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Chapter 1
Introduction

This chapter provides an introduction to the seismic reflection method. Further,
the use of well-logs of the velocity field, as measured in a borehole, is discussed.
The notion that sharp outliers in these well-logs are consistent over lateral dis-
tance, leads to a further analysis of these outliers and their effect on seismic
reflection data. Finally an outline of this thesis is given.

1.1 The seismic reflection method

The seismic reflection method is the dominant method world-wide for the ex-
ploration of oil and gas. The pioneering work was performed in earthquake
studies in the mid-to-late nineteenth century. An important step was taken
by Robert Mallet in 1846, who was the first to use an artificial source in a
reflection experiment. A further step was taken in 1888 by August Schmidt,
who devised traveltime-distance graphs for the determination of seismic ve-
locities. Effectively, the seismic reflection method was developed. Yet it took
more than 30 years, before the first seismic reflection surveys for the detec-
tion of hydrocarbons were carried out by K.C. Karcher in Oklahoma, USA
(1919-1921). At the dawn of World War II however, the method had almost
fully replaced all other exploration methods. Ever since, the method has been
the topic of extensive studies and has been improved upon considerably, but
still the basic principle remains the same: a source is ignited at or near the
surface, and detectors (either geophones for land surveys or hydrophones for
marine surveys) measure the Earth’s response, to determine the depth, shape
and nature of sub-surface layers. By the application of extensive data pro-
cessing and detailed analyses of the seismic wave forms, images of the sub-
surface structure are developed. Further analysis of the (angle-dependent)
amplitudes of a seismic event can subsequently recover some of the physi-
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cal properties of the materials, like elastic moduli, anisotropy and porosity.
The results of these analyses are the constraints for decisions concerning the
actual development of a site.

1.2 Motivation for this research

Only after drilling an appraisal well at a certain site, detailed knowledge
of the physical properties of the materials can be acquired. A commonly
used property is the velocity function of the Earth as a function of depth,
which can be acquired by measuring a so-called well-log of the P- and S-
velocities. The local velocities can be used to distinguish between different
materials. Further, as seismic reflection strength is, among others, dependent
on the velocity contrast, the correlation between seismic reflection data and
the well-log is useful for interpretation purposes. If this correlation is per-
formed properly, seismic horizons away from the borehole can be matched
in depth with reflecting boundaries in the well-log.

As an example, we consider a field experiment in the Nimr field in Oman
[Goudswaard et al. (1998)]. Two boreholes were drilled, where the lateral
distance between the wells was 130 m. From the recovered cores (i.e. the
actual lithology), it was found that the geology was laterally continuous for
the depth range of 800 to 890 m. From 860 to 890 m depth, the layers are
however slightly dipping. Beyond this depth, borehole #1 reached porous
oil-producing sands, where borehole #2 reached (non-producing) glacial de-
posits.

Fig. 1.1 shows a modified version of Fig. 8 of Goudswaard et al. (1998). It
shows the well-logs of the P-wave velocities, as measured in both boreholes.
We observe a strong correlation in the well-logs in Fig. 1.1, in the range of
800 to 890 m depth. Further, we note that the well-logs loose their correla-
tion below 890 m depth. In Log #2, we note a stepfunction boundary at 892
m, where this boundary is not present in Log #1, which can be attributed to
the change in geology mentioned earlier. Therefore, both lateral continuity
and lateral discontinuity can be recovered from interpreting the well-logs.

One of the most striking features of the well-logs in Fig. 1.1 is the pres-
ence of sharp outliers in the velocity, e.g. around 840 m depth. As these
outliers correlate over 130 m this can not be attributed to noise in the data.
Actually, these outliers can result in strong reflections in the seismic mea-
surements.

Intrigued by this behavior of well-logs, Herrmann (1997) applied a mul-



Chapter 1. Introduction 3

5 T T T ' , 5
— Log #1

_ — Log #2
(Y 4
€41 .. 1
£ |
% rf .:\‘\. |
E 4
>

800 820 840 860 880 900 920
depth (m)

Figure 1.1: P-wave velocity profiles for two neighboring wells in the Nimr field in
Oman.

tiscale analysis to multiple well-logs. This analysis recovered the fact that
well-logs exhibit multifractal behavior over a large scale range. This behav-
ior is characterized by a singularity parameter, that quantifies the local fractal
dimension of the well-log. Accordingly, when the velocity function behaves in
a multifractal way, the seismic reflection data should contain some footprint
of this behavior.

This thesis is focused on the recovery of the multifractal behavior of well-
logs from seismic reflection data. To this end, a simplified velocity model
that accounts for the local self-simlar behavior of well-logs is given. Follow-
ing, analytical expressions for the reflectivity of this model are derived. Based
on this, two distinct techniques are developed to estimate the local scaling
behavior of a reflector from rayparameter-dependent seismic reflection data.
The thesis concludes with the analysis of two field data sets.

A topic that is not covered by this thesis is a solid physical explanation
for the presence of sharp outliers in well-logs, such as in Fig. 1.1. The sharp
increase or decrease of seismic velocities within several decimeters (some-
times over 1000 m/s) is difficult to reconcile with geological outcrop analy-
ses that normally show almost homogeneous layers of several meters thick-
ness. Throughout the years, different explanations have been proposed for
these velocity fluctuations within these seemingly homogeneous layers. Voigt
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(1910) and Reuss (1929) discuss that a slight change in the fractions of the
rock components can drastically chang the elastic moduli of a rock. From
the theory of porous rocks, I mention the influence of packing of the rock
constituents on the strength properties of a rock [e.g. Mindlin (1949)]. Sim-
ilarly, the presence of inclusions in the rock matrix can strongly influence
the strength properties [e.g. Eshelby (1957)]. Finally, I mention the proposi-
tion of Spangenberg (1998) who discusses the influence of fractal behavior
of rocks, showing that repetition of micro-structure of rocks can analytically
be shown to determine the seismic velocities. The similarity of the above
explanations is that only small changes in sedimentation and lithification
processes can strongly influence the elastic properties of rocks. Therefore,
the local scaling behavior of well-logs might be a measure of petrophysical
importance, but until further research is performed, this is not known.

