P(A) denotes the probability of an eventA. The functionp is the probability 
density function (pdf) of X. Because of the properties of probability, it follows: 

p(x);:: 0, 
~ 

J p(x)dx= 1 
(5-2) 

Definition (5-1) is easily extended for a set ofn random variables. Thejoint distri­
bution function and probability density functions are defined by: 

XI X2 Xn 

Fx(x)= J du1 J d~··· Jdun p(u) 

(5-3) 

with the vector X being defined by X=(X1,X2, ... ,Xn)t and likewise for the other vec­
tor quantities. 

5.1.2 Mean and Covariance 

The expectation of a (vector) function of a random (vector) variable is defined by: 

E(f(x)) = fxf(x)p(x)dx, (5-4) 

where the integration extends over the complete space of possible values for x. The 
mean of a random variable is its expectation: 

x = E(x) = fxx p(x)dx. (5-5) 

Another important quantity is the covariance: 

Cxx =E(Cx-x)(x-x)t) 

= fx<x-x)(x-xl p(x)dx. 
(5-6) 

The diagonal elements of the covariance matrix are the variances of the individual 
elements of x. The square root of the variance is the standard deviation, denoted 
by 0". 
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5.1.3 Bayes' rule 

The concepts of marginal and conditional pdf's play an important role in Bayesian 
inversion. Let the joint pdf of x andy be given by p(x,y). Assuming y is an mx1 vec­
tor, the marginal pdf p(x) is defined by: 

~ ~ ~ 

p(x) = J dyl J dy2··· J dym p(x,y) 

= fyp(x,y)dy. 
(5-7) 

It represents the probability density of x alone, disregarding the variable y. Two 
random variables x andy are called independent if their joint pdf is the product of 
the individual (marginal) pdf's: 

p(x,y)=p(x)p(y) (5-8) 

The conditional pdf p(x ly) represents the probability density of x, given a certain 
value of the variable y. It is defined by: 

( I ) p(x,y) 
p X y = p(y) . 

Likewise, the conditional pdf p(y I x) is defined by: 

p(ylx) = p(x,y). 
p(x) 

Combining (5-9) and (5-10), yields Bayes' rule: 

( 1 
) _ p(ylx)p(x) 

p X y - p(y) . 

5.2 Bayes' rule and inversion 

(5-9) 

(5-10) 

(5-11) 

In Bayesian inversion, the random variables x andy in (5-11) represent model 
parameters and data respectively. Let p(x,y) reflect the "state of information" on 
parameters x and data y before measurements have been done. After the data y 
has been obtained as a result of a measurement, the state of information on x is 
represented by the conditional pdf p(x ly), the left-hand side of Bayes' rule (5-11). 

The following interpretation of the elements on the right-hand side of(5-11) can be 
given: The conditional pdfp(y I x), usually called the likelihood function, represents 
the probability of the data y, given the parameters x. For its interpretation, it is 
convenient to assume that the data can be explained by: 
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y=g(x)+n, (5-12) 

where g(x) is the forward model and n is the-additive-noise. The forward model 
g(x) is determined by a set of deterministic physical relations that would describe 
the data in the absence of noise. Assuming x and n are independent, the following 
relation holds: 

p(ylx) = Pn(Y- g(x)), (5-13) 

where Pn is the pdf of the noise. It requires reasoning rather than mathematical 
manipulation to demonstrate the validity of (5-13). For the case of scalar random 
variables, Fig. 5-1 shows the conditional pdf's ofthe noise and data, givenx. For a 
certain value of x, the conditional pdf of the noise is equal to Pn(n I x), but since x 
and n are assumed to be independent, it follows: 

Pn (nix)= p(n,x)/ p(x) = Pn (n) (5-14) 

because p(n,x)=Pn(n)p(x). Since y=g(x)+n, it follows that, for a certain value of x, 

p(y lx) is merely a shifted version of Pn• as is expressed by equation (5-12) and 
shown in Fig. 5-1. 

The pdf p(x) represents the state of knowledge on the model parameters, irrespec­
tive of the data. It is therefore called the a priori pdf. Geologic knowledge and data 
from well logs are important sources of prior information for geophysical inverse 
problems. It is generally sufficient to describe the prior information with the same 
generic model that is used for the data, i.e. relation (5-12), yielding: 

(5-15) 

Such a description includes simple prior information on the values of the parame­
ters: 

(5-16) 

0 g(x) 

Fig. 5-1 Probability densities p(n I x) and p(y I x) for the case of independent parameter x and 
noise n. 
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where Xp are the prior values of the model parameters. But also relations between 
model parameters can conveniently be expressed with (5-15). The noise term is 
always used to express the degree of uncertainty in the prior relations. 

Regarding the a posteriori pdf p(xly) as a function ofx, the pdfp(y) in the denom­
inator of (5-11) is a constant factor that merely serves as a normalizing factor, i.e. 
it makes that the integral of p(x ly) over all x evaluates to unity. 

5.2.1 Estimators 

As mentioned in the previous section, the pdf p(x I y) on the left of Bayes' rule (5-
11) represents the total information about the parameters x. It can be regarded as 
the solution to the inverse problem. However, for inverse problems with more than 
say, five parameters, it is impractical to evaluate and inspect the complete a pos­
teriori pdf. 

A more practical solution is to find a set of numbers which can be regarded as esti­
mates of the parameters, a so-called point estimate. Ideally, an estimator x should 
be unbiased, i.e. E( x- x) = 0, so that 

fx(x-x)p(xly)dx =0. (5-17) 

Because x is a constant with respect to the integration over x, and since the inte­
gral over p(x ly) evaluates to unity, it follows: 

x= fxx p(xly)dx' (5-18) 

which is the mean of the a posteriori pdf. This estimator is neither a practical solu­
tion, since it also requires an evaluation of the a posteriori pdf over the complete 
parameter space. 

A more practical alternative is the MAP estimator, i.e. the set of parameters where 
the a posteriori pdf attains its maximum. If there is a unique point where this max­
imum (or mode) is reached, the pdf is called unimodal. If the a posteriori pdf is 
symmetric and unimodal, the mode and the mean coincide. 

5.2.2 Gaussian statistics for noise and prior Information 

Sofar, no particular assumptions have been made regarding the characteristics of 
the involved pdf's. There are many reasons, however, to assume Gaussian pdfs, 
both for the noise and the prior information. Perhaps the most important reason 
is that Gaussian pdf's are mathematically most tractable. Fortunately, there are a 
number of other reasons to believe that the Gaussian pdf most accurately describes 
the uncertainty in data and prior information, see e.g. Duijndam (1988a) pp. 884-
886. 
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For a Gaussian random variable z with mean J.L and covariance C, the pdf is given 
by: 

(5-19) 

where n is the number of elements of z and I C I denotes the determinant of the 
covariance matrix. Assuming that the pdf of the noise n on the data is Gaussian 
with zero mean and covariance Cn, it follows with (5-13) that the likelihood func­
tion is given by: 

(5-20) 

Assuming that the noise np on the prior relations (5-15) is also Gaussian distrib­
uted, with zero mean and covariance Cp, the prior pdf is given by: 

(5-21) 

Apart from the normalizing term in the numerator of (5-11), the posterior pdf is 
given by the product of (5-20) and (5-21): 

p(xly =d)= const.x exp{- ,X(d- g(x))tC~1(d- g(x))} x 

exp{-X(dp- Kp(x)t C~1(dp- gp(x))} 
(5-22) 

From this expression it is apparent that the information from the data and the 
prior information enters the posterior pdf in the same fashion. 

Finding the maximum of a function is equivalent to finding the minimum ofits log­
arithm. The MAP estimator x that maximizes the posterior pdf is therefore equal 
to the point where the function F(x) is minimum, with: 

(5-23) 

Defining 

(5-24) 

the expression for the objective function simplifies to: 

F(x)= ,Xete. (5-25) 
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So, the inversion problem has been reduced to a (nonlinear) optimization problem. 
Various general purpose nonlinear optimization methods exist. They will be dis­
cussed in Section 5.3. 

5.2.3 Result analysis 

Once the minimum of the objective function has been found, it is important to 
assess its accuracy. Many types of result analysis exist, see Duijndam (1987) or 
Duijndam (1988b); the inspection of the a posteriori covariance being one of them. 
Although this matrix contains information about the correlation between the esti­
mated parameters in its off-diagonal elements, it is often sufficient to consider only 
its diagonal elements. The square roots of the diagonal elements (the standard 
deviations) can be interpreted as error bars on the estimates. 

In order to derive an expression for the a posteriori covariance, the objective func­
tion is expanded in a second order Taylor series: 

(5-26) 

with L1x = x- x. The gradient g and the Hessian Hare defined by respectively: 

(5-27) 

and 

(5-28) 

If x is the minimum of the objective function, the gradient must be zero, yielding: 

(5-29) 

Making use of the fact that the objective function is the negative logarithm of the 
a posteriori pdf yields: 

p(xly)"' const. exp{Yz(x-xtH(x- x)}, (5-30) 

which means that the a posteriori pdf is Gaussian with mean x and covariance 
H-1. This result depends heavily on the accuracy of (5-29) over the part of the 
parameter space where the exact a posteriori pdf is not negligible. The matrix H-1 

is still useful when this condition is not satisfied, since it contains information 
about the local behavior of the objective function around its minimum. Only when 
the forward model g(x) is linear, expression (5-30) is exact. 
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An inverse problem is called ill-resolved when the objective function is practically 
constant in one or more directions around its minimum. This is the case when the 
Hessian is nearly singular. The ill-resolved directions are given by the eigenvectors 
of the Hessian that correspond to eigenvalues that are close to zero. Note that all 
eigenvalues are greater than or equal to zero, since the Hessian is a positive semi­
definite matrix. Unresolved directions correspond to eigenvectors whose eigenval­
ues are exactly zero. 

It will be shown in Section 5.3.2 that the Hessian can be approximated if F(x) is a 
sum of squares: 

t ()e. 
H "' J J, Jij = ax'. , 

J 

(5-31) 

where J is the Jacobian matrix. The eigenvalue decomposition of the Hessian can 
then be replaced by a singular value decomposition of the Jacobian matrix. For a 
more extensive discussion, the reader is referred to Duijndam (1987). 

5.3 Nonlinear optimization 

Nonlinear optimization methods are designed to find the minimum or maximum 
of a multivariate objective function F(x). Since minimizing F(x) is equivalent to 
maximizing -F(x), only minimization will be discussed from now on. For the inver­
sion problem, F(x) is a sum of squares, which can be seen as a special case of the 
general problem. As will appear later, special methods for minimizing a sum of 
squares exist. 

The minimization methods that will be discussed here are based on the local deriv­
atives of the objective function. As such, they are able to find a local extreme. For 
a extensive overview of this type of optimization methods, the reader is referred to 
Gill, Murray and Wright (1981). Global optimization methods, often based on 
Monte Carlo techniques, will not be considered here. 

5.3.1 General methods 

In the minimization methods that will be discussed here, the parameters x are 
iteratively updated until certain convergence criteria are met: 

(5-32) 

where Pk is the direction of the update and ak is the step length. In most methods, 
the step length is not fixed. Given a search directionpk, it is determined such that 
it approximately minimizes F on the line Xk+akPk· 

The simplest minimization methods use only first order derivatives, i.e. the gradi­
ent of the objective function, defined in (5-27). In the steepest descent method, the 
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search direction is simply opposite to the gradient, p=-g. The conjugate gradient 
method is a modification to the steepest descent method, in order to obtain a faster 
convergence. Since these methods do not use second derivatives of the objective 
function, they are suitable for problems with a large number of parameters like the 
2D gridded inversion methods that were discussed in Section 1.4. For a small sized 
grid of lOOxlOO, the number of elastic parameters (three per grid point) is already 
N=30,000 so that the Hessian matrix of second derivatives would contain 
N 2=0.9x109 elements. Besides the ungainly amount of computation time that 
would be required, the Hessian would not even fit in current supercomputer mem­
ories. 

Newton methods employ the second derivatives and, consequently, have a better 
convergence rate than gradient methods. Around a certain point xo, the second 
order Taylor expansion of the objective function is given by: 

F(x0 + L1x) = F(x0 ) + gt L1x + ~ .1xtHL1x . (5-33) 

The minimum of this expression with respect to L1x is given by: 

(5-34) 

Hence, for Newton methods, the search direction is given by p=H-1g. Obviously, 
this involves the inversion of the Hessian matrix, so that Newton methods can not 
be employed for problems with a large number of parameters. 

In so-called Quasi-Newton methods, the Hessian is not really calculated but rather 
approximated. In each iteration, new information about the curvature of the objec­
tive function becomes available, which is used to update the approximation of the 
Hessian. Since Quasi-Newton methods do not require the actual calculation of the 
second derivatives, they are often more efficient than true Newton methods. 

5.3.2 Methods for the minimization of a sum of squares 

Specially designed minimization algorithms are available for the case that the 
objective function is a sum of squares: 

In that case, the gradient is given by: 

g=Jte, 

withJ .. = aei 
u ax., 

} 

(5-35) 

(5-36) 

where J is called the Jacobian matrix. With some straightforward algebra, it can 
be shown that the Hessian matrix is given by: 
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H=JtJ+Q, 

. M rPe· 
WithQ= I,e;G; andG; =----f. 

i=l ax (5-37) 

In the Gauss-Newton method, the Q term is neglected, so that the Hessian is 
approximated with JtJ, yielding the following search direction: 

(5-38) 

This means that only the Jacobian matrix of first order derivatives of the residuals 
is needed which usually represents a large reduction in the amount of computa­
tions. Assuming a well-conditioned Jacobian, the Gauss-Newton approximation is 
accurate if the elements of Q matrix are small compared to those of JtJ, which is 
the case when either: 

1) The dependence of the residuals on the parameters x is sufficiently linear 
so that the matrices Gi will be small. 

2) The residuals themselves are small 

However, when JiJ becomes close to singular in some point of the parameter space, 
(5-38) will become unstable. The often encountered Levenberg-Marquard method 
employs the following search direction 

(5-39) 

where A. is adjusted after each iteration, depending on the reduction of the objec­
tive function that was achieved. In the Levenberg-Marquard method, the step 
length akin (5-32) is always unity. 

Methods that incorporate a Q term, either exact or approximated, are called cor­
rected Gauss-Newton methods, see Section 4.7.5 of Gill, Murray and Wright 
(1981). They can be considered superior to the Levenberg-Marquard method. 

5.3.3 Application to the elastic Inverse problem 

Because the number of parameters for the elastic inversion that is discussed in 
this thesis is quite small, fast Newton methods can be used. A corrected Gauss­
Newton algorithm was chosen, because it can be expected to perform best under 
all conditions. The algorithm, E04ECF from the NAG library, only requires a user­
supplied subroutine that returns the values of the residuals e as a function of x. 
The first derivatives of the residuals need not be supplied; they are calculated with 
finite differences. Besides a good deal of bookkeeping, the coding of the inversion 
scheme is hereby effectively reduced to the coding the forward model, i.e. the recur­
sive reflectivity algorithm. 
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For N parameters, the calculation of the Jacobian matrix with finite differences 
requires N+l forward modeling steps. Since the forward modeling is fast and the 
number of parameters is relatively small (say, N<50) this is acceptable. It should 
be possible, however, to calculate the derivatives of the p--r data with respect to the 
layer parameters directly. 

One way to do so is suggested by Pan et al. (1990). In this paper, a target oriented 
elastic inversion of PP p--r data is described. Without supplying any specifics, it is 
mentioned that the model perturbation in the iterative inversion is the "gradient­
based back projection of the residual traces". Apparently, Pan et al. are referring 
to the adjoint-state technique that was discussed in Section 1.4.1. Although it is 
unclear to this author how this technique can be applied in case of a model-based 
parametrization (the layer thickness is a parameter), it would speed up the inver­
sion considerably. 

The derivatives may also be calculated by some procedure that operates in con­
junction with the recursive reflectivity calculation, involving the derivatives of the 
local scattering coefficients with respect to the layer parameters. Both methods 
have not been further investigated. 

-- - - --------------
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6 Elastic stratigraphic inversion 

6.1 Introduction 

In the previous chapters, the majority of the components of the elastic inversion 
method have been discussed. To briefly name them: 

1) Local parametrization (per lateral position) of the target zone with a 
(small) number of homogeneous layers with varying thickness. 

2) The input data are gathers in the p--r domain and result from the redatum­
ing procedure of the DELPHI scheme. These gathers have sources and 
receivers for pure P- and S-wave potentials. Any combination of the four 
reflectivity types PP, SP, PS and SS can be used. 