1.3 Outline of the thesis

Chapter 2 gives a general description of transformations as they are applied
to signals. Among others, the Fourier transformation and the continuous
wavelet transformation are treated. The continuous wavelet transformation
is used to extract local self-similar behavior from well-logs. As a consequence
of this analysis, a velocity model is presented that describes interfaces in the
subsurface such that it can effectively represent the local self-similar behav-
ior, as found in real well-logs.

Chapter 3 presents an implicit relation for the rayparameter-dependent re-
flectivity of the self-similar velocity functions from Chapter 2. Synthetic seis-
mic reflection data are modeled in velocity functions, containing self-similar
reflectors. Using this implicit relation, these reflection data are inverted for
the singularity parameter. Further analysis of the reflection coefficient of the
self-similar velocity function, gives an explicit expression for the instanta-
neous phase of a normal incident reflected wave. Instantaneous phase and
scale dependent amplitudes of a seismic event are used to invert for both a
velocity contrast ratio and the singularity parameter.

Chapter 4 presents a method that uses Linearized Zoeppritz Inversion to in-
vert for the local seismic velocity contrasts from seismic reflection data. A
multiscale analysis is used to recover, from the resulting velocity contrast
functions, a singularity parameter profile. The results are compared with the
singularity parameter profile that is recovered from the well-log.

Chapter 5 treats the multiscale analysis of walk-away VSP data. An imaging
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approach for walk-away VSP data is given that reduces internal multiples in
the final image by combining the images for all receiver depths. Both syn-
thetic and real data examples are given. Velocity contrast functions, derived
from results of conventional imaging and from the updated imaging are the
input of the multiscale analysis. The correlation with the result of multiscale
analysis of the velocity function is performed.

Chapter 6 gives an application of the multiscale analysis for shallow S-wave
data. The singularity parameter profiles are correlated with singularity pa-
rameter profiles from CPT ¢. data, which is a measurement of the strength
of soil with depth. Attention is paid to the lateral continuity of the estimated
singularity parameter.
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Chapter 2

Transformations and
multiscale analysis

Signal processing is often performed by transforming data to a different domain,
after which certain aspects of the data can be better analyzed than in the do-
main in which they were measured. Therefore many different transformations
have been proposed, each with their own advantages and disadvantages. The
most common transformations are Fourier transformations, windowed Fourier
transformations and wavelet transformations. This chapter gives an overview
of these transformations and explains their similarities and differences. Some
applications of these transformations will be treated, in which modulus maxima
analysis by the wavelet transformation will receive most attention. This chap-
ter concludes with the proposal of a generalized parameterization of reflectors
in the subsurface, based on results acquired by applying the latter technique to
well-logs.

2.1 Hilbert spaces

In this chapter, transformations are introduced as operations that map a func-
tion onto a different basis. Before I can introduce these transformations, a
mathematical description of the space in which these transformations are
valid is given.

To this end, I introduce a special form of a linear space!: the Hilbert
space. A Hilbert space is an inner product space: a linear space in which an

"The linear combination of two vectors or functions in a linear space, is in the linear space
as well.
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inner product (.,.) is defined. The inner product satisfies the following three
properties [Friedberg et al. (1989)]:

1. The inner product of f and g is the complex conjugate of the inner
product of g and f, i. e.

(f.9) =g, f)" 2.1

Note that this will reduce to (f, g) = (g, f) when the functions f and g
are real.

2. The inner product is a linear operation with respect to the first argu-
ment, according to

(a1 f1 + a2 fa,9) = a1{f1,9) + a2(f2, 9). (2.2)

3. The norm of a function f is real and non-negative, according to

Ifll=(f,F)E >0 (2.3)
where (f, f) =0, if and only if f = 0.

For an inner product space to be a Hilbert space, it is required that for any
function f in the space (f, f) < oo. The second requirement for the Hilbert
space is completeness; every convergent sequence (Cauchy sequence) con-
verges to an element in the Hilbert space. The final requirement is separabil-
ity; every finite dimensional Hilbert space has a countable dense subset.

The standard definition of an inner product of functions f and g in a
Hilbert space is given by

(f,9) = f(t)g*(t)dt, 2.4)
teD,

where D is the domain in which the functions f(¢) and g(¢) are defined.
Unless otherwise stated, for functions with only real arguments, D; is the set
of real numbers R and for functions with complex arguments, D; is the set
of complex numbers C. Friedberg et al. (1989) prove that this definition is
consistent with the properties of the inner product given in egs. (2.1)-(2.3).
Transformations are mathematical operations that map a function f(t),
that is defined on a basis {b;} to a function f(¢) that is defined on a different
basis {b¢}. The transformations in this chapter can be described by the inner
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product of a function f(t) with a transformation basis {bs(t)}. The trans-
formation basis {b¢(t)} maps a function from the basis {b;} to a basis {bs}.
The general transformation operator is denoted by the symbol 7, the general
transform is denoted by f.

{THHE) = F&) = (£,be(0))

= F(&)bE(b)dt.
teDy

(2.5)

The differences between the transformations lie in the definition of the trans-
formation basis {b¢(t)} to arrive at the desired transformation. The inverse
transformation, which maps the transformed data f(¢) back onto the original
basis {b:} is then given by

P 1
TTHO=10 = 5 [ Guome

1 . (2.6)
o GG

geD;

in which {b;(¢)} is the function or vector that maps a function from the basis
{be} to a basis {b;}. S is a normalization factor to make the transformation
pair energy conserving.

2.2 The Fourier transformation

When we apply the Fourier transformation to a time-signal we arrive at its
Fourier counterpart: the frequency spectrum. The physical concept of fre-
quency spectrum is most easily appreciated with the acoustic analogon; our
ears hear spectra (pitch), the brains act like an inverse Fourier transformation
to arrive at the time-signal. Band-pass filtering and deconvolution are com-
mon signal processing techniques which are performed by applying Fourier
transformations to the input signal and applying a filter in the Fourier do-
main. The need for Fourier transformations in seismic processing is therefore
evident.