3) The inversion makes use of the Bayesian principle to combine data and 
prior information. The forward model for the data is based on the recursive 
reflectivity algorithm that was described in Section 4.3. 

4) Assuming a Gaussian distribution of the noise on the data and the prior 
relations, the parameter estimates are found by minimizing the sum of 
squares of the mismatch terms. This is done by employing a corrected 
Gauss-Newton optimization algorithm, see Section 5.3.3. 

5) Moving along the target, the inversion is performed per lateral position. 
Subsequently, the individual solutions are integrated to yield a 2D (or 3D) 
model of the laterally varying target zone. 

The prior information that will be used is an important aspect of the inversion 
algorithm and will be discussed in Section 6.3. In order to explain why prior infor­
mation is needed, a discussion of some non-uniqueness aspects of the elastic 
inverse problem is appropriate. This will be done in the next section. 

Some extra robustness parameters will be introduced in Section 6.4, which account 
for inaccuracies in the redatuming procedure. An important alternative parame­
trization using lithological properties and prior information will be introduced in 
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Section 6.5. This parametrization effectively lumps the elastic and lithologic inver­
sion modules of the DELPHI scheme (see Fig. 2-1) together. 

6.1.1 Elastic parametrization 

In the actual inversion program, a choice can be made between different parame­
trizations: 

• 

• 

• 

• 

a, {Jandp 

a, a and p, where ais Poisson's ratio, defined in equation (6-6a) . 

Zp, Z8 and p, where Zp=pais the acoustic impedance andZ8 =pfJis the shear 
impedance. 

A., Jl (the Lame parameters) and p 

Based on average results from a number oftests, all of the above parametrizations 
performed equally well in terms of convergence rate and accuracy of the solution. 
The option to choose different parametrizations was implemented for purely 
numerical reasons. The choice of parametrization has no effect on the way the 
results are presented to the user (usually a, {J, panda). Neither does it effect the 
types of prior information that can be specified. E.g. when using a parametrization 
in terms of a, fJ and p, it is still possible to specify prior information on the Poisson's 
ratio because ofthe general form ofprior relations (5-15). 

6.1.2 Wavelet and lnHial model 

The full-waveform inversion requires that the wavelet is available. The adaptive 
multiple elimination procedure of the DELPHI scheme (Verschuur 1991) is able to 
estimate the source wavelet at the surface. To obtain the effective wavelet at the 
target level, some filter may be applied to account for absorption and stratigraphic 
filtering. 

Since the targetzone at one midpoint position is parametrized by a fixed number 
of layers, an initial model, that minimally specifies this number is required. If a 
well log is present, blocking the log will provide the number oflayers in the vicinity 
of the well. The wavelet at the target level can now be refined by an estimation pro­
cedure that optimally matches the blocky log to a few seismic traces around the 
well, see Duijndam (1987). This procedure also involves small updates of the initial 
log model. 

Therefore, close to the well the number oflayers and the wavelet can be obtained. 
To keep track of the stratigraphy and the wavelet when moving away from the 
well, it is sufficient to use a a poststack inversion procedure. In such a method, the 
forward model for a seismic trace on a posts tack section is assumed to be a 1D con­
volution of the wavelet and a spiky reflectivity series: 
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s(t) = w(t) * r(t) 
= L 'iW(t - 'ri ). (6-1) 

Given the wavelet and the seismic trace, one can then invert for the reflection coef­
ficients ri and the lagtimes -ri. If prior information about the acoustic impedance 
level is available, on can invert for lagtimes and acoustic impedances. With the 
necessary modifications, this procedure can also be applied to stacked SS data and 
even to stacked converted gathers. 

When performing such a trace inversion, chances are that when moving away from 
the well, the residuals grow. As Duijndam describes, this can be due to a changing 
wavelet (overall higher residuals) or a change in the number of layers (localized 
residuals). In the first case the wavelet is re-estimated, using essentially the same 
procedure that was used at the well. In the second case, one has to change the 
number oflayers in the parametrization. 

Besides the wavelet and the number of layers in the parametrization, the post­
stack inversion can supply an initial model for the prestack elastic inversion, as is 
illustrated in Fig. 6-1. In order to avoid ending lip in a local minimum, it is impor­
tant that the initial model is in some sense close to the true model. One require­
ment is that the error in the initial traveltimes (for the used reflectivity types) is 
smaller than the peak to trough distance of the wavelet. Fortunately, the travel­
times can very reliably be estimated from the poststack data. Violating this condi­
tion will usually drive the inversion into a local minimum. The inversion is less 
sensitive to the initial values of the medium parameters, although it is preferable 
to take care that the initial reflectivity has at least the same sign as the observed 
reflectivity. 

Stacked 
data 

Layered model 
(LIT, Zp) 

Pre-stack 
data 

Layered model 
(&, ~ /3, p) 

Fig. 6-1 Apoststack stratigraphic inversion of stacked PPdatayields a layered model in terms of 
time thickness and acoustic impedance. This model can serve as an initial model for the prestack 
elastic stratigraphic inversion. 
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6.2 Non-uniqueness aspects of the elastic inverse problem 

The p--rgathers that are used in the inversion, contain both amplitude and travel­
time information. For thin layers, however, the reflections of successive boundaries 
will interfere, so that the amplitudes and traveltimes of the individual events can­
not readily be obtained. This has been the main reason to choose for a full-wave­
form inversion scheme rather than using picked amplitudes and assuming they 
represent the actual reflectivity functions. 

Besides the information about the velocities that is present in the moveout behav­
ior of the reflections, the angle dependent amplitudes should largely contain the 
information that is necessary to resolve the elastic parameters. Transmission 
through interfaces is also angle dependent, but the relative amplitude change with 
angle is generally much smaller for transmission than for reflection. The proper­
ties of the reflectivity functions of the single boundary can therefore to some extent 
predict what can be expected from inversion for multiple layers. 

6.2.1 An analysts using the approximated reflectivity functions 

Studying the approximations to the reflection coefficients that were given in Sec­
tion 3.6.2 reveals some aspects of non-uniqueness of the elastic inverse problem. 
Using sin iii"" pa in the approximation of the PP reflectivity (3-57a) and rearrang­
ing terms, yields: 

u .1p -2 ( .1p .1/3) 2 1 .1a 
RPP(p)"" 12--=-- 2/3 --::::- + 2 /3- p + ( 2-2) . 

P P 2 1- p a a 
(6-2) 

As was discussed in Section 3.6.1, the exact p dependent reflectivity is determined 
by five parameters; the four velocities (CXzt, az, f3u, f3z) and the density ratio (pufpz). 
With (3-56), it follows that these five parameters are uniquely related to 

-( - -.1p)t x- .1a,a,.1f3,f3, J5 , (6-3) 

so that (6-3) is an equivalent parametrization. 

In order to determine if the five parameters of(6-3) can in principle be estimated, 
it is assumed that (6-2) is the forward model and that noise-free measurements for 
at least five different p values are available. Since the three terms of (6-2), 
regarded as functions ofp, are linearly independent, it can be seen that the follow­
ing holds: 

1) .1p/J5 can be determined. 

2) The multiplier of the p 2 term can be determined, leaving one degree of free­
dom for .1/3 and 1i . 
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3) From the third term, both Lla and a can be obtained. 

The important result is that there is an unresolved direction for L1f3 and Ji, or 
equivalently, for f3u and f3z. 

Assuming small angles so that lj(1- a2p 2
)"' 1+ a2p 2

, transforms (6-2) into: 

RPP(p) "'Y2( ~ + L1; )+{Y2aL1a-2lJ2( ~ +2jf)}p2 (6-4) 

Now, only the normal-incidence term and the multiplier of the p 2 term can be 
determined, leaving three completely unresolved directions for the five parameters 
to be estimated. Observe that these normal incidence and "gradient" terms (actu­
ally of sin2 ~instead ofp2) are precisely the ones that are commonly used in con­
ventional, linearized AVO inversion of NMO corrected CMP gathers (weighted 
stacking). 

It should be noted, though, that the above results are based on approximations to 
the true reflectivity. Especially for large S-wave contrasts, the conditioning of the 
inverse problem (based on the exact expressions) improves considerably so that the 
S-wave velocities can be estimated. But in general, assuming some noise on the 
data, it will be difficult to accurately estimate all five parameters solely from the 
PP reflectivity of a single boundary. 

In order to get an insight in the behavior of the multi-layer case, assume that the 
maximum incident angle is quite large, so that (6-3) needs to be used. As was men­
tioned, there is one completely unresolved direction for the S-wave velocities f3u 
and f3z. For the case of Nboundaries, there are not N unresolved directions, but still 
only one! This can be concluded from the following reasoning: 

1) Suppose /31 is known. Consequently, f12 is determined through the reflectiv­
ity of boundary #1. 

2) With f12 determined, f33 follows from the reflectivity of boundary #2. 

3) And so on. 

Equivalently, supplying the average of all f3/s would also suffice to determine all 
f3/s. Note that this average is in fact a macro parameter and is as such available 
(from traveltime information). 

A similar analysis can be applied to the other three reflectivity types. In all cases 
it follows that there will be some unresolved directions when considering each 
reflectivity type individually. Combining data of different reflectivity types in a 
simultaneous inversion will remove the unresolved directions. Because of the fact 
that the SS approximation is of the same form as the PP approximation, it can be 
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seen that the S-wave velocities can be determined from approximation (3-57d) for 
the SS reflectivity. Combining PP and SS data would therefore remove the unre­
solved directions. 

6.2.2 Angle vs. ray parameter 

At this point it worthwhile to make a small side-step and consider conventional, 
linearized AVO inversion (weighted stacking). In this technique, see Section 1.3, 
an approximated reflectivity function as a function of the incident angle is fitted to 
the aligned reflectivity in NMO corrected CMP gathers. Basically, this reflectivity 
function is given by approximation (3-59): 

r (~)~ ~ ~ + ~ -2/!_ 
11! +2 

11! sin2 ~ + ~ 11!tan2 ~ ( ) 
-2 ( ) 

PP p a a 2 p f3 a 
(6-5) 

Some authors, e.g. Smith and Gidlow (1987), introduce linearized empirical rela­
tions ( L1pfp = }{L1afa) to make the inversion more stable, but this is not relevant 
to the issue that is discussed here. 

In order to obtain the incident angle field ~ , ray tracing in a smooth, macro veloc­
ity model is applied. On a detailed level, these angles will be inaccurate, since, 
especially at the far offsets, the incident angle can vary considerably (increase, 
decrease) from reflector to reflector, depending on the detailed (thin layer) veloci­
ties. This effect is compensated somewhat for, because, as expressed in (3-58), the 
angle ~ is actually the average of the incident and refracted angles. The ray 
parameters, on the other hand, will gradually increase with depth and depend only 
slightly on detailed velocity variations. 

By introducing the angles, however, one looses information in the sense that the 
absolute velocities cannot be estimated anymore. This can readily be seen from 
equation (6-5) where besides the global 7J /a model (which is an input parameter), 
only the relative contrasts are present. In the previous section, it was demon­
strated that from the corresponding p-dependent reflectivity function (6-2), the 
absolute velocities can be estimated. So by introducing information (the angles) 
that is actually not available, one looses the ability to estimate the absolute veloc­
ities. A practical reason for using the angle dependent reflectivity (6-5) instead of 
the p dependent reflectivity ( 6-2) is that the former one is indeed linear in the three 
relative parameter contrasts, whereas the latter one is nonlinear the five parame­
ters (6-3). 

6.2.3 Small offsets 

If data is only available up to a relatively small ray parameter, the reflectivity will 
show little variation. In such a case, it is certainly not possible to accurately esti­
mate the elastic parameters independently. For the case of solely PP or SS reflec­
tivity, this means that the normal incidence reflectivity is the only well-resolved 
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parameter. Consequently, only the relative contrasts of the acoustic impedance 
Zp=pa (for PP only) or the shear impedance Z 8=pf3 (for SS only) can accurately be 
estimated. 

Given the availability of accurate prior information about the targetzone average 
of the impedance, this means that also the impedances ofthe individual layers are 
resolved. If Both PP and SS data are available, this implies that also the ratio of 
the impedances is well resolved. Since z/zp=f3/a, also the ratio ofS-wave toP-wave 
velocity is resolved. This ratio is sensitive to the pore fill ofthe porous rock, and is 
therefore of practical importance. The often encountered Poisson's ratio a is 
uniquely related to f3/ a by: 

a = Ji2 - (/31 a )
2 

1-(f3/a)2 
' 

f3=~Ji2-a 
a 1- a · 

(6-6a) 

(6-6b) 

So Poisson's ratio can in principle be determined from small offset PP and SS mea­
surements. This is only the case, if indeed information about the absolute vales of 
the impedances is a priori available. 

An even more reliable source of information about {3/a, or equivalently Poisson's 
ratio, is present in the traveltimes. It is known from research on target oriented 
poststack acoustic impedance inversion (Duijndam 1987), that the traveltimes are 
better resolved than the impedances (derived from the reflection amplitudes). 
Even for events with strong interference, the traveltimes remain well resolved. 
Also in the prestack situation, it can be expected that the traveltime curves are 
well determined. Assume that for a certain layer, the normal-incidence traveltimes 
are given by Li'tpp and L1-r88 for PP and SS data respectively. For that layer, the ratio 
of f3 over a is then given by: 

(6-7) 

6.2.4 Contour plots 

In Section 6.2.1, an unresolved direction for the S-wave velocities was found to 
exist when using only PP data, based on approximation (6-2) for the PP reflectivity. 
It is interesting to investigate the behavior if the exact reflectivity function is used. 
This can be done by studying contour plots of a suitably chosen objective function. 

Consider Fig. 6-2a where the elastic parameters of a two-layer elastic model are 
given. The real and the imaginary parts of the corresponding PP reflectivity are 
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shown as a function of the ray parameter in Fig. 6-2b. Let the function F(x) be 
defined by: 

F(x) = ~lel2 , 
withe;= RPP(p;;xtrue)- RPP(p;;x), 

(6-8) 

where Rpp denotes the exact PP reflectivity and x=(CXzt, ab Pu• Pz, Pu• pz) denotes a 
perturbed version of the actual medium parameters Xtrue· Using ray parameters 
on the interval [0, 392xl0-6s/m], a contour plot of (a normalized) F(x) in the <Pu, 
Pl) subspace is shown in Fig. 6-3a for the whole range of possible values of f3u and 
p1. Note that the axes of the contour plot correspond to the ratio of S-wave to 
P-wave velocity, rather than the absolute value of the S-wave velocity. The P-wave 
velocities and the densities are kept on their true values. The maximum ray 
parameter that is used corresponds to an incident angle of 70°, which is well into 
the postcritical regime. 

As can be seen, there is not a well defined minimum, but rather an elongated valley 
with very low values of the function F. The actual values of the S-wave velocities 
(indicated by the cross) lie of course within this valley. The value of F(x) is nonzero 
everywhere except at the true model. This is shown in Fig. 6-3b where the loga­
rithm ofF at the "bottom of the valley" (the dotted line), is plotted. The exact value 
of the minimum was obtained by a univariate optimization in the Pl direction for 
all Pu values. 

So, there is an ill-resolved direction for the S-wave velocities, rather than an unre­
solved direction, as was predicted in the previous section. This would also have 
been the case if only precritical ray parameters had been used. The difference 
between un- and ill-resolved is merely of theoretical importance; for practical pur­
poses, all elastic models on the dotted line of Fig. 6-3a will have an effectively equal 
PP reflectivity. 

(8) 
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Fig. 6-2 (8) Elastic parameters of a two-layer elastic model. The values are typically those of a 
gas sand over a water sand. (b) Corresponding exact PP reflectivity for ray parameters up to 
1 I a,.. Both real and imaginary parts are plotted. 
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6.3 Prior information for elastic stratigraphic inversion 

As was discussed in Section 6.2, the elastic inverse problem is generally ill-re­
solved. This is especially true when only one type of reflectivity can be used. Multi­
component acquisition is not performed on a routine basis, so that in general, only 
pseudo PP data is available. When layers are thin, the reflections will interfere, 
which further decreases the resolution of the inverse problem. 

The discussion of non-uniqueness aspects of the elastic inversion has clearly dem­
onstrated that there is a need for extra information. When specifying the type of 
prior information and the corresponding uncertainty (as expressed by the prior 
covariance matrix), the following rules should be minded: 

1) Use prior information that is available in practice. 

2) Use realistic values for the uncertainty of the prior relations. 

3) Use types of information that can be expected to "repair" the ill-resolved 
directions. It is not necessary to specifY prior information on parameters 
that are already well-resolved. 

Based on these rules, prior information on the targetzone averages of the elastic 
parameters and empirical relations between the elastic parameters are used. The 
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Fig. 6·3 (a) Contour plot of the objective function F(x) of(6-8). The dotted line shows exactly where 
F is lowest. (b) Logarithm of F(x) at the "bottom of the valley" where F is lowest. 
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noise terms on all prior relations that will be used are supposed to be statistically 
independent, so that the prior covariance matrix Cp is diagonal. 

6.3.1 Targetzone averages of the elastic parameters 

Rather than specifying prior information on the individual layer parameters, only 
information about their targetzone averages is supplied. Averages for P-wave 
velocity, density and Poisson's ratio are used. Poisson's ratio is chosen instead of 
the 8-wave velocity because in general, more information about the ratio {3/a is 
available than about the absolute value of /3. 

To be explicit, for e.g. the P-wave velocity, the following mismatch term is used: 

(6-9) 

where N is the number of layers in the targetzone and <«>p is the prior value for 
the average P-wave velocity. The standard deviation Ga expresses the uncertainty 
of the average P-wave velocity. This is just one of the terms that constitute the 
prior part of the residual vector e of equation (5-24). Because the targetzone has a 
considerable thickness, the <«>p that has to be supplied is in fact a macro param­
eter and can be obtained from a macro model that was previously derived from 
traveltime information. 

The average Poisson's ratio <CJ>p can also be obtained from traveltime information. 
If both PP and SS data are available, it can be obtained from the ratio of the PP 
and SS travel times through the macro layer that contains the targetzone. If con­
verted data (SP or PS) is available, the average Poisson's ratio can be obtained 
from the moveout behavior. If only PP data are available, one can use an empirical 
value for <CJ>p, depending a.o. on the depth of the targetzone. Naturally, informa­
tion from well logs can also be used; this applies for all averages. 

The average value for the density cannot be obtained from seismic information. An 
empirical value needs to be used. Since the average density is a completely unre­
solved parameter, the average of the estimated densities will be practically equal 
to the specified value. 

6.3.2 Empirical relations 

The non-uniqueness of the elastic inversion can substantially be reduced by intro­
ducing relations between the elastic parameters. There are general, empirically 
based relations between the elastic parameters, that hold for a reasonably broad 
class of rocks. Two ofthese so-called empirical relations are used. 

The Gardner relation between P-wave velocity and density is given by: 
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a= cpE. (6-10) 

When measuring the velocity in m/s and the density in kg/m3 , typical values for 
I 

the constants (except for coal, salt and anhydrites) are c=l.08x1o-10 and e=4, see 
Sheriff and Geldart (1983). For these values, Fig. 6-4a shows a graph of the P-wave 
velocity as a function of the density. 

In Castagna et al. (1985), a linear relation between the P-wave and 8-wave velocity 
is proposed; the so-called mudrock line: 

a=a+b/3. (6-11) 

When measuring both velocities in m/s, typical values for the constants are a= 1360 
and b=1.16 for water-saturated clastic silicate rocks. The corresponding graph of 
the P-wave velocity as a function of the 8-wave velocity is given in Fig. 6-4b. 

If a database of well-log data is available for the region of interest, better values 
for the constants of the empirical relations may be obtained through a data-fitting 
procedure. If prior to the elastic inversion, the lithotypes of the targetlayers can be 
given, the empirical constants may be determined per lithotype. A better proce­
dure, however, is to include specific lithological information as prior information. 
This will be discussed in Section 6.5. For every layer i of the targetzone, the Gard­
ner and Mudrock relations each yield a residual term: 

(6-12a) 
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(6-12b) 

where the standard deviations agar and amud express the uncertainty of the 
respective tenns. 

6.4 Robustness parameters 

The p--r gathers that are used in the inversion are obtained through the redatum­
ing module of the DELPHI scheme. Errors in the macro velocity model(s) will 
introduce errors in the redatumed gathers. A distinction can be made between 
amplitude and traveltime errors. 

6.4.1 Traveltime errors 

Regarding the traveltime errors, consider Fig. 6-5a where a simple model consist­
ing of a homogeneous overburden over a target zone is pictured. For this simple 
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model, the redatuming can done in the p--r domain. For the first reflector of the tar­
getzone, the PP travel times at the surface z0 are given by: 

~ 'rsurface=2(Zre[l-Zo)"J~-p . (6-13) 

Going from the surface to a new datum at z = zdat can be accomplished by a simple 
time shift: 

(6-14a) 

(6-14b) 

If one uses the correct velocity in the redatuming, the solid traveltime curve of Fig. 
6-5b results. It is determined by: 

(6-15) 

where &=Zretz-Zdat is the depth of the reflector with respect to the redatuming 
level. When using a redatuming velocity in (6-14b) that is only 2% too high, the 
striped curve of Fig. 6-5b results. Note that the erroneous traveltime shows less 
moveout than the true traveltime. 

As was already mentioned in Section 6.2.3, the traveltimes of the events are accu­
rately sensed by a full-waveform parametric inversion. The inversion algorithm 
can only match the erroneous moveout curve by assuming a velocity of the first tar­
get layer that is too low. Fitting relation (6-15) to the erroneous moveout curve on 
the interval between 0 and 250x10-6s/m yields &=31m and a=1308m/s. Therefore, 
based on traveltimes only, the P-wave velocity of the first target layer will be esti­
mated much too low. The differential moveout of the target reflectors will remain 
correct, however. Assuming that the erroneous moveout of the first reflector 
remains approximately elliptic for the range of ray parameters that is used, 
implies that the estimated velocities for the other target layers remain be unbi­
ased. 

So, based on the traveltimes, only the velocity of the first layer would be strongly 
affected. This will cause a high-amplitude reflection in the modeled data that is not 
present in the actual data. The elastic inversion algorithm will still try to fit the 
data, resulting in large estimation errors for all target layers. 

If both PP and SS data are used in the inversion, the problems become even more 
obvious. Of the same elastic model, Fig. 6-5c shows the traveltimes of the reda­
tumed SS data. The solid line represents the results with the true velocity, 

---- ---------
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whereas the striped line is obtained by using a velocity that is 1% too low. Note 
that the normal incidence time (~8ms) is the same for both the erroneous PP and 
SS curves. The inversion algorithm can only accomplish this by making the P- and 
8-wave velocities of the first layer equal to each other. Since the 8-wave velocity 
needs to be smaller than V.J2 times the P-wave velocity, this is physically impossi­
ble. 

The discussed traveltime errors will also exist for structurally more complex over­
burdens. The redatumed CMP gathers of types PP and SS will remain symmetric 
around p=O, however. This also holds when errors in the velocity model are present 
or if the new datum is not exactly parallel to (one of) the target layers. To account 
for the errors, a time shift is applied to the traces of the redatumed gathers. 
Because of the aforementioned symmetry, the time shifts that are applied to the 
PP and SS traces are parametrized through: 

f1Ttype(p) = 'ftype,O + 'ftype,2 P
2 

• 

type e {PP,SS}. 

For the converted gathers, a linear relation is used: 

11rtype(p) = 'ftype,O + 'ftype,I p, 

type e {SP,PS}. 

(6-16) 

(6-17) 

The implementation in the actual inversion program is flexible: It is possible to use 
only a constant, p-independent time shift ( rtype,o) or simply no correction at all. 

6.4.2 Amplitude errors 

The elastic inversion needs true amplitude data. Not only the relative amplitude 
behavior as a function of the ray parameter needs to be correct, but also the abso­
lute values of the amplitudes. The multiple elimination procedure of the DELPHI 
scheme incorporates an adaptive procedure to obtain the absolute amplitudes of 
the surface data. An other method to obtain the absolute scaling is to match the 
data to a well-log derived reflectivity. 

Subsequently, the redatuming procedure should restore the amplitude losses that 
occur during propagation. The geometrical divergence is determined by the veloc­
ity model and is implicitly corrected for in the redatuming. Amplitude losses due 
to elastic transmission and absorption can in principle be accounted for during the 
redatuming. It is difficult, however, to quantify these effects. 

The inevitable amplitude errors in the redatumed gathers are modeled by a p-de­
pendent scaling factor: 

Correct Trace= s(p) x Redatumed Trace (6-18) 
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Again, because of their symmetry properties, the scaling factor for the PP and SS 
gathers is parametrized through: 

8type(p) = 8type,O + 8type,2 P
2 

• 

type e {PP,SS}. 

For the converted gathers, a linear relation is used: 

Stype(p) = Stype,O + Stype,l p, 

typee {SP,PS}. 

(6-19) 

(6-20) 

The same options that were mentioned in the traveltime discussion also apply 
here: It is possible to use only a constant, p-independent scaling ( stype,o) or simply 
no scaling correction at all. 

6.4.3 Non-uniqueness aspects 

There is a maximum of four robustness parameters (the polynomial coefficients) 
per data type. One can expect that especially the scaling parameters will introduce 

· resolution problems. For the simple case of a targetzone with only two layers (i.e. 
one reflector), an extremely ill-resolved problem would result. But when the tar­
getzone consists of a number oflayers, the resolution will improve. Considering the 
traveltimes, the discussion in Section 6.4.1 has demonstrated that the traveltime 
parameters should be reasonably well resolved. Besides, all robustness parame­
ters are stabilized through prior information. 

Prior values for all robustness parameters but the oth order scaling factor are zero. 
If the data is more or less on the correct amplitude scale, the prior value for Stype,O 

is unity. All standard deviations are taken small enough to ensure that the time 
shifts remain small and the scaling factors remain close to unity. 

6.5 Litho-elastic inversion. 

In the majority of cases, only PP data will be available for the inversion. As was 
discussed in Section 6.2, the PP-only inverse problem is seriously ill-resolved. 
Especially when the data at large offsets are unreliable or simply not available, the 
inversion will heavily rely on the prior information that was discussed in Section 
6.3. If the prior information is correct and "strong", accurate and stable results will 
be obtained. 

The problem remains to relate the so-obtained elastic parameters (P-wave velocity, 
S-wave velocity and density) to quantities that are of importance for the descrip­
tion of hydrocarbon reservoirs. In the original DELPHI scheme, this is accom­
plished by a subsequent lithologic inversion of the elastic inversion results. From 
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the lithologic inversion research within DELPHI (Lortzer and Berkhout 1992) the 
following was concluded: 

1) It is generally possible to differentiate between different lithotypes. A 
lithotype denotes not only the lithology, e.g. sandstone, shale or limestone, 
but also the pore fill, gas, water or oil. So, a gas-filled and a water-filled 
sandstone are considered two different lithotypes. 

2) The saturation of the pore fluids cannot accurately be obtained. For exam­
ple, in the case of a gas sand, both P- and S-velocity remain practically con­
stant when the gas saturation varies between 10% and 100%. 

3) The porosity can accurately be determined. 

The inversion approach ofLortzer and Berkhout incorporates a classification step: 
The inversion is attempted for a number of possible lithotypes. The result with the 
lowest residual will identify the most like lithotype and its corresponding porosity. 

In the lithologic inversion, relations between the rock- and pore parameters and 
the elastic parameters are used. If these relations are incorporated in the elastic 
inversion algorithm, the two inversion modules are effectively joined together. 

6.5.1 Basic strategy 

When assessing the economic value of a (potential) hydrocarbon reservoir, the 
porosity is one of the most important parameters. Fortunately, in many cases it can 
also be well resolved, as was concluded from the lithological inversion research. 
The following litho-elastic inversion strategy is proposed: The porosity will be 
included in the parametrization as a fourth layer parameter. Therefore, the follow­
ing parametrization results: 

1) Per layer, the P-wave velocity a, S-wave velocity {3, density p and porosity 1/J. 

2) For all layers but the last one, the layer thickness&. 

3) Optionally, the robustness parameters as defined in Section 6.4. 

The resolution of the resulting inverse problem is guaranteed by making use of 
relations between the elastic parameters and the porosity as prior information: 

ai = ai(t/J,z)+na,i• 

/3; =/3;(1/J,z)+np,i• 

Pi =p;(t/J)+np,i· (6-21) 

The noise terms n express the assumed uncertainty on these relations. As the sub­
scripts i indicate, a different set of relations is used per layer of the target zone. 
Only when the lithotypes of some of the layers are equal, equal relations are used. 
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The weighted mismatch terms with respect to the above lithologic relations will be 
appended to the residual vector e, whose energy will be minimized: 

(6-22) 

The first and second elements respectively denote the data mismatch and the 
"standard" prior relations mismatch, i.e. the macro parameters and the robustness 
parameters. The third element is the aforementioned mismatch with respect to the 
lithologic relations. 

Following Lortzer and Berkhout (1992), the Biot-Gassmann equations are used to 
relate the P- and S-wave velocity to the porosity. For some of the factors in these 
equations, an empirically obtained, linear depth dependence is used. This explains 
the z dependence that is seen in (6-21). If the target is sufficiently horizontal and 
oflimited thickness, this dependence can be omitted. The simple volumetric aver­
age equation is used for the dependence of the density on the porosity. The specifics 
of the used relations will be discussed in Section 6.5.2. 

All rock parameters (see Table 6-1) and pore fluid parameters (see Table 6-2) that 
occur in the Biot-Gassmann and density relations are considered to be known a 
priori. As Lortzer and Berkhout (1992) describe, they can be obtained from nearby 
well logs, or from a rock physics database. 

In principle, one would like to determine whether the pores of the rock are filled 
with merely water or (partially) with hydrocarbons, i.e. gas or oil. If there is indeed 
a mixture of water and hydrocarbons present, one would like to know the fractions 
of the different components. Unfortunately, the elastic parameters can only par­
tially provide this information. Since the density and the compressibility of oil and 
water do not differ very much, it is generally not possible to distinguish between a 
water filled and an oil filled lithology. In case of a mixture of oil and gas, it will cer­
tainly not be possible to estimate the water saturation SW> i.e. the fraction of the 
pore volume that is filled with water. Since the elastic properties of gas and water 
differ considerably, presence of gas does have a strong effect on the elastic param­
eters. Unfortunately a gas saturation of only 5% CSw=0.95) has the same effect as 
a complete gas saturation CSw=O). 

So, based on the elastic parameters of a porous, fluid-filled rock, it is in practice 
only possible to distinguish between some gas and no gas. These two possibilities 
are classified as different lithotypes. For a sandstone lithology, a gas sand and a 
water sand are defined as two lithotypes, where it is understood that a sand with 
a small amount of gas is already considered a gas sand. In the same spirit, the oil 
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sand lithotype can be introduced, although it will be generally impossible to dis­
tinguish it from a water sand. Likewise, lithotypes for other lithologies are defined, 
e.g. a gas-filled limestone, a water-filled limestone etc. 

For these discrete lithotypes, relations (6-21) will predict a different porosity 
dependence of the three elastic parameters. If, for a certain layer in the target zone 
a wrong lithotype assumption is made, this should lead to a reduced ability of the 
elastic inversion to match the data, i.e. higher residuals. Doing the inversion with 
different lithotype assumptions will then identify the most likely lithotype: the one 
with the lowest residuals. Making use of the fact that the objective function (the 
energy in the residuals) is the negative logarithm of the posterior pdf, relative 
probabilities of the different lithotypes can in theory be supplied, see Lortzer and 
Berkhout (1992). 

The advantages of the proposed strategy are threefold. First of all, the inverse 
problem is effectively stabilized by the three prior relations (6-21) per layer. Sec­
ondly, one of the layer parameters that is inverted for is the porosity, which is of 
direct practical significance. Thirdly, it is possible to test hypotheses of different 
lithotypes for a certain layer. The most likely lithotype will be identified by the 
result with the lowest residuals. 

6.5.2 Elastic parameters as a function of the porosity 

In this section, the specific form of the relations between the elastic parameters 
and the porosity-of which the generic definition was given by equations (6-21)-­
will be discussed. In principle, any set of relations, whether they are empirical or 
theoretical, can be used. It is e.g. conceivable to fit suitably chosen parametric rela­
tions to crossplots of well log data. In this research, the Gassmann-Biot relations 
are used for the P- and S-wave velocity. The relations will simply be introduced 
here, without discussing the physical principles they are based on. The contents of 
this section is largely based on Crans and Berkhout (1980) and Lortzer and 
Berkhout (1992). 