The Fourier transformation is a transformation that expands data on a
transformation basis of complex exponentials; the prevalent convention for
this transformation basis is defined by {b,,(t)} = e/**, where j is the imagi-
nary unit, such that j2 = —1. Note that the transformation basis {b,(¢)} is
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orthogonal, such that the transformation with respect to this basis is unique.
An orthonormal transformation basis would be taking {b,(t)} = (27)~ zedwt,
In these equations ¢ is the time, the basis on which f is measured, and w is
the angular frequency, the basis on which F, the Fourier transform of f, is
defined. Making use of eq. (2.5), we arrive at the definition of the temporal
Fourier transformation F of a function f(t)

{(Fflw)=F) = (f,&)
= / ft)e wtde. 2.7)

The inverse temporal Fourier transformation F~! on the function F(w) in
eq. (2.7) is defined by

{F7IF}Yt) = f(t) = /(f, eIty eIt gy

— l T jwt
= o / F(w)e™tduw. 2.8)

The normalization by a factor 2 makes the transformation pair energy con-
serving, or more explicitly: applying the inverse Fourier transformation to
the Fourier transform of a function f, will result in f

{FTHFH®) = ). 2.9)
Equation (2.9) is generally referred to as the Fourier integral theorem. The
definition of the Fourier transformation in eq. (2.7) requires that the func-
tions f(t) and F(w) are contained in an appropriate Hilbert space. However,
this requirement is not strong enough. For egs. (2.7) and (2.8) to be valid,
the following requirements must be met:

1. The function f(t) satisfies the Dirichlet conditions on every finite inter-
val: applying the inverse Fourier transformation to F(w) (the Fourier
transform of f(t)) converges to f(t) at all points where f(t) is continu-
ous; at jumps it converges to the midpoint of the jump.

2. The integral over the amplitudes of f(t) is finite:

/ |f(t)]dt < oco. (2.10)
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In practice, these conditions can be interpreted as follows:

As long as we have a finite registration of any time-signal f(t), with finite
amplitudes |f(t)| everywhere, then we can compute the Fourier transform
and analyze the data in the frequency domain.

2.2.1 The derivative theorem of the Fourier transformation

One important property of the Fourier transformation is introduced now, for
further use in this thesis. The map of the time derivative of f(t) to the Fourier
domain is given by the following integration by parts

o0

{f%}(w) = /%ﬁt)e_j”tdt

—00

= [f®)e %+ jw / f(t)e 9t dt. (2.11)

Due to the requirement on f(t) expressed by eq. (2.10) t—lg:n f(t) =0, there-
o0
fore eq. (2.11) reduces to

{75} =iur ). (2.12)

Equation (2.11) shows that differentiation in the time domain is equivalent
to multiplication with jw in the frequency domain. Some authors refer to
this identity as the ‘derivative theorem’ of the Fourier transformation. This
identity is used e.g. in Fourier transforming the time-domain wave equation.

2.2.2 Fourier transform of real-valued functions

Another important result can be found by noting that every function f(t) can
be written into an even and an odd part, according to

even odd
-

M

P+ fCOl+ 3 O - F-0]. 213)

o | —)

f(t) = fe(t) + fo(t) =
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Obviously, its Fourier transform F(w) can be written in an even and an odd
part, in the same way

F(w) = Fe(w) + Fo(w) = % [F(w) + F(-w)] + % [F(w) — F(—w)]. (2.14)

We now write the Fourier transform as
>
Flw) = / f(t)(coswt — jsinwt)dt (2.15)
—o0

We note that the cosine is an even function and the sine an odd function. This
means that for real-valued functions f(¢), F.(w) is real valued and F,(w) is
imaginary valued. Further, the following relation for the Fourier spectrum
holds

F(w) = F*(~w). (2.16)

Using the fact that the Fourier transformation and its inverse are symmetrical
operators in the ¢ and w-domain, respectively, we can write [e.g. Fokkema
and Van den Berg (1993)]

L) = % / 2 () Fo(w) cos widw 2.17)
0

folt) = %/x(w)Fo(w)jSinwtdw, (2.18)
0

where x(w) is the Heaviside stepfunction, defined as
for w<0

0
xw)=4¢1 for w=0 (2.19)
1 for w>0.

Summing egs. (2.17) and (2.18) yields

ft) = %ER [ / X(W)F(w)ej‘”tdwjl : (2.20)

0

Equation (2.20) shows that for real-valued functions f(t), the spectrum F'(w)
for w > 0 is sufficient to reconstruct the full signal f(¢).
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2.2.3 The spatial Fourier transformation

For signals that are space and time dependent, a spatial Fourier transforma-
tion is defined. The spatial Fourier transformation with respect to all spatial
coordinates x is given by

(FfHhkt) = f(k, ) = / fla, )™= da. (2.21)
kEDe
Hence, the inverse spatial Fourier transformation is given by
{(F f} (=, t) = f(z,t) = (2m)~N / fk, t)e k2 dk, (2.22)
JkeD)

where N is the number of spatial coordinates. A full mathematical treatment
of the Fourier transformations and its properties is given by Sneddon (1951).

2.2.4 The Hilbert transformation

Section 2.2 has shown that for real-valued signals f(t) special properties for
the Fourier transformation can be acquired. Measurements of seismic reflec-
tion data (in the time domain) are always real-valued and causal (no arrivals
before time ¢, the time of source detonation). I will therefore take any func-
tion f(¢) to be real-valued and causal in the remainder of this section.
However, in signal processing it is often advantageous to define a complex
signal z(t) that relates to the real-valued signal f(¢) in the following way

2(t) = f(t)+7g(t)
= a(t)e’®
= a(t)cosB(t) + ja(t)sin6(t). (2.23)

In the above representation there are infinite numbers of ways to define a
complex signal z(t) for which a(t) cos 6(¢) = f(2).