The Biot-Gassmann equation for the P-wave velocity is given by: 

a= _1_{3 1-ab}'+ (1-,)
2 

pK:8 1+ab 1-,+if>(~rrfK:8 -1)' 
(6-23) 

and for the S-wave velocity: 

(6-24) 
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where K"8 is the compressibility of the solid, e7b is the Poisson's ratio of the bulk (i.e. 
the empty porous solid), 'is the frame-strength factor and "ris the compressibility 
of the fluid in the pores. The frame strength factor is defined by: 

(6-25) 

where "b is the compressibility of the bulk. 

The density that occurs in the relations is that of the fluid-filled porous rock and is 
equal to the density in the elastic parametrization. The density is obtained 
through a volumetric average of the fluid and solid constituents of the rock: 

P = (1- ~)Ps + ~Pr, (6-26) 

where Ps and Prrespectively denote the density of the solid and the pore fluid. 

If the fluid in the pores consists of a mixture of a hydrocarbon and water, the fluid 
parameters are given by: 

"f = SwK"w + (1-Sw)K"hc• 

Pr = SwPw + (1- Sw)Phc• (6-27) 

where Sw is the water saturation, i.e. the fraction of the pore volume that is filled 
with water. The subscripts w and he respectively denote the water and hydrocar­
bon fractions. Relations (6-27) are given for the sake of completeness. In the inver­
sion, discrete lithotypes are used that merely distinguish between water filled 
CSw=1) and gas or oil filled CSw=O). 

As proposed in Crans and Berkhout (1980), some extra (semi-)empirical relations 
are employed. The Poisson's ratio of the bulk is assumed to decrease linearly with 
depth: 

(6-28) 

For the frame-strength factor ,, the semi-empirical equation of Geertsma (1961) 
and van der Knaap (1959) is used: 

(6-29) 

This equation interrelates some of the lithologic parameters that occur in the Biot 
Gassmann equations. The effective stress Seff• the difference between lithostatic 
and hydrostatic stress, is assumed to have a linear depth dependence: 
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Table 6·1 Seismic-lithological parameters with typical values for the lithologies sandstone and 
shale. 

Parameter Description Unit Sand Shale 

Rock ""• Compressibility of the solid m2/N 2.71xHr-11 2.53x1o-11 

Ps Density of the solid kg!m3 2.65xl03 2.70xl03 

'1 Frame strength parameter #1 50 55 

'2 Frame strength parameter #2 1.46x1d' 1.30x106 

'3 Frame strength parameter #3 1.70 1.50 

cro Poisson's ratio of bulk at reference depth 0.20 0.15 

d Gradient of crb m-1 1.26x10-5 0.33x10-5 

Other zo Reference depth m 2x103 2x103 

So Effective stress Seff at reference depth N/m2 2.52x107 2.23x107 

Table 6·2 Fluid parameters for water, gas and oil at a reference depth of2km. 

Parameter Description Unit Water Oil Gas 

Fluid ""r Compressibility m2/N 4.2x10-10 6.3x1o-10 360x1o-10 

Pr Density kglm3 1.09xl03 0.85x10S 0.13x103 

Seff = 80 + S'(z- z0 ). (6-30) 

The three parameters s1, S2 and sa depend on the packing, the dominant grain size 
and the sorting and cementation of the grains. 

An overview of the seismic-lithological parameters that are used to model the elas­
tic parameters is given in Table 6-1. Typical values are given for sandstone and 
shale at a depth of about 2km. At that same depth, typical values for the three 
types of fluids that are most likely to be encountered are given in Table 6-2. 

The resulting values for the elastic parameters as a function of the porosity are 
plotted in Fig. 6-6 for four lithotypes; a water-filled shale, and a sand with water, 
oil and gas fill. Note that the variation of the S-wave velocity with respect to the 
type of pore fluid is negligible. Combined with the strong fluid dependence of the 
P-wave velocity, this leads to the strong dependence of Poisson's ratio on the pore 
fluid. 

6.5.3 Time average equation 

The Biot-Gassmann equations offer a physical description of the dependence of the 
P- and S-wave velocity on the porosity. The often used time-average equation also 
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describes the velocity as a function of the porosity. For the P-wave velocity a and 
the S-wave velocity /3, the time average equations are given by: 

a= 1/( Ca,O + Ca,IIf> ), 

/3 = 1/( cf3,0 + cf3,IIf> ). (6-31) 

In order to investigate whether such simple relations can accurately describe the 
velocity, as predicted by the Biot-Gassmann equations, a least-squares curve fit of 
relation (6-31) is performed. Doing the fit for porosities between 3% and 30%, the 
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Fig. 6-6 The elastic parameters as a function of the porosity for four different lithotypes. Note 
again that the Poisson's ratio is an excellent discriminator between water- and gas fill, particularly 
at high porosity. 
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Fig. 6-7 (a) Best fit of the time average (TA) equation. (6-31) to the Gassmann. predicted velocities 
(P and S) of a water sand at 2000m. (a) Same, but now using the generalized time average (GTAJ 
equation (6-32). 

results for the P- and S-wave velocity of the water sand are shown in Fig. 6-7(a). 
The mismatch is rather small, and in many cases, the time-average equation will 
indeed be sufficient to describe the porosity dependence of the velocities. Note that 
the fitting process generally yields TA coefficients that may not have a direct phys­
ical meaning, 

A better fit can be obtained by extending the time average equation with a f' term. 
The resulting generalized time-average (GTA) relations are given by: 

a= y(ca,O +ca,1tf>+ Ca,2lf>
2
), 

f3 = y( Cp,o + Cp,1tf> + Cp,2tf>
2
). (6-32) 

Again for the water sand, the best fit results of these relations are shown in Fig. 
6-7b. As can be seen, the mismatch is very small now. The coefficients of the GTA 
relations for four important lithotypes (obtained by fitting) are given in Table 6-3. 

Table 6-3 Generalized time-average coefficients for the four lithotypes of Fig. 6-6. 

Lithotype Ca,o Ca,l Ca,2 cp,o Cp,l C(J,2 

water sand 2.01xlo-4 1.12xH13 -1.42x10-3 3.30x1o-4 3.02x1o-3 -4.02xl0-3 

gas sand 2.osx1o""" 1.82x1o-3 -2.72x10-3 3.3lx1~ 2.92x1o-3 -4.37xH13 

oil sand 2.01x1o""" 1.27x1o-3 -1.67x10-3 3.30x1o""" 2.99x1o-3 -4.10><10-3 

shale 1.81x1o-4 7.82x10""" -9.22x10""" 2.83xlo-4 1.63x10-3 -1.97x1o-3 



7 Examples 

In this chapter, three examples will be presented that illustrate the potential of the 
proposed inversion technique. In these examples, synthetic data is used. Unlike 
field data, synthetic data offers the valuable ability to rigorously check the accu­
racy of the obtained inversion results. The author acknowledges, however, that a 
successful inversion of field data is the ultimate proof of the practical applicability 
of the proposed inversion method. 

In the synthetic examples, care is taken that realistic data is used. This means a.o. 
that the data is generated with elastic finite difference modeling rather than using 
the same reflectivity algorithm that is used in the forward modeling part of the 
inversion. After the redatuming step (for two of the three experiments, target data 
is directly modeled), the shot gathers at the target level are processed into target 
CMP p-'t" gathers. Due to the limited aperture of the x-t data, artifacts will appear 
in thep-rdata, as would be the case with field data. 

The three examples that will be given, each illustrate a different aspect of the elas­
tic inversion: 

1) A 2D overburden and a 1D target zone. Multicomponent surface data are 
modeled and subsequently, the full suite of DELPHI processing modules is 
applied. For the elastic inversion, only macro parameters are supplied as 
prior information. 

2) A target zone with moderate conflicting dips (up to 10•) and laterally vary­
ing elastic parameters. Target data is directly modeled. The elastic inver­
sion makes use of more prior information than in the previous example: 
The macro parameters, and the empirical Gardner and Mudrock relations. 

3) Litho-elastic inversion of a reservoir sand where the porosity and fluid ffil 
change laterally. Here, the maximal amount of prior information is used. 

All examples in this chapter are the result of a team effort. For the first example, 
the whole DELPHI team was involved. Especially Greg Haime (finite-difference 
modeling) and Cees de Bruin (redatuming,p-rgeneration) contributed to the other 
examples. 
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7.1 Elastic inversion for a 1D target under a 2D overburden. 

7.1.1 Elastic model 

The experiment that will be discussed in this section is based on the elastic model 
of Fig. 7-1. In the overburden, an anticline is present (macro layer #4). Macro layer 
#3 is discontinuous because of this anticline. As can be seen in the accompanying 
Table 7-1, the contrasts in the macro parameters are quite strong. The target zone 
is the sequence of relatively thin layers at a depth of 550m. 

7.1.2 Modeling and pre-processing 

Using an elastic finite difference algorithm, four data sets are generated, corre­
sponding to horizontal ( 't'xz) and vertical stress ( t"zz) sources and horizontal (vx) and 
vertical (vz) receivers on a free surface. The source signature is a 30Hz central fre­
quency Ricker wavelet, see Fig. 7 -4c. A total of 128 shot locations with a spacing of 

fx(m) one shot f 
z(m) 0 

100 1 1 

200 2 2 

300 3 3 
400 New Midpoint 

4 
datum -- ~-.----- 4 

500 
s=6 5-

600 ;' 

700 7 7 

0 500 1000 1500 2000 2500 

Fig. 7-1 The elastic model that is used for the inversion experiment. 

Table 7-1 Elastic layer parameters oft he model of Fig. 7-1. 

Layer P-wave S-wave Density Poisson's 

velocity (rn/s) velocity (m/s) oo-3kglm3) ratio 

1 2400 1400 1.0 0.243 

2 3000 2000 1.6 0.100 

3 3000 2000 2.1 0.100 

4 4100 2200 2.2 0.297 

5 3700 2000 2.3 0.293 

6 4200 2400 2.0 0.258 

7 3500 2100 1.8 0.219 
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16m are used. The receiver spacing is 8m. As an example, the Vz'rzz• Vz'rxz• Vx'rzz and 
Vx'rxz shot gathers (the first symbol indicates the receiver type, the second indicates 
the source type) for the shot position indicated in Fig. 7-1 are shown in Fig. 7-2a. 
The surface waves (ground roll) are very strong and are removed by a conventional 
kx-W filtering technique. The resulting shot gathers are shown in Fig. 7 -2b. 

The data are now further processed according to the DELPHI scheme, see Fig. 2-1 
on page 12. As described in Chapter 7 ofWapenaar and Berkhout (1989), all pro­
cessing modules operate on monochromatic data sets that represent the complete 
multi-shot experiment for a single frequency component. First, the data is decom­
posed into up- and downgoing P- and S-waves, see Wapenaar et al. (1990). The 
decomposition at the receiver side operates on common shot gathers and trans­
forms the total velocity v=(vx,Vz)t into upgoing P- and S-waves. Next, the data is 
reordered into common receiver gathers and the stress 'tz =( 'rxz• 'rzz)t at the source 
side is decomposed into downgoing P- and 8-waves. The resulting shot gathers of 
pure P-wave and S-wave responses are shown in Fig. 7-2c. 

Next, the surface-related multiples are eliminated with the adaptive procedure of 
Verschuur (1991), using the elastic reflectivity of the free surface. An important 
by-product of this procedure is the source wavelet of the different data sets on an 
absolute amplitude scale. In the elimination procedure, no extra information about 
the subsurface is needed, since the data itself is used in the "elimination operator". 
The data after the surface related multiple elimination are shown in Fig. 7 -2d. 
Comparing Fig. 7-2a and Fig. 7-2d demonstrates the tremendous clean-up of the 

0 0 
(a) (b) 
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Fig. 7-3 PP zero-offset section. (a) With surface-related multiples. (b) After the removal of the 
surface related multiples. The internal multiples are much lower in amplitude than the 
surface-related multiples. 
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Fig. 7-2 Multi-component shot gathers at x=1264m. (a) Raw shot gathers, including strong 
ground roll. (b) After ground-roll removal through a kx-w filtering. 
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Fig. 7-2 Continued (c)After decomposition into P- and S-waves. (d) After surface-related multiple 
elimination. The target reflections in the PP and SS gathers are indicated by arrows. 
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data. The target reflections, indicated by the arrows in Fig. 7-2d, are quite weak 
with respect to the reflections of the macro boundaries. Using the same elastic 
model, Verschuur (1991) compares the results from an elastic modeling using pure 
P- and S-wave sources/receivers at a non-reflecting surface with the results after 
the three DELPHI pre-processing steps, i.e. ground-roll removal, decomposition 
and surface related multiple elimination. The differences are insignificant. A 
zero-offset section of the PP data before and after the multiple elimination is 
shown in Fig. 7-3. Note that the remaining internal multiples have a much lower 
amplitude than the surface-related multiples. 

The next module of the DELPHI scheme, macro-model estimation, was performed 
for this data set, see Cox (1991), but the results are not shown here. For the reda­
tuming procedure, the new datum is chosen 50m above the horizontal top reflector 
of the target at the right-hand side of the model. In this example, the elastic inver­
sion will be performed at a single lateral position. As indicated in Fig. 7-1, it is cho­
sen near the middle of the model so as to have a large offset range available. 

7 .1.3 Data at the target level 

The target model is depicted in Fig. 7-4. The first layer is actually part of macro 
layer #4 and has a thickness of 50m, as defined by the choice of redatuming level. 
The target's elastic parameters are chosen rather arbitrarily, so that the empirical 

(a) 
Midpoin t 

(b) 

X X X )( 

Rpp Rss # 'rpp 'rss 

(ms) (ms) 
"p (J •• ?< 

1 --0.029 24 -0.025 45 

2 --0.007 46 0.021 85 

3 --0.143 60 --0.119 110 

40m 3700 2000 2.3 .293 
(C) 

30 
i~j~~: j~~~~~i ~ j~i~i~~~j~j~i~i ~j ~l: 

m •••• ,.4200,. 2400,.,.2.0, •. 258 
··: ··:·:·:·:·,:•:•:•:•:•:•:•:•: .. '•'•'•'•'•'•'•'•'•'•'•'•'• 
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~ 
~ 
~ 
~half-space~ 

-40 -20 0 a:> 40 ~ 
ms 

Fig. 7-4 (a) The local elastic model with four layers and three reflectors. {b) Normal incidence 
reflection coefficients of the target boundaries and the corresponding two·way traveltimes for 
both PP and SS data. {C) 30Hz central frequency Ricker wavelet, used for the modeling. 
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relations that were discussed in Section 6.3.2 cannot be used. Another obstacle for 
a successful inversion of this target is the very small reflectivity of the first two 
boundaries, as can be seen from the table of Fig. 7-4. This will make the inversion 
for the associated layer parameters quite difficult. To still obtain a meaningful 
result, the inversion is only done for a combination of PP and SS data, which can 
be expected to perform best. 

The redatumed PP and SS CMP gathers in the p-'C domain are shown in Fig. 7-5. 
Besides the strong negative event that corresponds to the third boundary of the 
target, it is difficult to distinguish the other two reflections. Therefore, a p-'C mod­
eling of the lD target model using a high frequency wavelet (150Hz Ricker) is per­
formed and the resulting p-'C gathers are shown in Fig. 7-6. It is indeed apparent 
that the first two reflectors have low amplitudes. Only the amplitude of the SS 
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Fig. 7-5 p-rgathers obtained by a redatuming of the pre-processed finite difference data. The ray 
parameter interval is Llp=6.17x10-6s I m. 
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reflection of the second boundary becomes strong after the polarity reversal at 
p,.,120x10~s/m. This strong negative reflection can also be observed in the reda­
tumed SS gather of Fig. 7-5. 

The noisy looking traces in the SS gather for ray parameters between 240x10~ 
and 270x10-6s/m (::::1/~) are caused by converted internal P-wave multiples. For 
the P-waves in the second target layer, this interval corresponds to angles between 
60 and 90 degrees. As was discussed in Section 4.4, for p approaching 1/ a2, the 
magnitudes of the reflection coefficients that cause the multiples become close to 
unity, which explains the strong multiple trains. Because of the limited time win­
dow, wrap-around occurs. The phenomenon stops abruptly after 270x1o-6s/m 
where the P-waves in the second layer have become evanescent, Note that the 
P-waves in the third layer are already evanescent at p=238x1o-6s/m. 
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Fig. 7-6 Using the recursive reflectivity algorithm, p-1: gathers are modeled with a 150Hz central 
frequency Ricker wavelet. 
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On the redatumed gathers of Fig. 7-5, the ranges of ray parameters and travel­
times that will be used in the inversion are indicated by the gray boxes. This cor­
responds to a maximum incident angle in the first target layer of 41 degrees for the 
PP data and 29 degrees for the SS data. As can best be seen from the p--r modeled 
data of Fig. 7-6, the SS data shows much more "AVO" than the PP data. It can 
therefore be expected that the inclusion of the SS data in the inversion will greatly 
improve the resolution of the inverse problem. 