To give this representation significance, Gabor (1946) introduced the an-
alytic signal f,(t). The analytic signal f,(t) is a complex signal which has a
spectrum identical to twice the spectrum of the signal f(¢) for the positive
frequencies and which is zero for the negative frequencies. With reference to
eq. (2.20) in Subsection 2.2.2, the analytical signal is described by

oo

fa(t) = % / X(w)F(w)e’ dw. (2.24)
0
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With the above definition of the analytic signal the following relation can be
derived [Bracewell (2000)]

fa(t) = F(t) + J{Hf}(2). (2.25)

In eq. (2.25) the Hilbert transformation, denoted by {# .}, is used to write
the imaginary part of the analytic signal f,(¢). The Hilbert transform of a
function f(t) is given by the inner product with the transformation basis
{[=(# —t)]~1}, according to

1

{Hf}(t) = <f,m

)

_ L [f®) (2.26)
) t—-t

In the integral in eq. (2.26), at ¢’ = ¢ the Cauchy principal value [see e.g. But-
kov (1968)] is taken.

The Hilbert transformation is a type of filtering that passes the amplitudes
of the spectral components of the signal unchanged, but it alters the phase

real axis
o
1

time [ms] v ' -t \@‘F

Figure 2.1: The analytic signal f,(t), cf eq. (2.25), the real signal f(t) and the quadra-
ture function related to f(t). The quadrature function is constructed from f(t) by its
Hilbert transformation.
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of the signal by —=/2 (-90°) for the positive frequencies and with /2
for the negative frequencies. However, the Hilbert transformation is better
known for its application in complex signal analysis.

Figure 2.1 shows an example of the analytic signal f,(¢) and the relation
with the real signal f(¢t). It shows that the projection of f,(t) on the plane
defined by the axis of real numbers and the time axis represents the real sig-
nal f(t); the projection of f,(¢) on the plane defined by the axis of imaginary
numbers and the time axis represents the Hilbert transform of f(t), in most
literature referred to as the quadrature function. An important application of
the analytical signal f,(t) in eq. (2.25) is the construction of the envelope of
a time-signal. The envelope is defined as the absolute value of f,(¢). The en-
velope has the special property that it presents the square-root of the energy
distribution in a signal. Figure 2.2 shows an example.

1t - 7S~ — 1@

- N — Il
05t LN SN — - Il

amplitude [m]

1 1 L ( f

Il 1 1 — L J

0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 09 1
time [s]

Figure 2.2: The connection between the signal f(t) and its envelope |f,(t)|. The time
signal f(t) is represented by the solid line, the absolute value of the time signal |f(t)|
by the dash-dotted line and the envelope |f,(t)| by the dashed line. Note that |f,(t)|
envelopes also the absolute value of the signal.

For a more rigorous treatment of the Hilbert transformation and the back-
ground of the quadrature function, see Bracewell (2000). Many applications
of the Hilbert transformation in exploration geophysics are given by Dobrin
and Savit (1988)

In Chapter 3, Section 3.6 the Hilbert transformation is used to extract the
instantaneous phase of an event in a seismic trace. In Section 2.3, a more
practical representation of the Hilbert transformation will be introduced in
terms of a convolution.
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2.2.5 The linear Radon transformation

In this subsection, we assume that u(z, ) is a measurement of a seismic wave
field along the z-axis, where the source is a line-source stretching along the
y-axis. Further we assume that the medium parameters are a function of
the z-coordinate only, such that the measurement of the wave field is only
dependent on the offset between the source and receivers. Due to these
assumptions, the more general concept of the linear Radon transformation
can be introduced as a method for the decomposition of u(z,t) into plane
waves. The plane waves are described in the rayparameter-intercept time
(p, 7) domain, or Radon domain. Note that at any point where 'rayparameter’
is used, we refer to the horizontal rayparameter, unless otherwise stated.

The linear Radon transformation is defined as the inner product of the
function U(z,w) (the temporal Fourier transform of u(z,t)) with the trans-
formation basis {e~7“P*}, according to

{'R,U}(p,w)zlj(p,w) = (U,e—jwpx>

[e o]
- / U(z, w)el“Pedg. 2.27)
—00

Equivalently, in the time domain, the linear Radon transformation is given
by

u(p,7) = 7 7 u(z,t)0(t — 7 — px)drdt

t=—00 x=-00
[os]

= / u(z,t =7+ px)dz. (2.28)

-0

Equation (2.28) can be interpreted as stacking along slanted lines, where p is
the slope of the slanted line and 7 is the intercept with the time axis [Schultz
and Claerbout (1978)]. The rayparameter p is a measure for the direction of
propagation of a plane wave and is defined as

p= sm0(z)' (2.29)

c(z)

Note that both the local angle of incidence 8(z) of the plane wave and the
velocity ¢(z) can change with depth z, whereas the rayparameter p is constant
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for each plane wave, for all depths. Further, a plane wave has the convenient
property that it does not exhibit geometrical spreading. This simplifies the
analysis of the rayparameter-dependent characteristics of data, compared to
a direct analysis in the space-time domain.

2.3 Convolution and deconvolution

In Section 2.2, the Fourier transformation is introduced as an important tool
in signal processing. In this subsection I will introduce the process of convo-
lution and the use of the Fourier transformation in this process.

According to Sheriff (1984), the definition of convolution as used in ex-
ploration geophysics is “the change in wave shape as a result of passing through
a linear filter”. Suppose we have a signal f(t) and a filter g(¢), then the re-
sulting signal h(t), which we call the convolutional product, is given by

h(t) = / f(r)g(t — )dr, (2.30)

or in shorthand notation,
h(t) = g(t) = f(2), (2.31)

in which x denotes ‘convolution’. A more useful representation of the con-
volution operation can be acquired in the Fourier domain. Making use of
eq. (2.7), eq. (2.30) can be rewritten as

oo

Hw) = / 7 f(T)g(t — 7)dr | e ¥tdt

t=—00 L7T=—00

o0 e o]
= / f(r) / g(t — T)e gt | dr. (2.32)
T=—00 Li=—00
Now perform the change of variables ¢ — 7 = v and dt = du, to arrive at

o0 [ oo

(2.32) = / f(n) / g(w)e 7 dy | dr
= / f(r)e 7“mdr / g(u)e % du. (2.33)



18 Chapter 2. Transformations and multiscale analysis

Again making use of eq. (2.7) this simplifies to
H(w) = F(w)G(w). (2.34)

Equation (2.34) shows that the convolution of two functions in the time-
domain is equivalent to the multiplication of the two functions in the fre-
quency domain. This result is generally known as the ‘convolution theorem’.

It is to noted that convolution is a linear operation, which can be checked
by inspecting eq. (2.34). Convolution is frequently used in geophysical prac-
tice. One example is the computation of the Hilbert transformation in
eq. (2.26) by means of a convolution, referring to Bracewell (2000)

1
(I} =+ F(2), (2.35)
which transforms to the frequency domain as
{F{Hf}}(w) = —jsgn(w) F(w). (2.36)

From eq. (2.36) we can see that the Hilbert transformation changes the
phase of the signal by a factor —j sgn(w), but leaves the amplitudes intact.
Another example of the use of convolution in geophysics is the ‘convolu-
tional model’, in which seismic data is supposed to consist of the convolu-
tion of the impulse response of an Earth model (normally defined in terms
of wave velocity and density) with the wave field, measured directly at the
source position (normally referred to as the ‘seismic wavelet’)

d(t) = r(t) x s(t), (2.37)

in which d(t) is the seismic data, r(¢) is the impulse response and s(t) is the
seismic wavelet. This model is used to compute the synthetic reflection and
transmission data in this thesis.

Referring to eq. (2.37), the seismic wavelet can be seen as a filter that
acts on the impulse response r(t). The reconstruction of r(t) from the data
is possible by finding the inverse of the seismic wavelet s(¢) and convolving
it with the data d(t). This process is usually referred to as inverse filtering or
‘deconvolution’. By measuring the wave field near the source, or by perform-
ing a (statistic) inversion on the data, an estimate of the seismic wavelet s(t)
can be acquired. If we define the inverse of the seismic wavelet s™(t) by

S™(8) = {]-“1%} ®), (2.38)
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then deconvolution is given by

r(t) = d(t) * s™(¢), (2.39)
or in the frequency domain

R(w) = D(w)/S(w). (2.40)

From eq. (2.40) it is obvious that R(w) can only be constructed inside
Q, = {w € R|S(w) # 0}. If we try to construct R(w) outside 2, we create
an unstable filtering procedure [Hatton et al. (1986)].

The discussion above shows that an exact inverse seismic wavelet can not
be constructed. Therefore deconvolution is normally performed by stabiliz-
ing the frequency-domain division in eq. (2.40), according to

D(w)S*(w)
Rest(w) = W (2.41)
In this equation Ry (w) is introduced, a band-limited estimate of R(w). The
factor ¢(w) stabilizes the division, and may be chosen independent of the fre-
quency w. Note that if the factor e(w) # 0 for all frequencies, the reflectivity
Rt (w) within Q,, is not perfectly recovered anymore.

2.3.1 Acquiring an estimate of the seismic wavelet

There are two distinct methods for acquiring an estimate of the seismic
wavelet. We can either directly measure the seismic wavelet near the source
or we can try to recover it from the seismic data itself. The first method
clearly has the preference, as there are no conditions on the subsurface to be
met, below the point where the incident wave field detector is placed. Two
examples of this kind of measurement are the placement of a hydrophone at
a certain depth below an airgun array, normally at around 100m, to measure
the far field response of the array. The second example can be found in land
vibrator data, in which from base plate and reaction mass motion, an esti-
mate of the full incident wave field can be acquired. Only with the explosive
source on land, there is the problem that the incident wave field is hard to
measure directly, because of the difficulty of placing a receiver at a depth,
which would require drilling a borehole for every shotpoint.

In this situation, the assumption is made that the Earth’s response is
white, random and stationary, such that a deconvolution based on a mini-
mum energy criterion can be applied to the data [e.g. Peacock and Treitel
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(1969), Ziolkowski (1984)]. The stabilized division of the data by the de-
convolved data is then the estimate of the seismic wavelet. It should be
noted that the Earth’s response is neither stationary, because of spherical di-
vergence and attenuation, nor purely random, because it is actually the non-
randomness for which we are searching in seismic exploration. The above
problems will be the main sources of errors in the estimate of the seismic
wavelet, together with the influence of noise, therefore we should give the
preference to the direct measurement of the incident wave field.

2.4 The windowed Fourier transformation

In Cohen (1995), an adaptation of the Fourier transformation is treated that
extracts local information from a signal f(t). This adaption is the time-
windowed Fourier transformation, in which the signal f(t) is multiplied by
the complex conjugate of a compactly supported time-window w(t — t'), cen-
tered around a fixed time ¢/, according to

fu,t') = fR)w*(t —t'). (2.42)

The effect of of the multiplication with the window w*(¢ — t') is that in the
Fourier transform of f,(¢,t'), we look at only a small portion of the signal
f(t). The appropriate transformation basis for the time-windowed Fourier
transformation is therefore given by

{boe (1)} = w(t — ') (2.43)

The time-windowed Fourier transformation is then the expansion of f(t) with
respect to this transformation basis

{fo}(w’t,) = Fw(wat,) = (fa bw,t’)

Il

/ fRw*(t —t)e Idt.  (2.44)

Except for the function w*(¢ — t’), the right hand side of eq. (2.44) is equiv-
alent to the Fourier transformation [eq. (2.7)]. The time-windowed Fourier
transform contains therefore the local spectrum of f(t) around time ¢'. This
property is of interest in many applications as seismic characterization and
speech recognition of separate words; essentially any process in which we
are interested in the spectral properties around a specific time.
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Figure 2.3: (a) Boxcar window (solid), smoothed boxcar window (dashed) (b) Triangle
window (solid), smoothed triangle window (dashed) (c) Gaussian window

The real part of the complex window function w(t') is chosen to be strictly
positive. A popular choice in signal analysis for the window function is a
Gaussian