7.1.4 Robustness, Initial and Prior models 

Before discussing the actual inversion results, a number of issues have to be clar­
ified: 

• Robustness parameters 
The reflectors in the overburden are so strong that, due to elastic transmission 
losses, the observed reflection amplitudes in the p--r gathers are on average 30% 
lower that they should be. For the amplitude correction, a constant value for all 
ray parameters is used, i.e. only the coefficient Stype,O from equation (6-19). The a 
priori value for Stype,O is therefore set to 1.3. The corresponding standard deviation 
is set to 0.05. Using a larger standard deviation resulted in unacceptable values 
for the estimated scaling factors. For this model and the used range of ray param­
eters, the scaling factors are apparently ill-resolved parameters. As was already 
mentioned in Section 6.4.2, in practice, a ball-park value for the scaling factor will 
be supplied by the adaptive multiple elimination method. At the target level, the 
obtained value may be refined by matching the data to a well-log based reflectivity. 

For the time shifts, the oth and 2nd order coefficients are used. The prior value for 
all four coefficients is zero. The standard deviation on 'rpp,O and 'r88,o is set to 5ms. 
The standard deviations on the 2nd order coefficients -rpp,2 and 'r88,2 are chosen such 
that one standard deviation will cause a time shift of 5ms at the maximum ray 
parameter. 

• Prior information 
Prior information is used on the targetzone averages of the P-wave velocity, Pois­
son's ratio and density, see Section 6.3.1. Table 7-2 shows the true and prior values 
with the corresponding standard deviations. The prior values for <a> and <a> are 
chosen close to the ones of the corresponding macro layer, i.e. layer #4 from the glo­
bal model of Fig. 7-1. As was shown in Section 3.6.1, the density ratios determine 
the reflectivity behavior. Therefore, the average density <P> is a completely unre­
solved parameter. Its true value is used as prior information to allow an easy eval­
uation of the estimated results. The empirical relations are not used as prior 
information. 

Because the amplitudes of the first two reflectors are so low, also prior information 
on the PP normal-incidence travel times is used, with a standard deviation of 5ms. 
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In practice, this information will be supplied by a preceding poststack inversion, 
see Section 6.1.2. The resulting "penalty term" in the objective function prevents 
that the traveltimes wander away too much from their initial values. They are 
likely to do so at the start of the inversion, since the initial reflectivity for the asso­
ciated boundaries is zero. 

• Initial model 
As was already mentioned in Section 6.1.2, it is important that the initial travel­
times are within one peak-to-trough distance from the actual ones. In this experi­
ment, the errors in the initial travel times are less then lOms. In Fig. 7-7, the initial 
model is shown together with the true and estimated values as a function of depth. 
As can be seen, both the initial Poisson's ratios and densities of all layers are ini­
tially without contrast and equal to the prior targetzone averages. The initial 
P-wave velocity is without contrast for the first three layers. The large negative 
reflection is accommodated for in the initial model by a drop in the P-wave velocity 
of the fourth layer. Note that when a poststack inversion would have been used to 
obtain an initial model (see Section 6.1.2), a similar initial model would have been 
obtained. The initial traveltimes would be more accurate, however. The stacked 
data would resemble the zero-offset section of Fig. 7 -3b. 

7.1.5 Results 

In Fig. 7-7, the initial, true and estimated models for P-wave velocity, S-wave 
velocity, density and Poisson's ratio are shown. The parameters of the first two lay­
ers, that are associated with the low-amplitude reflectors are indeed estimated 
worst. The density result is remarkably accurate for all layers. The same is true 
for the layer thicknesses and, consequently, the depths of the boundaries. For the 
first two layers, the errors in the P-wave and S-wave velocities are anti-correlated, 
resulting in the relatively large errors for the Poisson's ratios in these layers. 

The results for the robustness parameters are represented in Table 7-3. For the 
traveltime corrections, not the--quite meaningless-values for ttype,2 are shown 
but rather the resulting time shift at the highest ray parameter that is used (per 
reflectivity type). The shifts are considerable. Performing the inversion without 

Table 7-2 'Irue and prior values with the corresponding standard deviations 
for the targetzone averaged P-wave velocity, Poisson's ratio and density. 

Prior item unit True value Prior value StdDev 

<a> rn/s 3875 4000 300 

<CJ> - 0.276 0.300 0.10 

<p> 10·3 kg/m3 2.07 2.07 0.10 
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the time shift parameters gave indeed a significant increase in the overall estima­
tion error. 

In Fig. 7-8, the residuals after the inversion are shown, plotted on the same ampli­
tude scale as the original data. Laterally coherent events have remained. One rea­
son for this is that the wavelet has changed due to grid dispersion of the modeling 
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Fig. 7-7 Initial, true and estimated models for P-wave velocity, density and Poisson's ratio. The 
initial depths are indicated by the diamond-shaped markers in the density plot. 

Table 7-3 Results for the scaling and time shifts at the start trace (p=O) and the final trace 
(PP: p=160x10-6s/m; SS: p=222x10-6s/m). For the scaling, a constant value for the whole p-1: 
gather is estimated (the (jh order term). 

pp ss 
Prior item 

Time shift Scaling Time shift Scaling 

Start -2.4ms 1.18 1.9ms 1.32 

Final -2.6ms 1.18 4.7ms 1.32 
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scheme. Besides, coherent events that are not target reflections can already be 
observed in the redatumed gathers of Fig. 7-5. These events, which can be diffrac­
tions, internal multiples (from macro boundaries) or modeling/processing artifacts 
will of course also appear in the residuals. 

In order to illustrate that the inversion is relatively insensitive to purely random 
noise, the same target-related CMP gathers are directly modeled in the p-1: domain 
with the forward algorithm that is used in the inversion. Bandlimited noise 
(f ma.x=70Hz) with a standard deviation of on =0.03 is added and the resulting noisy 
gathers are shown in Fig. 7-9. Using the same initial model and prior information, 
the inversion is performed once more. The results, only for P-wave and S-wave 
velocity are shown in Fig. 7-10. Compared to Fig. 7-7, the results have improved 
considerably. Only the estimated parameters of the fourth layer, which is not 
bounded by a lower interface, have become less accurate. 
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Fig. 7-8 Residuals after inverting the redatumed p-1: gathers of Fig. 7-5. 
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Fig. 7-9 p--rCMP gathers that are modeled with the reflectivity metlwd. Bandlimited noise 
(laterally uncorrelated) has been added. 
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Fig. 7-10 Inversion results for P-wave and S-wave velocity using data with random noise only. 
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The average errors in the P- and S-wave velocity are 50 and 36 m/s respectively. 
With a numerical evaluation of the a posteriori covariance matrix, see Section 
5.2.3, the predicted standard deviations for P- and S-wave velocity (averaged over 
the four layers) are 69 and 48m/s respectively, which agrees well with the inversion 
result. 

7 .1.6 Conclusions 

Considering once more Fig. 7-5 (the redatumed p--r gathers), it can be stated that 
the inversion has done a good job, regarding the very low amplitudes of the first 
two reflectors. However, in order to arrive at this result a combination of PP and 
SS data was required. Constraining of the traveltime thicknesses as well as a 
strong constraining of the scaling factor were necessary. 
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7.2 Inversion for a laterally varying targetzone 

In this experiment, it is investigated whether the inversion is robust with respect 
to the assumption of a locally 1D medium. The elastic model that is used in the 
experiment is shown in Fig. 7-11 and consists of five target layers. Only the param­
eters of the fourth target layer vary laterally. The non-horizontal sections of the 
second and third boundaries have dips of 10 and 5 degrees respectively. The elastic 
parameters of the layers are shown in Table 7-4. Contrary to the model of Section 
7.1, they agree well with the empirical Gardner and Mudrock equations, as can be 
seen from a comparison with Fig. 6-4. The laterally varying parameters of the 
fourth layer are shown in Fig. 7-12. 

Start inversion 

Acquisition 
Surface 

0 100 200 

Midpoints used in 
the inversion 

300 400 
m 

Finish in version 

500 600 700 

Fig. 7·11 The 2D targetzone model for the inversion experiment. Only the parameters of the 
fourth layer vary laterally. 

Table 7-4 Elastic layer parameters of the model of Fig. 7-11. For layer 4, the 
parameters vary laterally. The tabulated value is valid for x.$200m and x~500m. 

Layer P-wave velocity S-wave velocity Density Poisson's ratio 

(m/s) (m/s} (10-3kg/m3) 

1 2700 1270 2.26 0.36 

2 3500 1660 2.36 0.35 

3 2700 1200 2.28 0.38 

4* 3300 1760 2.37 0.30 

5 4000 2160 2.42 0.29 
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7.2.1 Modeling and processing 

At the surface, shot gathers are modeled with pure P-wave and 8-wave sources and 
receivers that are effectively located in an upper half-space. The resulting gathers 
are therefore free of surface-related multiples. The specifics of the modeling proce­
dure are as follows: 

• The model is extended at all four sides, to allow for a smoothing of the 
model that is needed for the absorbing boundary conditions. The resulting 
model grid measures 550 by 300 points with a spatial sampling interval 
(Lix=L1z) of 2m. 

• The registration duration is 850ms with a time step of0.4ms. In the result­
ing shot gathers, every tenth sample is selected, resulting in a sample 
interval of 4ms. 

• 71 shot gathers are modeled with a shot spacing of 10m. The receiver spac­
ing is also lOrn. A fixed spread configuration with a total length of 640m is 
used. 

• Two finite difference runs, with P-wave and 8-wave sources are executed. 
The sources have a dipole characteristic; the receivers have a monopole 
characteristic. The source function is a shifted (to make it causal) 20Hz 
central frequency Ricker wavelet. 

In order to appreciate the level of interference that will be present, the wavelet is 
converted to depth using half the average P-wave velocity (=1500 m/s), and plotted 
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Fig. 7-12 The elastic parameters of the fourth layer as a function of the lateral position 
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on top of the model in Fig. 7-11. PP and SS shot gathers at shot locations of 150m 
and 350m (middle of the model) are shown in Fig. 7-13. Note the significant inter­
ference in the PP data. Zero-offsets sections for the PP and SS data are shown in 
Fig. 7-14. 

Next, the data are reordered into CMP gathers and processed into the kx-W 
domain. With an interpolation in the kx direction and, subsequently, an inverse 
Fourier transform, p-r gathers with a ray parameter interval of 25.8xlo-6slm are 
obtained. The final result consists of 41 CMP gathers (per reflectivity type) for mid­
point positions ranging from 150 to 550m. These p-rCMP gathers will be the input 
for the inversion scheme. For midpoint positions of 150 and 350m, the CMP gath­
ers are shown in Fig. 7-15. 

7.2.2 Inversion considerations 

Each CMP gather is inverted for independently. For the PP data, a maximum ray 
parameter of 155x10-6s/m is used, which corresponds to an angle of 25 degrees in 
the top layer. For the SS data, the same maximum ray parameter is used, which 
corresponds to an angle of 11 degrees in the top layer. The inversion starts at the 
left of the model (x=150m) with a zero contrast initial model. The estimation result 
is used as the initial model for the next CMP, and so on, until the last midpoint at 
x=550m is reached. The procedure is depicted in the flowchart of Fig. 7-16. Since 
the data are on the correct amplitude scale, no scaling parameters are included in 
the inversion. To possibly accommodate for the lateral velocity variations, oth and 
2nd order time shift parameters are incorporated with standard deviations of 5ms. 

As in the previous example, average parameter values (<a>, <a>, <p>) are sup­
plied. The true and prior values (with corresponding standard deviations) of these 
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average quantities is given in Table 7-5. The prior information is laterally invari­
ant, meaning that the lateral variations in the estimated model will completely be 
derived from the seismic data. Why the standard deviation of the average P-wave 
velocity is taken so small, will be addressed later. 
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Fig. 7-14 Zero offset sections. (a) PP data. (b) SS data. Note the significant increase in 
resolution, as compared to the PP data. 

Table 7-5 True and prior values with the corresponding standard deviations for the 
targetzone averaged elastic parameters. The true values for the averages vary laterally, 
but tlu! prior values are kept constant. 

Prior item unit True value Prior value Std.Dev 

<IX> mls 3140-3240 3190 10 

<a> - 0.33-0.34 0.34 0.05 

<(1> 10'3 kgtm3 2.32-2.33 2.33 0.05 

3 
CD 

3 
~ 

-3' 
CD 

~ 



105 

Since the model is reasonably consistent with the empirical relations (Gardner and 
Mudrock), both are used with a standard deviation of the error in the "predicted" 
P-wave velocity of 200m/s. 

7 .2.3 Inversion results for PP data only 

The inversion is first performed on the PP data only, and results are shown in Fig. 
7-17. The results are of reasonable quality. The estimated depth model of Fig. 
7-17a is not very accurate, because the errors in the estimated P-wave velocities: 
The inversion "senses" the travel times quite accurately, but with wrong velocities 
the wrong depths will result. Overall, the results for the P-wave velocity and the 
density are the most accurate. The errors in the S-wave velocities are larger. It is 

SS,150m 
~ ~ ~ ~ ~ 

Fig. 7-15 CMP p-r gathers (single-sided) at midpoint positions of 150 and 350m. The ray 
parameter increment is Lip= 25.8x1o-o. 
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Fig. 7-16 Iteratiue elastic inuersion per CMP. 
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apparent that the large errors in the P-wave velocity and density of the fifth layer 
are correlated with the lateral variation of the structure of the model and/or the 
lateral parameter variation in the fourth layer. 

This effect is probably due to the velocity variations in the model. Consider e.g. the 
reflections from the bottom interface belonging at midpointx=350m (the middle of 
the model). The normal incidence rays travel trough a medium with a P-wave 
velocity in the fourth layer of 2800m/s. The oblique rays travel through a medium 
with a higher P-wave velocity. This is sensed by the inversion, and consequently, 
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Fig. 7-17 (Continued) Comparison of true and estimated parameters for PP-only inversion. (d) 
density. (e) Layer thickness. 
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the velocities are estimated to high. At the edges of the "dome" this effect works in 
the opposite direction. When performing the inversion with a larger standard devi­
ation of <a>, e.g. lOOmis instead of lOm/s, all velocities show the same bias as the 
one oflayer #5 in this example. Forcing the velocities down by the small standard 
deviation has apparently succeeded for all layers but the fifth one. As will appear 
later, when the PP&SS results are shown, the S-velocities are not affected so 
much. This is because a) a smaller range of angles is used and b) the drop in the 
S-wave velocities is only halfthe drop in the P-wave velocities. 
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Fig. 7-18 (Continued) Comparison of true and estimated parameters for PP&SS inversion. (d) 
density. (e) Layer thickness. 
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7 .2.4 Inversion results for a combination of PP and SS data 

Next, the inversion is attempted with a combination ofPP and SS data. The corre­
sponding results are shown in Fig. 7-18a-e. The overall inversion results have 
improved significantly. As expected, the results for the 8-wave velocities have 
improved dramatically. There are still some minor errors in the estimated depth 
model, but the errors are correlated, as appears from the very accurate results for 
the layer thicknesses as shown in Fig. 7 -18e. 

7 .2.5 Conclusions 

In conclusion, it can be stated that the unstabilized inversion (i.e. with a large 
standard deviation on the average P-wave velocity) has shown a considerable sen­
sitivity to lateral changes in the layer velocities and the structure. Some force had 
to be applied to bring the inversion results back on the correct track. But since this 
force (a very small standard deviation for the targetzone averaged P-wave velocity) 
was applied in a laterally uniform manner, the inversion results, even for PP only, 
are still satisfactory. 

A better way to stabilize the results is to tie the elastic parameters (per layer) to 
the lithology via the economically important porosity parameter. An example of 
this technique will be shown in the next section. 
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7.3 Litho-elastic inversion example 

In this section an example will be discussed that uses the lithology based prior 
information. The model that is chosen consists of a sandstone reservoir, embedded 
in shale, see Fig. 7-19. On the left side of the model the reservoir is water filled, 
whereas on the right side it is gas filled. The porosity, however, is significantly 
lower in the gas-filled part of the reservoir. As will appear later, this difference in 
porosity results in practically equal acoustic impedances for the water- and gas 
filled parts of the reservoir. Hence, discrimination will be completely based on the 
AVO behavior. 