, 1 =2
'y(t,t)—2\/7_re (=),
Note that a Gaussian is not strictly time-limited, because «(t,¢') > 0 every-
where. However, the fact that it falls off rapidly when |t — ¢’| becomes large
makes it useful as a window function. Other window functions that are in
use are boxcar and triangle functions, which may be smoothed to prevent
edge effects. Figure 2.3 shows some examples of commonly used window
functions. Because the window function w(¢ — t') has compact support, the
reconstruction of the time-signal f(¢) from its time-windowed Fourier trans-
form is only possible in the time-range 2, = {t € Rjw(t — t')| > 0}. Outside
this region, no information on f(t) is transferred to the Fourier domain, so
it can not be constructed from F,,(w,t’). Therefore the inverse Fourier trans-
form of F,,(w,t’) is only equivalent to the inverse Fourier transform of F'(t)
within €, (and O outside €2;) and given by

(2.45)

{FIF ) = fu(t,t) = 2i / Fy(w,teltdw. (2.46)
Tr—OO

This section has treated a transformation that can be used to perform a

localized time-frequency analysis. The disadvantage of the method is that

the frequency content of the analysis is fixed, because the shape and position

of the window function is fixed. Within the Gabor transform [Gabor (1946)],
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in which the position of the window is varied, some of these disadvantages
can be solved. However, in the next section a time-frequency transformation
is introduced, that analyzes frequency content and time dependency simul-
taneously such that all of these disadvantages are resolved.

2.5 The Continuous Wavelet Transformation

Wavelets, as a tool for time-frequency analysis of seismic data, were intro-
duced in the beginning of the nineteen-eighties by Morlet et al. (1982).
Wavelets are defined as square-integrable non-zero functions 9(t) satisfying
the admissibility property

/ I(t)dt = 0. (2.47)

The non-zero condition imposed on ¥(¢) in eq. (2.47) implies that ¥(¢) must
have at least one sign change on its domain. Furthermore it has to decay
to 0 as t tends to 400, which shows the resemblance with the window func-
tion w(t) in Section 2.4. The name ‘wavelet’ comes from the fact that many
wavelets used in the wavelet transformation resemble seismic wavelets. Fur-
ther we demand that the wavelet is normalized according to

[19(8)]] = 1. (2.48)

The need for this normalization will become clear in the remainder of this
section.

The motive for the development of the wavelet transformation is written
down accurately by Goupillaud et al. (1984). Quoting them, there was a
need for:

“ ... amethod of acquisition, transformation and recording of a seismic
trace (i. e. a function of one variable, the time), so as to satisfy the require-
ments listed below:

1. The contributions of different frequency bands (i. e. of the different
intervals of the Fourier conjugate variable) are kept reasonably sepa-
rated.
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2. This separation is achieved without excessive loss of resolution in the
time variable (subject, of course, to the limitation of the uncertainty
principle).

3. The reconstruction of the original function from its “representation”

r “transform” is obtained by a method which is (a) capable of giving

arbitrary high precision; (b) is robust, in the sense of being stable under
small perturbations.”

In this enumeration, the first two are specifying the property of time-frequen-
cy localization, already addressed by the windowed Fourier transformations
in Section 2.4. However, the versatility of these transformations is limited, as
the windows are always of constant shape, which will fix either the time or
the frequency content of the transform. The largest problem lies in the third
demand on the transformation: as has been shown, a reconstruction of the
original function can not be acquired from the windowed Fourier transform.
To attack this problem, the following definition of the continuous wavelet
transformation is used: it is an expansion of the signal f(¢') on the transfor-
mation basis

1 t—t
! _ n _

{bo,t(t )} = ﬂg,t(t) = 0'”19 ( p ) , o>0, (2.49)
where o7# normalizes the wavelet basis. The function ¥(¢) is generally re-
ferred to as the ‘mother wavelet’. The mother wavelet is the generating func-
tion for the analyzing wavelets 9, ,(¢'). The continuous wavelet transforma-
tion is now given by the following inner product

Wol}o,t) = f(o,t) = (f, 90

& e

This wavelet transformation is called the continuous wavelet transformation
because the parameters ¢ and o can continuously vary over R and R* (i.e. the
set of positive real numbers), respectively.

In computer implementations every transformation is discrete, however
in Daubechies (1992) a discrete wavelet transformation is separately devel-
oped. It is shown that many aspects of this discrete wavelet transforma-
tion are different from the continuous wavelet transformation. Van Spaen-
donck (2002) applies this transformation to seismic reflection data to extract

)dt (2.50)
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wavelet based volume attributes. As it is beyond the scope of this thesis, no
further expatiation will be made on this discrete wavelet transform.

Although the wavelet transformations in this thesis are computed for
discrete values of o only, we assume that the implicit interpolation of the
wavelet transform of a signal along the o-axis is a sufficient approximation
for the following analytical expressions to hold.

The difference between the wavelet transformation and the windowed
Fourier transformation lies in the shape of the generating functions of the
bases {b,+(t')} and {b,,+(¢')}. The transformation basis {b, +(t')} consists of
functions of constant shape w(t) translated to the proper time-location ¢'.
The transformation basis {b,;(t')} consists of wavelets ¥, .(t') that are trans-
lated to the time-location #' and whose temporal bandwidth is adapted to the
frequency range of interest by the scale o. High frequency wavelets ¥,(t")
are narrow, whereas low frequency wavelets Y, (t') are broad. As a result,
the continuous wavelet transformation is better able to “zoom in” than the
time-windowed Fourier transformation on short-time, high-frequency phe-
nomena, as pulses in signals, or singularities in functions. This property is
used in this thesis to zoom in on specific reflectors in well-logs and reflections
in seismic reflection data.

Contrary to what is possible with the windowed Fourier transformation,
the original signal f(t) can be completely reconstructed from its wavelet-
transform. For this purpose, we need an expression for the inverse contin-
uous wavelet transformation, similar to the inverse Fourier transformation
in eq. (2.8). The inverse wavelet transformation is computed with the fac-
tor u of the wavelet basis in eq. (2.49) chosen at u = 1, because only then
the wavelets are normalized according to ||¥,.|| = ||¢|| = 1 for all . Only
then the wavelet transformation is an isometry, an energy preserving trans-
formation (up to a proportionality constant) [Kumar and Foufoula-Georgiou
(1994)]. We can construct the original signal f(¢) from its wavelet transform,
according to

do dt’
o2

W B = f) = A / (F, D)1

o2

flo,t') 29 <t ;tl) dodt 551y

Equation (2.51) can be shown to be correct by analyzing the following inte-
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gral

7 F( do dt’
/ flo, 15" (0,1) 2

{[ / F(w)o'26* (ow)e 7« dw}

oy !
[ / G*(w’)al/2@(aw’)ej“’/t/dw'j|}doadt (2.52)

y p—

— 00

The expression between the first pair of brackets can be seen as the inverse
| Fourier transform of F,(w) = o'/2F(w)©*(ow). The second has a similar
interpretation as the complex conjugate of the inverse Fourier transform of
Gy(w) = 0'/2G(w)0* (ow). Hence, applying Parseval’s theorem, we can write

(252) = %,,Z w_Zo Fy ()Gl (w ]da
_ %7 7 F(w)G*(w)|®(0w)|2dwjl ‘%"
=0 lw=—0
- 27r / { / 10(0w) 2d"1 Fw)G* (w)dw.  (2.53)

Making the change of variables w' = ow, and again applying Parseval’s theo-
rem, leads to

(2.53) = Cy(f, 9), (2.54)
where Cy is given by
/ , (2.55)
|w |
0

Now, substituting g by ¥, in both egs. (2.52) and (2.54), proves the cor-
rectness of the definition of the inverse continuous wavelet transformation.
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2.6 Applications of the Wavelet Transformation

The wavelet transformation is used in applications where the time-variance
of the Fourier spectrum is of interest, as in time-frequency analysis and lo-
calized time-domain filtering. In this section I will show in which fields the
wavelet transformation has found applications, but I will focus on the tech-
nique that is used in this thesis.

The power of the wavelet transformation lies in its combined localized
and zooming behavior, therefore there is a considerable interest in the field
of localized signal filtering. A common application of the wavelet transforma-
tion is localized noise reduction. Donoho and Johnstone (1994) developed
the most famous example of this use. They showed that when efficiency is
not ones main concern, the wavelet transformation can be a very effective
tool for noise reduction, especially when the signal contains strong peaks.
The results acquired are generally of slightly better quality than conventional
(Fourier domain based) filters, but because of its relative inefficiency, it is
only used in specific signal processing problems.

The second application I will consider is edge detection in images. When
we realize that the human eye has the visual ability to recognize an object
from a drawing that only outlines edges, the application in computer vision
is clear. Applying recognition algorithms to edges in images is much less
computationally involved than applying it to the unprocessed image. To this
end, Canny (1986) has presented one of the first edge detection algorithms
based on wavelet analysis. Edge detection is the characterization of sharp
transitions in (normally) 2-dimensional signals. Wavelet transform analysis
is therefore an excellent tool as wavelets are mostly sensitive to transients
in signals. From the definition of the continuous wavelet transformation in
eq. (2.50), one can see that, noting its strong resemblance with convolu-
tion, the wavelet transform of f(¢) will have its largest amplitudes at regions
where there are sharp perturbations in f(t).

Currently, edge detection is the most wide-spread application of the con-
tinuous wavelet transformation. It has found its permanent place in detection
and characterization of any kind of signals. Examples can be found, among
others, in medicine: segmentation of low-contrast liver tumors in noisy ul-
trasound images [Yoshida et al. (1998)], in finance: extraction of specific
features from financial data for forecasting purposes [Aussem et al. (1998)]
and in geophysics: cross-sections of 3-D migrated seismic data [Hoekstra
(1996)].

In this thesis the continuous wavelet transformation is used for perform-
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ing modulus maxima analysis. This analysis was introduced by Grossmann
and Morlet (1984) and further improved practically as well as mathemati-
cally by Mallat and Hwang (1992). The purpose of modulus maxima analysis
is the extraction of local singularity exponents, which characterize singulari-
ties or irregular structures in a signal. In many signals the irregular structures
are the most important data carriers. Examples are the strong peaks in data
from radio telescopes for the detection of extra-terrestrial intelligence (SETI)
and characterization of reflectors in well-logs [Herrmann (1997)]. The lat-
ter application is one of the main motives for the research described in this
thesis.

To understand the theory of modulus maxima analysis, first the concepts
of the ‘Wavelet Transform Modulus Maxima’ (WTMM) and WTMM-lines (WT-
MML’s) are introduced. In the following discussion, I require that both the
signal f(t) and the analyzing wavelet ¥(¢) are strictly real-valued. Referring
to eq. (2.50) the continuous wavelet transform of the signal f(t) is given by
f(o,t). Closely following Mallat and Hwang (1992), the following definitions
are given:

e Any point (o;,t;) where % f(0:,t) has a zero-crossing at t=t; is called
a local extremum.

e The modulus of any point (o,t)=(0;,t;) where f(c,t) has a local ex-
tremum is called a modulus maximum.

¢ Any connected curve in the scale space (o, t) along which all points are
modulus maxima is called a modulus maxima line.

Figure 2.4 shows how the modulus maxima lines can be constructed from
the wavelet transform of a signal. Figure 2.4a shows a function with three
isolated singular points, each of a different nature. The singular points can
be described, respectively, by shifted version of |t|~%* (top), a stepfunction
(middle) and |t|2 (bottom). Making use of the first derivative of the Gaus-
sian «(¢t) as an analyzing wavelet (for a definition, see appendix A), the
wavelet transform of this function is computed, as shown by Fig. 2.4b. Note
that the horizontal axis of scale ¢ is logarithmically spaced. The use of this
spacing will become clear in the remainder of this section. Figure 2.4c shows
the position of the modulus maxima lines, the lines that interconnect the lo-
cal maxima in neighboring traces. The different values of grey in Fig. 2.4c
represent the amplitudes of the wavelet transform in Fig. 2.4b.