The reservoir is assumed to be located at a depth of about 2km. The elastic param­
eters of the three lithotypes are chosen close to the values that are predicted by the 
lithologic relations of Section 6.5.2 (maximum deviation -=5%). The values of the 
required lithologic and fluid parameters are given in Tables 6-1 and 6-2 and the 
resulting dependence of the elastic parameters on the porosity is shown in Fig. 6-6. 

To facilitate the elastic modeling and the subsequent processing, the target zone is 
rotated so that its lower boundary becomes horizontal, see Fig. 7-20. The acquisi­
tion surface is chosen 75m above the first target boundary, which has a little 
"bump" in the middle. The transition from water to gas in the reservoir sand is 
modeled as a stepfunction in the elastic parameters at x=350m. As can be seen, the 
small decrease of the P-wave velocity is accompanied by a small increase of the 
density, thus causing a practically constant acoustic impedance over the transi­
tion. 

Fig. 7-19 Sandstone reservoir embedded in shale. On the left side, the reservoir is water filled; on 
the right side, it is gas filled. 
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Laterally coherent parameter fluctuations are superimposed on the elastic model 
by adding a properly scaled noise realization, which is shown in Fig. 7-21. The 
noise realization is multiplied by a factor 200 and added to the gridded P-wave 
velocity model. Since the amplitudes in the original noise realization are clipped to 
the interval [-1, 1], the P-wave velocity fluctuations lie between -200 and 200m/s. 
The same is done for the S-wave velocity and the density, but now using a factor 
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m 

Fig. 7-20 The elastic model that is used for the finite difference modeling. 
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Fig. 7-21 Laterally coherent noise realization that is used for the elastic parameter 
perturbations. 
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100. The resulting elastic parameter logs at x=lOOm are shown in Fig. 7-22. No 
parameter fluctuations are superimposed on the first 30m of model, so that the 
sources are located in a homogeneous medium. This allows for an easy subtraction 
of the direct wave, which is discussed in Section 7 .3.2. Although it is not expected 
that these fluctuations will have a large influence on the modeled seismic data, 
they do bring the elastic model closer to reality. 

7.3.1 Modeling 

The elastic modeling procedure is similar to the one described in the previous sec­
tion. At the surface, shot gathers are modeled with pure P-wave sources and pure 
P- and 8-wave receivers that are effectively located in an upper half-space. There­
fore, the resulting shot gathers are free of surface-related multiples. The specifics 
of the modeling procedure are as follows: 

• The model is extended at all four sides to allow for a smoothing of the edges 
which is needed for the implementation of the absorbing boundary condi­
tions. The resulting model grid measures 1100 by 600 points with a spatial 
sampling interval of (L1x=L1z) lm. 

P-wave velocity (m/s) S-wave velocity (m/s) 
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40 40 40 
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.<:: .<:: .<:: 

~ 80 g. 80 ~ 80 
"0 "0 "0 

100 
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140 140 140 

Fig. 7-22 The elastic parameters at x=lOOm. The same noise realization (with a different scaling) 
is used for the three parameter types. 



114 

• The registration duration is 180ms with a time step of0.2 ms. For the reg­
istration, every twentieth sample is selected, resulting in a sample interval 
of4ms. 

• 66 shot gathers (for each reflectivity type, PP and SP) are modeled, with a 
shot spacing of 16m and a receiver spacing of 8m. A fixed-spread configu­
ration with a length of 512m is used. 

• The P-wave sources that are used have a dipole characteristic; the receiv­
ers (both for P and S) have a monopole characteristic. The source function 
is a 30Hz central frequency Ricker wavelet, see Fig. 7-23. 

7 .3.2 Processing 

Since the receivers are located on the same level as the P-wave dipole sources, in 
theory there should be no direct wave recorded. In the PP gathers the direct wave 
has indeed a negligible amplitude. The PP zero-offset section is shown in Fig. 7-24. 
Note that there is indeed no visible difference in normal incidence reflectivity 
between the water sand at the left and the gas sand at the right. In the converted 
SP gathers (P-wave sources, S-wave receivers), the direct wave is very strong in a 
few traces around the source. This modeling artifact is removed by subtracting the 
corresponding traces from a shot gather resulting from an identical modeling 
experiment using a homogeneous medium with the elastic parameters ofthe first 
layer. 

The so-obtained shot gathers are reordered into CMP gathers with a midpoint 
spacing of 16m. The CMP gathers contain 64 traces with a receiver spacing of Bm 
so that the maximum source-receiver offset is 256m. CMP gathers at midpoint 
locations of 150m (water sand) and 550m (gas sand) are shown in Fig. 7-25. 

(a) (b) 
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Fig. 7-23 30Hz central frequency Ricker wavelet that is used for the modeling. (8) Time domain 
(for the elastic modeling, the wavelet is actually shifted to make it causal). (b)Amplitude spectrum. 
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In order to get a sufficiently small ray parameter sampling interval, the CMP gath­
ers are augmented with zero traces to a total of 256 traces. Next, they are trans­
formed into the kx·W domain. With an interpolation in the kx direction and, 
subsequently, an inverse temporal Fourier transform, p--r gathers with a ray 
parameter sampling interval of 5.68x10-6s/m are obtained. The final result con­
sists of 42 CMP gathers (for both reflectivity types) with midpoint locations 
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Fig. 7-24 Zero offset section of the PP data. There is little lateral variation in the reflectivity 
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Fig. 7-25 CMP gathers at some midpoint locations, plotted on the same amplitude scale. The 
receiver spacing is Bm. Note that the amplitudes in the SP gather at 550m are significantly lower 
as compared to those at 150m, because of the smaller S-wave velocity contrast. 
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between 22 and 678 m and a midpoint spacing of 16m. For midpoint locations at 
150 and 550m, the p--r CMP gathers are shown in Fig. 7-26 

7 .3.3 Inversion considerations 

The inversion is first attempted using only PP data. The maximum ray parameter 
that is used is 136x10-6slm (trace #25 in Fig. 7-26), which corresponds to an inci­
dent angle in the upper layer of 33•. The elastic inversion is performed per lateral 
position and starts at the left of the model (well A) with a zero-contrast initial 
model. As pictured in Fig. 7-16, the estimated model of the previous inversion is 
used as the initial model for the current inversion. The inversion proceeds in this 
fashion until the right-hand side of the model is reached (well B). 

As mentioned, the porosity relations are used in this example as prior information. 
It is assumed to be known from well data, that the reservoir is embedded in shale 
at the starting position. Regarding the lithotype of the reservoir, the inversion is 
attempted twice, once assuming a water sand and once assuming a gas sand. It is 
expected that the residuals will indicate which assumption is the right one, 
depending on the lateral position. The standard deviation for the P-wave velocity 
relation is set to lOOmis. For the S-wave velocity and the density, it is set to respec­
tively 50m/s and 50kg/m3. These values agree well with the actual deviations of 
the elastic parameters with respect to these relations. 

Fig. 7-26 p-T CMP gathers at some midpoint locations, plotted on the same amplitude scale. The 
trace spacing (ray parameter increment) is .1p=5.68xlo-Bs!m. 
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Besides the lithological prior information, the targetzone averages of the P-wave 
velocity, Poisson's ratio and density are still used as prior information. The result­
ing three mismatch terms are part of the second element of the total residual vec­
tor of equation (6-22). Table 7-6 gives an overview of the related parameters. As 
described in Section 6.5.1, the lithological relations are incorporated per layer, and 
the resulting mismatch terms (nine in this example) constitute the third element 
of the total residual vector of equation (6-22). 

The incorporation of the time-shift robustness parameters (see Section 6.4.1) 
proved to be essential for this experiment, since the travel times in the p--r gathers 
that are used as input for the inversion appeared to be 2-5ms in error, when com­
pared to p--r modeled gathers. Why these errors are present is not known yet, but 
fortunately, it can be demonstrated now, that the inversion is able to cope with 
such deviations. 

Table 7-6 True and prior values with the corresponding standard deviations for the targetzone 
averaged elastic parameters. The true values for the averages change at the water to gas 
transition, but the prior values are kept laterally invariant. 

Prior item unit True (left) True (right) Prior value StdDev 

<a> m/s 3667 3633 3600 50 

<O> - 0.28 0.23 0.25 0.05 

<p> kg/m3 2490 2530 2500 100 
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Fig. 7-27 Energy in the lithology-relations mismatch, for the lithotypes water sand and gas sand. 
The transition from water sand to gas sand is located at 350m. 
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As mentioned, the inversion is attempted once assuming a water sand, and once 
assuming a gas sand for the reservoir layer. As shown in equation (6-22), the resid­
ual vector consists of three parts: data mismatch, "standard" prior relations mis­
match and lithology mismatch. In general, the total energy in the residuals 
consists mainly of the data mismatch. Unless the lithology relations are very 
strictly imposed (by using very small standard deviations), the total energy will be 
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Fig. 7-28 The estimation results using PP reflectivity only. 
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quite insensitive to changes in lithotype. Therefore, in order to achieve an optimal 
discrimination between the lithotypes (water sand and gas sand, in this example), 
the energy in the lithology mismatch is used as a measure for the likelihood of a 
particular lithotype assumption. 
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Fig. 7·29 The estimation results using a combination of PP and SP reflectivity. 
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7 .3.4 Inversion results for PP data only 

The results for the energy in the lithology mismatch are shown in Fig. 7-27. The 
discrimination between the two lithotypes can clearly be observed. When using the 
porosity relations for the water sand, the energy is lowest at the left, while at the 
right, the energy for the gas sand is lowest. The exact transition from water to gas 
occurs at 350m, which agrees well with the observed behavior of the residual 
curves. 

Having established the fact that the water sand is present at the left and the gas 
sand is present at the right, with a transition at about 350m, the estimated model 
can be obtained: Up to 350m, the results from the water sand inversion run are 
selected, while after 350m, the results from the gas sand run are selected. The esti­
mated and true values for the P-wave velocity, Poisson's ratio, porosity and layer 
thickness are shown in Fig. 7-28. As can be seen, the results are quite accurate. 
The transition from water sand to gas sand is nicely represented by the drop in the 
estimated Poisson's ratio of the reservoir sand. Also the porosities are well 
retrieved. The aforementioned moveout errors, that are partly accounted for by the 
robustness parameters are probably the major cause of some of the inaccuracies in 
the results. 

7 .3.5 Inversion results for a combination of PP and SP data 

The inversion is also performed using a combination ofPP and SP data. The max­
imum ray parameter for the SP data that is used is also 136x10-6s/m. The same 
procedure as for the PP-only case is followed. Making use of a display like the one 
of Fig. 7-27 (not shown here), the discrimination between the two lithotypes 
improves somewhat. The results for the estimated parameters are shown in Fig. 
7-29. Especially, the results for the Poisson's ratios have improved. The porosity of 
the third layer (shale#2) is also correctly estimated now. The results for the layer 
thickness of the first layer are slightly biased. This is again attributed to the move­
out errors. Note that the small step in the P-wave velocity is still not retrieved. 

7 .3.6 Conclusions 

The incorporation of the seismic-lithology relations has made it possible to obtain 
not only the elastic parameters, but also the lithology from PP-only multi-offset 
data. An excellent discrimination between a gas sand and a water sand lithology 
was achieved. Since the normal incidence PP reflectivity is practically invariant 
for this model, this discrimination has to be based on the offset dependent behavior 
of the reflectivity. Using a combination ofPP reflectivity and converted SP reflec­
tivity (P sources, S receivers), a worthwhile improvement ofthe results was obtai­
ned. 



8 Conclusions and discussion 

In this thesis, a inversion strategy for multi-offset seismic data is described. 
Rather than using the shot gathers at the surface in an inversion for the whole 
subsurface, a target oriented approach is proposed. The necessary pre-processing 
of the possibly multi-component shot gathers is handled by the pre-processing I 
redatuming modules of the DELPHI scheme, see Fig. 2-1 on page 12: Decomposi­
tion into P- and 8-waves, surface related multiple elimination, macro model esti­
mation and multi-offset downward extrapolation. 

The DELPHI redatuming method is designed to handle laterally inhomogeneous 
macro models. The new datums are chosen close to, and parallel to the local layer­
ing of the target zone. After reordening into Common Midpoint (CMP) gathers, the 
data in one CMP can be considered to correspond to a locally one-dimensional 
medium. In the case that multi-component data is available, the decomposition 
yields PP, SP, PS and SS shot gathers. The multi-shot redatuming is executed per 
reflectivity type, to yield again, after redatuming, four target related CMP gathers 
per midpoint. 

For the inversion, the targetzone is locally parameterized with a stack of homoge­
neous elastic layers. The layer thicknesses are part of the parametrization. Any 
combination of the four reflectivity types can simultaneously be inverted. This 
includes a single reflectivity type, e.g. PP-only. For an efficient and accurate inver­
sion, the data are processed into the plane wave (p--r) domain. The inversion makes 
use of iterative forward modeling to match modeled data to the observed data. The 
forward modeling is done by a recursive elastic reflectivity algorithm. 

For the elastic inversion described here, the mismatch function is a sum of squares 
and is minimized by a corrected Gauss-Newton method. Since the forward model 
is nonlinear in the parameters, local minima can exist. As was shown in Section 
3.6.2, the behavior of the reflectivity as a function of the model parameters is rea­
sonably linear and is not likely to cause local minima. The full-waveform mismatch 
function is, however, a strongly nonlinear function of the velocities. Changing the 
velocities will change the travel times in the multi-offset data. This will cause local 
extremes in the energy of the mismatch between modeled and actual data when 
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peaks and troughs "shift through each other". Starting with an initial traveltime 
model that is close enough to the actual minimum is the best solution to prevent 
ending up in a local minimum. Such a model can be obtained from a preceding 
poststack inversion, see Section 6.1.2. 

The second problem which geophysical inverse problems usually suffer from, is 
that the mismatch function is essentially flat in one or more directions around its 
minimum. These ill-resolved directions introduce uncertainties in the associated 
parameters. This problem is addressed by using prior information to stabilize the 
inversion. 

8.1 Elastic prior information 

The Bayesian inversion technique is applied, to effectively stabilize the inversion 
through the use of prior information. Uncertainties in prior information and data 
(noise) are treated in a statistically consistent manner. 

First of all, targetzone averaged parameters (from the macro model) are used as 
prior information, to establish the absolute "level" of the parameters. In addition, 
generally applicable empirical relations between the elastic parameters (Gardner, 
Mudrock) could be used. However, we prefer the specification oflithologic relations 
per lithotype ("litho-stratigraphic inversion"). 

Based on results employing solely elastic prior information, the following can be 
concluded: 

• When using PP-only data, the P-wave velocities and densities are esti­
mated best. The S-wave velocity is less accurately estimated. Important 
though, is that anomalously low Poisson's ratios, which are assumed to be 
an indication of gas fill, are usually well retrieved. 

• Using a combination of PP and SS data, the estimation results for all 
parameters improve considerably. Now, the S-wave velocity is the best 
resolved parameter. 

• The parametrization in terms of layers makes it possible to retrieve the 
layer parameters, even in the case of thin layers and strong interference. 
When using a gridded medium representation, this would not be possible. 

Still, experience of the author with many types of models indicates that problems 
can be expected when inverting field data with merely elastic stabilization. Ampli­
tude errors, errors in the wavelet and small contrasts are amongst the factors that 
will hamper a successful inversion of field data. Therefore, a stronger stabilization 
by specifying lithologic relations per layer is proposed. 
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8.2 Lithologic prior information 

In mature exploration areas, lithologic information about the target layers is gen­
erally available. In such a case, a better way to stabilize the inversion is by making 
use oflithology-based prior information; the more so, because the lithology is what 
one is ultimately interested in. Because the elastic parameters are sensitive to the 
porosity, it is a logical step to include the porosity in the parametrization. The prior 
information, which makes the results for both the elastic parameters and the 
porosity well defined, consists of empirical or theoretical relations between the 
porosity and the elastic parameters. 

For different lithologies, different porosity relations are used. This makes it possi­
ble, under certain conditions, to determine the most likely lithotype of a certain 
target layer, together with its porosity. Here, a lithotype denotes not only the 
lithology, put also the type of fluid fill. Even in the cases of PP-only data, where 
stabilization is most needed, this procedure is expected to provide the information 
one is most interested in: The pore fill (fluid or gas) and the porosity. 

8.3 Discussion and recommendations 

The following aspects are of importance when developing a target oriented elastic 
inversion method: 

• Choice of parametrization. 

• Choice of stabilization. 

• Choice of data and associated forward model. 

Regarding the parametrization, the author feels that it is a necessary choice to 
indeed parametrize the targetzone in terms of homogeneous layers, rather than 
using a gridded representation. When using the geology-based layered parametri­
zation, not only thin layers can be resolved, but it is also possible to specify differ­
ent prior information per layer, both of which are not possible with gridded 
inversion. It is true that gridded inversion imposes no constraints on the model, 
but we know that the subsurface is predominantly layered, which should be made 
use of to constrain the solutions. 

Regarding the stabilization, the inclusion of the porosity in the parametrization, 
together with relations between the elastic parameters and the porosity, can be 
seen as the optimal way to link the AVO information in the multi-offset data 
directly to the economically important lithology parameters, pore fill and porosity. 
Since the porosity relations (theoretical or empirical) are implemented with an 
associated uncertainty (Bayesian inversion) the answers are not forced to exactly 
obey them. 
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Regarding the third item, choice of data and forward model, the preference for per­
forming the inversion in the p--r domain was largely based on grounds of computa­
tional efficiency. 

However, there are two problems associated with p--r data, that do not occur in an 
inversion of x-t data. Like the original shot gathers at the surface, the target 
related CMP gathers have a limited aperture. First of all, this limited aperture 
causes truncation artifacts in the p--r data, that, due to their coherent character, 
can be quite harmful to the inversion result. Dobbs et al. (1990) devoted a paper to 
this subject. 

Secondly, there is a problem because of the fact that the data in a certain offset 
range does not correspond to data in a certain ray parameter range. The problem 
is illustrated for a two-layer model in Fig. 8-1. For the maximum source-receiver 
offset of 200m, the incident angle at the first reflector is 45° (pointA,p = 0.71xlo-3 
s/m), which is beyond the critical angle at 30° (point C, p = 0.50x10-3s/m). At the 
maximum incident angle on the second reflector, the corresponding ray parame­
ters is smaller, namely p = 0.29x10-3s/m (point B). 
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Fig. 8-1 For the two reflectors, a certain offset 
range (200m) corresponds to different ranges of 
ray parameters. (a) Model with two reflectors. 
(b) x-t traveltimes. The maximum offset is 200m. 
The head wave starts in point C. (C) p-r travel 
times. The part between B and C of the lower 
reflector is not present in the x-t data. 
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The inversion assumes a certain range of ray parameters that is necessary equal 
for all events. Going beyondp = 0.29xlo-3s/m is therefore not possible, because the 
second reflector is simply missing in the p--r data. Due to the effects of the limited 
aperture, the full-waveform p--r data will already be inaccurate for even smaller 
ray parameters. In any case, the valuable postcritical information of the first 
reflector has to be discarded. 

This discrepancy between "p-range" and "x-range" causes also problems for the 
strong twice-converted events that are generally present in the SS data. In this 
case, for a ray parameter close to the reciprocal of the P-wave velocity of a layer, 
the primary SS reflections will correspond to medium large offsets, whereas the 
twice-converted waves correspond to very large offsets, and are therefore not reg­
istered. 

A solution to this problem might be to include a limited aperture filter in the for­
ward modeling, see Dobbs et al. (1990). However, an accurate implementation 
requires the modeling of many ray parameter traces, which nullifies part of the 
advantages of p--r inversion. 

Doing the inversion in the x-t domain would eliminate these problems. The model­
ing becomes more complex now, because of the fact that the wavenumber integral 
of equation (4-2) requires special attention to prevent wrap-around of events in the 
lateral direction. Since the x-t modeling will typically take much more time, it 
becomes important to develop a method to calculate the derivatives of the objective 
function with respect to the layer parameters directly, rather than using a finite 
difference procedure, which takes many modelling steps. 
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Appendix A Scattering in terms of 
particle displacements and 
Lame potentials 

Many authors, e.g. Bortfeld (1961), Cerveny and Ravindra (1971) and Aid and 
Richards (1980), define the scattering coefficients of plane waves at a horizontal 
interface between two homogeneous isotropic elastic media in terms of particle dis­
placements. This is in accordance with the original work ofZoeppritz (1919). In this 
appendix, the relation between the particle-displacement coefficients and the 
potential coefficients, which are used in this thesis, will be derived. 

In the definition of the scattering coefficients in terms of particle displacements, 
there is an arbitrariness in the choice of the positive direction. All references men­
tioned above, fortunately adhere to the same definition which is pictured in Fig. 
A-1. 

AI Particle motion for homogeneous and inhomogeneous waves 

The velocity vis the time derivative of the particle displacement u, so with trans­
form pair (3-40) it follows: 

1 
U(p,z,w)=-. V(p,z,w). 

l(l) 
(A1) 

Considering only a downgoing or upgoing P-wave, it follows from the composition 
relations (3-37) and (3-38) that the corresponding particle displacement is given 
by: 

ui = i::(±:J. (A2) 

Likewise is the particle displacement from a downgoing or upgoing 8-wave given 
by: 
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U$ = .cp± (+qs). 
unp p 

(A3) 

According to equation (3-26), a downgoing or upgoing P-wave is represented in the 
horizontal slowness - frequency domain by: 

A>±( ) _ .d =!= +iroqpz "" p,z,w - L"(pe . (A4) 

For homogeneous waves, see Section 3.3.3, the vertical slowness is a positive real 
constant. Consequently, (A4) reads in the space - time domain: 

t/J±(x,z,t)= 4exp[iro(t- px+ qpz)], 

qP = ~1/a2 - p 2 andp2 :s; 1/a2
. 

(A5) 

and the wavefronts (planes of constant phase) propagate in the direction of the 
slowness vector: 

(A6) 

For inhomogeneous P-waves, however, the vertical slowness is purely imaginary, 
leading to: 

az, f3z, Pt 

~~+ 
l 

l 
Ill+ i 'f"'l 

Fig. A-1 Scattering of plane waves at a horizontal interface between two elastic media. The 
direction of positive particle displacements is indicated with arrow type....-. The direction in 
which the wave propagates is indicated with arrow type --+. The pictured longitudinal or 
transverse particle motion is only valid for propagating (homogeneous) waves. 
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if>±(x,z,t) =A~ exp[+cazlqPI+ico(t- px)], 

q P = -i~ p2 -1/ a2 and p 2 > 1/ a 2
• 
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(A7) 

and the wavefronts propagate horizontally in the direction of the real part of the 
slowness vector: 

(AS) 

Comparing (A2) and (A6), it is clear that the particle motion for homogeneous 
P-waves is indeed in the direction of propagation. For an inhomogeneous P-wave, 
however, the nonzero Qp term in (A2) signifies particle motion in the z-direction, 
hence the wave is not purely longitudinal. Because Qp is imaginary, the motion in 
the z-direction is go· out of phase with the motion in the x-direction, leading to an 
elliptical particle motion. 

Mutatis mutandis, a similar reasoning applies for S-waves. A homogeneous 
S-wave propagates in the direction of the slowness vector 

s~=(±:J. 
qs = ~ 1//32 _ p2 and p2 ::; 1//32 . (A9) 

and an inhomogeneous 8-wave propagates horizontally in the direction of the real 
part of the slowness vector: 

Re{ s~} = Re { ( ±:J} = ( ~). 
(AlO) 

The slowness of the homogeneous 8-wave is indeed perpendicular to the direction 
of particle motion given by (A3). For an inhomogeneous 8-wave, the nonzero q5 

term in (A3) signifies particle motion in the x-direction, hence the wave is not 
purely transverse. Also for the inhomogeneous 8-wave, the particle motion is ellip­
tical. 

A2 Potentials and particle-displacements 

To arrive at a general relation between the two types of scattering coefficients, the 
coefficient T2+1 from equation (3-30), that describes the transmission from an inci­
dent P-wave in the upper half-space to an S-wave in the lower half-space, will be 
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used as an example. In the following derivation, only homogeneous waves will be 
considered. The results, though, will be valid for both homogeneous and inhomo­
geneous waves. 

Using (A2), the particle displacement of the incident P-wave in the upper 
half-space is given by: 

(/)+ ( p ) Uq,+ = -. _u_ • 
u UOPu Qp,u 

(All) 

Using (A3), the particle displacement of the transmitted S-wave in the lower 
half-space is given by: 

U = .1/lj (-Qs,l). 
"1 uop1 p 

(A12) 

A representation of the incident P-wave in the slowness domain is given in Fig. 
A-la. As can be seen there, the direction of positive particle displacement for the 
P-wave, as defined in Fig. A-1, is coincident with the direction (p, Qp,u)t from (All). 
However, for the transmitted S-wave, pictured in Fig. A-lb, the direction of posi­
tive particle displacement is opposite to direction (--<Js,Z, p)t from (A12). 

(a) 

Qp,u 

horizontal 
p slowness 

positive 
displacement 

(b) positive 
displacement --

horizontal 
-q P slowness 
~~s,~l----------~~------~ 

Fig. A-2 Wave representation in the slowness domain. The direction in which the wave 
propagates is indicated with arrow type ---..The direction of positive particle displacements is 
indicated with arrow type ...... (a) For the downgoing P-wave, the direction (p, Qp,,i in (All), 
indicated by the dot (•), coincides with the direction of positive particle displacement. (b) For the 
downgoing S-wave, the direction (-q8,z, pi in (A12), indicated by the dot (•), is opposite to the 
direction of positive particle displacement. 
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Taking into account the sign of the particle displacement, the transmission coeffi­
cient T2"1 in terms of particle displacements is given by: 

(A13) 

Using (All), (A12) and (3-30), it follows: 

(A14) 

So, a simple multiplicative factor relates the two types of transmission coefficients. 
This is true for all sixteen scattering coefficients. Based on this example it can be 
easily seen that the general relation for the scattering coefficients is the following: 

S density(i) x velocity(i) x sign(i) S . 
si, disp density(s) x velocity(s) x sign(s) s,,pot 

(A15) 

where S8 i is one of the sixteen elements of the scattering matrix and sand i denote 
scattered and incident respectively. Using equations (A2), (A3) and the sign con­
vention of Fig. A-1, it can be seen that the only negative sign factors are the ones 
for the downgoing S-waves IJJt and IPu +. 

Substituting (3-32) in (3-33), the scattering matrix in terms of potentials is given 
by: 

[~]=S r~l s =(R+ r) ~ pot ~ , · pot T+ R- · (A16) 

Using relation (A15), the scattering matrix in terms of particle displacements is 
then given by: 

0 J 0 
0 . 

Pzf3z 

(A17) 

When using the more conventional definition for the Lame potentials, i.e. (3-11) 
without the --(imp)-1 factor, the density terms drop out of relations (A15) and (A17). 
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Appendix 8 Explicit expressions for 
the scattering coefficients 

Making use of(A15), the explicit expressions for the scattering coefficients that are 
given on pp. 150-151 of Aki and Richards (1980) can be modified to yield the corre­
sponding expressions for the Lame potentials. Repeated use is made of the follow­
ing variables: 

a= Pz( 1- 2{Jf P 2
)- Pu( 1- 2[J:p2

), 

c = Pu( 1- 2fJ:P2
) + 2pzf3r p 2

, 

b = Pz( 1- 2{Jf p 2
) + 2puf3:p2 

d = 2(pzf3'f- Puf3:) 
(B1) 

The same is true for the following terms that depend on the vertical slownesses: 

E = bqp,u +cqp,l• 

G =a-dqp,uQs,l• 

D=EF+GHp2 

F = bqs,u + CQs,l 

H = a- dq p,zQs,u 

(B2) 

The vertical slownesses q for the homogeneous and inhomogeneous waves are 
defined by (3-28) and (3-29) respectively. With the above definitions, the expres­
sions for scattering coefficients in terms ofLame potentials are given in Table B-1. 
Note that all sixteen scattering coefficients become complex if one or more of the 
four vertical slownesses becomes imaginary. 
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Table B-1 Explicit expressions for the scattering coefficients in terms of Lame potentials, based 
on Aki and Richards (1980). See also equations (Bl), (B2) for some definitions. 

Incident wave Scattering coefficient 

(/)+ 
Ri1 =[(bqp,u -cQp,t)F-(a+dqp,uQs,t)Hp2 ]/D 

u 
R;l = -2Qp,u(ab+cdqp,lQs,l)PID 

downgoing P-wave Ti1 =2pzQp,uFID 
upper half-space 

T{1 =-2pzQp,uHpiD 

q;; 
Ri2 = 2qs,u ( ab + cdq p,lQs,l) PI D 

R;2 = [ ( bqs,u - cqs,l )E- (a+ dq p,lQs,u )Gp2 ]/ D 

downgoing 8-wave Ti2 = 2pzQs,u Gpl D 
upper half-space 

T2+2 = 2pzQs,u El D 

Tii. = 2puq p,l F I D 
(/)[ 

T2l. =-2PuQp,zGpiD 

upgoing P-wave R!1 = -[(bqp,u -cqp,t)F +(a+ dqp,lQs,u)Gp2 ]/D 
lower half-space 

R21 =-2Qp,l(ac+bdqp,uqs,u)PID 

Ti2 = 2puqs.l Hpj D 
(/}[ 

Ti2 = 2puQs,LEID 

upgoing S-wave R!2 = 2qs,l(ac+bdqp,uQs,u)PID 
lower half-space 

R22 = -[(bqs,u -cqs,l)E +(a+dqp,uQs,t)Hp2 ]jD 



References 
Aki, K., and Richards, P. G., 1980, Quantitative Seismology, Freeman. 

Amundsen, L., and Ursin, B., 1988, Frequency-wavenumber inversion of acous­
tic data: 58th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded 
Abstracts, 845-848. 

Assous, F., Chalindar, B., and Collino, F., 1989, Nonlinear elastic inversion of 
prestack marine seismic data: Proc. IEEE, 77, 877-890. 

Ball, V., 1988, Thin bed tuning analysis using AVO stratigraphy methods: 58th 
Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1213-1216. 

Ball, V. L., 1987, Depth inversion of impedance and Poisson's ratio using the 
Insight™ interactive modeling system: 57th Ann. Internat. Mtg., Soc. 
Expl. Geophys., Expanded Abstracts, 624-626. 

Balogh, D., Snyder, G., and Barney, W., 1986, Examples of a new approach to off­
set amplitude analysis: 56th Ann. Internat. Mtg., Soc. Expl. Geophys., 
Expanded Abstracts, 350-351. 

Bamberger, A., Chavent, G., Hernon, C., and Lailly, P., 1982, Inversion of normal 
incidence seismograms: Geophysics, 47, 757-770. 

Berkhout, A. J., 1982, Seismic migration, Elsevier. 

Berkhout, A. J., 1988, Applied seismic wave theory, Elsevier. 

Berkhout, A. J., and Wapenaar, C. P. A., 1990, Delphi: Delft philosophy on acous­
tic and elastic inversion, part 1: The Leading Edge, 9, no. 2, 20-33. 

Castagna, J.P., Batzle, M. L., and Eastwood, R. L., 1985, Relationships between 
compressional-wave and shear-wave velocities in clastic silicate rocks: 
Geophysics, 50, 571-581. 

Cerveny, V., and Ravindra, R., 1971, Theory of seismic head waves, University of 
Toronto Press. 



136 References 

Chapel, F., Kolb, P., and Canadas, G., 1989, CMP nonlinear inversion in (t-p) 
domain: 59th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded 
Abstracts, 935-937. 

Cox, H. L. H., 1991, Estimation of macro velocity models by wave field extrapo­
lation, Ph.D. thesis, Delft University ofTechnology. 

Crans, W., and Berkhout, A. J., 1980, Assessment of seismic amplitude anoma­
lies: Oil and Gas Journal, no. 11, 156-168. 

de Bruin, C. G. M., Wapenaar, C.P.A., and Berkhout, A. J., 1990, Angle depen­
dent reflectivity by means of prestack migration: Geophysics, 55, 1223-
1234. 

Dobbs, S. L., Wilson, C. R., and Backus, M. M., 1990, Accounting for limited spa­
tial aperture in the waveform inversion ofp-tau seismograms: Geophysics, 
55, 452-457. 

Duijndam, A. J. W., 1987, Detailed Bayesian inversion of seismic data, Ph.D the­
sis, Delft University of Technology. 

Duijndam, A. J. W., 1988, Bayesian estimation in seismic inversion. Part I: Prin­
ciples: Geophys. Prosp., 36, 878-898. 

Duijndam, A. J. W., 1988, Bayesian estimation in seismic inversion. Part II: 
Uncertainty analysis: Geophys. Prosp., 36, 899-918. 

Dunkin, J. W., 1965, Computation of modal solutions in layered elastic media at 
high frequencies: Bull. Seis. Soc. Am., 55, 335-358. 

Fuchs, K., 1968, The reflection of spherical waves from transition zones with 
arbitrary depth-dependent elastic moduli and density: J. Phys. Earth, 16, 
Special Issue, 27-41. 

Geertsma, J., 1961, Velocity-log interpretation: The effect of rock bulk compress­
ibility: J. Soc. Petr. Eng., 1, 235-248. 

Gilbert, F., and Backus, G., 1966, Propagator matrices in elastic wave and vibra­
tion problems: Geophysics, 31, 326-332. 

Gill, P. E., Murray, W., and Wright, M. H., 1981, Practical Optimization, Aca­
demic Press. 

Haskell, N. A., 1953, The dispersion of surface waves on multilayered media: 
Bull. Seis. Soc. Am., 43, 17-34. 



References 137 

Helgesen, J., 1991, Prestack inversion of group-filtered seismic data: Geophys. 
Prosp., 39, 313-336. 

Hilterman, F. J., 1983, Seismic Lithology, SEG Continuing Education Course, 
SEG, Tulsa. 

Kennett, B. L. N., 1974, Reflections, rays and reverberations: Bull. Seis. Soc. 
Am., 64, 1685-1696. 

Kolb, P., and Canadas, G., 1986, Least-squares inversion ofprstack data: Simul­
taneous identification of density and velocity of stratified media: 56th Ann. 
Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 604-607. 

Kolb, P., Chapel, F., and Picart, I., 1989, Lithologic inversion: A reflectivity ver­
sus angle (RVA) approach: 59th Ann. lnternat. Mtg., Soc. Expl. Geophys., 
Expanded Abstracts, 695-699. 

Kolb, P., Collino, F., and Lailly, P., 1986, Pre-stack inversion of a 1-D medium: 
Proc. IEEE, 74,498-508. 

Lailly, P., 1983, The seismic inverse problem as a sequence of before stack migra­
tions, in Bednar, J. B., Redner, R., Robinson, E. A. and Weglein, A. B., Eds, 
Conference on inverse scattering: theory and application: SIAM, 206-220. 

Lortzer, G. J. M., 1990, An integrated approach to lithological inversion, Ph.D. 
thesis, Delft University of Technology. 

Lortzer, G. J. M., and Berkhout, A. J., 1990, Linear AVO inversion of multi-com­
ponent seismic data: 59th Ann. Internat. Mtg., Soc. Expl. Geophys., 
Expanded Abstracts, 967-972. 

Lortzer, G. J. M., and Berkhout, A. J., 1992, An integrated approach to litholog­
ical inversion-part 1: Theory: Geophysics, 57, No.2. 

Mazzotti, A., and Mirri, S., 1991, An experience in seismic amplitude processing: 
First Break, 9, no. 2, 65-73. 

McGillivray, P.R., and Oldenburg, D. W., 1990, Methods for calculating Frechet 
derivatives and sensitivities for the non-linear inverse problem: a compar­
ative study: Geophys. Prosp., 38, 499-524. 

Mora, P., 1987, Nonlinear two-dimensional elastic inversion ofmultioffset seis­
mic data.: Geophysics, 52, 1211-1228. 

Miiller, G., 1985, The reflectivity method: a tutorial: J. Geophys., 58, 153-174. 



138 References 

Ostrander, W. J., 1982, Plane wave reflection coefficients for gas sands at non­
normal angles of incidence: 52th Ann. Intemat. Mtg., Soc. Expl. Geophys., 
Expanded Abstracts, 216-218. 

Ostrander, W. J., 1984, Plane-wave reflection coefficients for gas sands at non­
normal angles of incidence: Geophysics, 49, 1637-1648. 

Pan, G. S., and Phinney, R. A., 1989, Full-waveform inversion of plane-wave seis­
mograms in stratified acoustic media: Applicability and limitations: Geo­
physics, 54, 368-380. 

Pan, G. S., Phinney, R. A., and Odom, R.I., 1988, Full-waveform inversion of 
plane-wave seismograms in stratified acoustic media: Theory and feasibil­
ity: Geophysics, 53, 21-31. 

Pan, G. S., Young, C. Y., and Castagna, J. P., 1990, Sensitivity and resolution of 
an integrated target-oriented prestack elastic inversion.: 60th Ann. Inter­
nat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1173-1176. 

Phinney, R. A., Odom, R. I., and Fryer, G. J ., 1987, Rapid generation of synthetic 
seismograms in layered media by vectorization of the algorithm: Bull. Seis. 
Soc. Am., 77,2218-2226. 

Pica, A., Diet, J. P., and Tarantola, A., 1990, Nonlinear inversion of seismic 
reflection data in a laterally invariant medium: Geophysics, 55, 284-292. 

Rutherford, S. R., and Williams, R. H., 1990, Amplitude-versus-offset variations 
in gas sands: Geophysics, 54, 680-688. 

Sheriff, R. E., and Geldart, L. P., 1983, Exploration seismology, Vol.2: Data-pro­
cessing and interpretation, Cambridge University Press. 

Shuey, R. T., 1985, A simplification of the Zoeppritz equations: Geophysics, 50, 
609-614. 

Smith, G. C., and Gidlow, P.M., 1987, Weighted stacking for rock property esti­
mation and detection of gas: Geophys. Prosp., 35, 993-1014. 

Spratt, S., 1987, Effect of normal moveout errors on amplitude versus offset­
derived shear reflectivity: 57th Ann. Intemat. Mtg., Soc. Expl. Geophys., 
Expanded Abstracts, 634-637. 

Swan, H. W., 1990, Noise Sensitivity oflinear seismic inversion: 60th Ann. Inter­
nat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1177-1180. 

Tarantola, A., 1984, Inversion of seismic reflection data in the acoustic approxi­
mation: Geophysics, 49, 1259-1266. 



References 139 

Tarantola, A., 1984, The seismic reflection inverse problem, in Santosa, F., Pao, 
Y.-H., Symes, W. W. and Holland, C., Eds, Inverse problems of acoustic and 
elastic waves: SIAM, 104-181. 

Tarantola, A., Crase, E., Jervis, M., Koren, Z., Lindgren, J., Mosegaard, K., and 
Noble, M., 1990, Nonlinear inversion of seismograms: State of the art: 60th 
Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1193-1198. 

Treadgold, G. E., Dey-Sarkar, S. K, Smith, S. W., and Swan, H. W., 1990, Ampli­
tude versus offset and thin beds: 60th Ann. Internat. Mtg., Soc. Expl. Geo­
phys., Expanded Abstracts, 1463-1466. 

Treadgold, G. E., Ritchie, K, and Dey-Sarkar, S. K, 1990, AVO: An example of 
processing pitfalls: 60th Ann. Internat. Mtg., Soc. Expl. Geophys., 
ExpandedAbstracts, 1487-1490. 

Ursin, B., and Dahl, T., 1990, Least-squares estimation of reflectivity polynomi­
als: 60th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 
1069-1071. 

Vail, P. J., Strauss, P. J., Levitt, P. R., Smith, G. C., and Gidlow, P. M., 1990, 
Extraction ofP- and S-wave velocities from a 3-D reflection data set and its 
application to direct hydrocarbon detection: 60th Ann. Internat. Mtg., Soc. 
Expl. Geophys., Expanded Abstracts, 1181-1184. 

van der Knaap, W., 1959, Nonlinear behavior of elastic porous media: Petroleum 
Transactions, 216, 179-187. 

Verschuur, D. J., 1991, Surface-related multiple elimination, an inversion 
approach, Ph.D. thesis, Delft University of Technology. 

Wapenaar, C.P.A., and Berkhout, A. J., 1989, Elastic wave field extrapolation, 
Elsevier. 

Wapenaar, C. P. A., Herrmann, P., Verschuur, D. J., and Berkhout, A. J., 1990, 
Decomposition of multicomponent seismic data into primary P- and S­
wave responses: Geophys. Prosp., 38, 633-661. 

Young, G. B., and Braile, L. W., 1976, A computer program for the application of 
Zoeppritz's amplitude equations and Knott's energy equations: Bull. Seis. 
Soc. Am., 66, 1881-1885. 

Yu, G., 1985, Offset-amplitude variation and controlled-amplitude processing: 
Geophysics, 50, 2697-2708. 



140 References 

Zoeppritz, K., 1919, Erdbebenwellen VIIIB, Uber Reflexion und Durchgang seis­
mischer Wellen durch Unstetigkeitsflachen: Gottinger Nachrichten, 1, 66-
84. 



Summary 
In exploration seismology, the subsurface response due to elastic sources at the 
surface is recorded, processed and interpreted in order to obtain an image of the 
earth's interior. The ultimate goal is to locate and evaluate hydrocarbon reservoirs. 
The variation of the reflection amplitude with the incident angle of the illuminat­
ing wave field contains information about the elastic properties of the subsurface 
layers, which can be linked to the rock and pore parameters. 

In this thesis, an inversion strategy for multi-offset seismic data is discussed. Such 
an inversion implicitly employs the angle dependent reflectivity information in the 
seismic data. The inversion procedure is target oriented, i.e. only those sections of 
the subsurface that one is specifically interested in are inverted for. 

In Chapter 1, the distinction between direct inversion and inversion by data fitting 
is introduced. Some current elastic inversion techniques of the data fitting type are 
discussed: Weighted stacking and nonlinear elastic inversion of multi-shot data 
sets. In contrast to the parametric and target oriented approach that is followed in 
this thesis, the majority ofthe current methods makes use of a gridded represen­
tation of the total subsurface. Pros and cons are discussed. 

Chapter 2 introduces the DELPHI scheme for elastic processing and inversion. 
Rather than using one grand inversion scheme, the inversion is subdivided into a 
number of separate processes. Each of these processes is chosen optimally suited 
for its particular task. The next process is only started if the previous processing 
result is found to be acceptable. The last modules, target oriented elastic and litho­
logic inversion are preceded by a redatuming step. When choosing the new datums 
closely above and parallel to the local layering of the targetzone, the target 
medium can locally be considered a lD model, particularly if CMP data is used. 
This enables one to use a lD elastic inversion per lateral position along the target. 

In Chapter 3 the theory of reflection and transmission ofplane waves at a bound­
ary between two homogeneous isotropic elastic media is discussed. The scattering 
is described in terms ofP- and S-wave potentials for which composition and decom­
position matrices are derived. At the end of the chapter, approximation formulas 
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for the reflection coefficients are given, which provide an insight in the behavior of 
the reflectivity as a function of the elastic contrasts. 

Chapter 4 discusses the reflectivity method, which is used for the forward model­
ing of the iterative elastic inversion. The method is implemented in the horizontal 
slowness- frequency domain. Pure P- and 8-wave sources and receivers are used. 

In Chapter 5 the principles of Bayesian inversion are discussed. Assuming Gauss­
ian noise on the data and the prior relations, it is demonstrated that the minimum 
of the weighted sum of the squared residuals yields a suitable estimator for the 
model parameters. Numerical methods for nonlinear optimization are discussed. 

Chapter 6 deals with the specifics of the proposed elastic inversion method. Non­
uniqueness aspects are analyzed a.o. by making use of the approximated expres­
sions for the reflection coefficients. Furthermore, the implementation of robust­
ness parameters for amplitude and traveltime errors is discussed. Finally, the 
incorporation of seismic-lithology relations is introduced as a means to optimally 
stabilize the inversion. This procedure enables one to obtain the lithotype and the 
porosity of the target layers directly. 

Chapter 7 is devoted to three examples that illustrate the potential of the proposed 
inversion technique. 

Finally, Chapter 8 gives a comprehensive overview of the inversion method and 
concludes with some critical remarks about p--r inversion in general. 



Samenvatting 

In exploratie seismologie, wordt de responsie van de ondergrond ten gevolge van 
elastische bronnen aan het opppervlak opgenomen, verwerkt en ge'interpreteerd. 
Ret uiteindelijke doel is het localiseren en evalueren van olie- en gasreservoirs. De 
variatie van de reflectieamplitude met de hoek van inval van het belichtende 
golfveld bevat informatie over de elastische eigenschappen van de ondergrond, 
welke gerelateerd kunnen worden aan de gesteente en porieparameters. 

In dit proefschrift wordt een inversiestrategie voor multi-kanaals seismische 
gegevens behandeld. Een dergelijke inversie gebruikt impliciet de hoekafhanke­
lijke informatie in de seismische gegevens. De inversieprocedure is doelgericht 
(target oriented), hetgeen betekent dat slechts voor die gedeeltes van de onder­
grond waarin men specifiek ge'interesseerd is, geinverteerd wordt. 

In hoofdstuk 1 wordt het verschil tussen directe inversie en inversie d.m.v. data 
aanpassing ge'introduceerd. Enkele actuele inversietechnieken van het laatstge­
noemde type worden behandeld: Weighted Stacking en nonlineaire inversie van 
multi-shot data sets. In tgenstelling tot de parametrische en doelgerichte aanpak 
die in dit proefschrift wordt gevolgd, maken laatstgenoemde methodes gebruik van 
een regelmatige bemonstering van de totale ondergrond. Voor- en nadelen worden 
besproken. 

In hoofdstuk 2 wordt het DELPHI schema voor elastische gegevensverwerking en 
inversie ge'introduceerd. In plaats van een groot inversieschema te gebruiken, 
wordt de inversie opgedeeld in een aantal aparte processen. Elk van deze proces­
sen wordt optimaal voor de betreffende taak gekozen. Ret volgende proces wordt 
slechts gestart wanneer het voorafgaande proces een acceptabel resultaat opgele­
verd heeft. De laatste modules, elastische en lithologische inversie worden vooraf­
gegaan door een redatuming stap. Wanneer de reductievlakken dicht hoven, en 
parallel aan de locale gelaagdheid van het doelgebied worden gekozen, kan dit 
laatste locaal als eendimensionaal beschouwd worden, met name als CMP 
gegevens worden gebruikt. Hierdoor is het mogelijk gebruik te maken van een een­
dimensionale inversie per laterale positie van het doelgebied. 
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In hoofstuk 3 wordt de theorie van reflectie en transmissie van vlakke golven aan 
een vlakke overgang van twee homogene isotrope elastische media behandeld. 
Deze verstrooiing wordt beschreven in termen van P- en S-golf potential en, waar­
voor compositie en decompositie matrices worden afgeleid, Benaderingen voor de 
reflectiecoefficienten worden gegeven, welke een inzicht verschaffen in het gedrag 
van de reflectiviteit als een functie van de elastische contrasten. 

In hoofdstuk 4 wordt de reflectivity metlwd behandeld, welke gebruikt wordt voor 
de voorwaartse modellering tijdens de iteratieve elastische inversie. De methode 
is gei"mplementeerd in het horizontal slowness - frequentie domein. Pure P- en S­
golfbronnen worden gebruikt. 

In hoofdstuk 5 worden de principes van Bayesiaanse inversie behandeld. Onder de 
aanname van Gaussische ruis op de metingen en de a priori relaties, wordt aange­
toond dat het minimum van de gewogen som van de gekwadrateerde residuen een 
geschikte schatter is voor de model parameters. Numerieke methoden voor nonlin­
eaire optimalisatie worden behandeld. 

Hoofdstuk 6 behandelt de kenmerken van de voorgestelde elastische inversi­
emethode. Non-uniqueness aspecten worden onder andere geanalyseerd door 
gebruik te maken van benaderede uitdrukkingen voor de reflectiecoefficienten. 
Verder wordt de implementatie van robuustheidparameters voor amplitude- en 
looptijdfouten behandeld. Tenslotte wordt de incorporatie van seismische-litholo­
gie relaties gei"ntroduceerd zodat de inversie optimaal gestabiliseerd kan worden. 
Door deze procedure wordt men in staat gesteld het lithotype alswel de porositeit 
van de lagen van het doelgebied te bepalen. 

Hoofdstuk 7 is gewijd aan drie voorbeelden die het potentiaal van de voorgestelde 
inversiemethode illustreren. 

Tenslotte geeft hoofstuk 8 een uitgebreide samenvatting van de inversiemethode 
en wordt afgesloten met enige kritische kanttekeningen bij inversie in het p--r 
domein. 
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