28 Chapter 2. Transformations and multiscale analysis

;', L
" T
- (LIRS

25"0 L ZJJ J,BJJ 2L

Figure 2.4: (a) Function f(t) with three isolated singular points, respectively described
by shifted versions of |t| =% (top), a stepfunction (middle) and |t|°2 (bottom)

(b) Wavelet transform f(o,t), for a discrete set of o of the function f(t) in (a)

(c) Position of modulus maxima lines in the wavelet transform in (b)

Making use of the above modulus maxima lines, the theory of characteriz-
ing singularities in signals is developed. This theory is more generally appli-
cable to the characterization of fractals. Fractals (or fractal sets) have been
introduced in the classic paper by Mandelbrot (1974) as functions which
obey a local scaling symmetry. Local scaling symmetry is the condition when,
for a function f(t), around ¢t=t,, the following self-similar relationship holds

f(B(t —to)) = B°f(t —to), (2.56)

for # > 0 and in a suitable, bounded domain. Popular terminology dictates
that if eq. (2.56) is pointwise valid for fixed «, the function f is called a
monofractal; if it is pointwise valid for varying «, f is called a multifractal.
The parameter « is called the singularity exponent, and it characterizes the
‘singularity strength’ of a particular singular point. The parameter « is also
referred to as ‘Holder exponent’.

Now suppose we have a function which locally obeys eq. (2.56), then the
following derivation for the wavelet transform of this function can be made.
If we skip the factor ¢, in eq. (2.56), we arrive at the following self-similar
relation for f

F(Bt) = B f(t). (2.57)
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The wavelet transform f(o,t) of this function is defined by eq. (2.50). Re-
placing t’ by ot/, t by ot and using eq. (2.57) where (3 is replaced by o, we
arrive at

f(o,at’) = g@H1=H / FYI( —t)dt, (2.58)

or, comparing the right-hand side with that of eq. (2.50) foro =1,
f(o,at) = ot1=H f(1,1). (2.59)

Let ¢t = tyax denote the t-value for which | f (1,1)| reaches a local maximum
(i. e. the modulus maximum for ¢ = 1 connected to the singular point in f).
Substitution in eq. (2.59) gives

f(a, Otmax) = 0“TI7H f(l,tmax). (2.60)

Taking the logarithm of the modulus of both sides of eq. (2.60) yields the
following expression for the logarithm of the amplitudes along a modulus
maxima line:

1og, | f(0, 0tmax)| = (o + 1 — ) logy o + log,| f(1, tmax)|- (2.61)

For ;1 = 1 we obtain
logZ']Z(Ua Utmax)l =C+H+a 10820', (262)

with C' = log,|f(1, tmax)|- Equation (2.59) shows that a singularity with a
singularity exponent a will manifest itself in terms of a cone-like structure in
the o-direction of the wavelet transform, originating at the position of this
singularity. Moreover, referring to eq. (2.61), the singularity exponent can
be measured from the amplitudes along a modulus maxima line [e.g. Ghez
and Vaienti (1989)].

The local nature of the wavelet transformation is essential here. Suppose
f is a multifractal, then each singular point in this function can be separately
analyzed for its singularity exponent, under the assumption that interference
effects in the wavelet transform are small, i. e. the maximum scale o in the
analysis is sufficiently small. Note that we take p = 1 in eq. (2.62), which is
a convenient choice, as the slope of the amplitudes along a modulus maxima
line is then given by a.
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For the wavelet transform of Fig. 2.4, it was tacitly mentioned that the
first derivative of the Gaussian was used as the analyzing wavelet. Figure 2.5
shows both the first and the second derivative of the Gaussian; at this mo-
ment we are only interested in their shape. One of the most striking features
is that each derivative adds another zero-crossing to this wavelet. The num-
ber of zero-crossings in a wavelet defines the convergence properties of a
wavelet in the wavelet transform, which is important in the quantification
of the singularity parameter o from a signal. It is mathematically more cor-
rect to speak in terms of vanishing moments of a wavelet [Mallat and Hwang
(1992)]1. A wavelet 9¥(¢) has ¢ vanishing moments if

/tmﬁ(t):o for m=0,...,¢g-1. (2.63)

-0

For wavelets that are ¢-th order derivatives of the Gaussian, the number of
zero-crossings is identical to the number of vanishing moments. The im-
portance of these vanishing moments in singularity analysis is accurately de-
scribed by Herrmann (1997). In short, if a wavelet has g vanishing moments,
then the maximum value of o that we can quantify by multiscale analysis is
given by ¢. If we further assume that the wavelet is infinitely differentiable
(e.g. the Gaussian), then the range of o we can quantify is given by [—oc0, g].

Figures 2.6a-c show the same function and its wavelet transform as in
Figure 2.4. Given the fact that the maximum «-value in the signal f(t) is
0.2, the original choice for the analyzing wavelet is valid. Namely, the first
derivative of the Gaussian has one zero-crossing, hence ¢ = 1, which enables
us to quantify a up to 1. Equation (2.62) shows that the singularity exponent

A

@ ®)

Figure 2.5: (a) The first derivative of the Gaussian, in this thesis used as the analyzing
wavelet in the wavelet transformation. (b) The opposite of the second derivative of the
Gaussian, commonly referred to as the ‘Ricker wavelet’.
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Figure 2.6: (a) Function f(t) with three isolated singular points, respectively described
by shifted versions of [t|=9%4 (top), a stepfunction (middle) and |t|°-? (bottom)

(b) Wavelet transform f(c,t'), for a discrete set of o-values of the function f(t) in (a)
(c) Position of modulus maxima lines in the wavelet transform in (b)

(d) Double-logarithmic plots of the amplitudes along the depicted modulus maxima
lines in (c). The slopes are given by resp. —0.4, 0 and 0.2

can be measured by the corresponding power law divergence in the wavelet
transform. We therefore extract the amplitudes along the modulus maxima
lines in Fig. 2.6¢ and plot them in double-logarithmic scale in Figures 2.6d.
I will refer to these graphs as Amplitude-Versus-Scale-curves (AVS-curves).
Equation (2.62) can be more practically interpreted, by seeing that « is actu-
ally the slope along the corresponding AVS-curve. This interpretation can be
checked by measuring the slope of the amplitudes along the three modulus
maxima lines. The result is, as expected, that the slopes are given by resp.
—0.4, 0 and 0.2, which is the same as the exponent in the local description
of the singularities in f(¢). I will refer to the above procedure as multiscale
analysis.

2.7 Multiscale analysis of well-logs

Herrmann (1997) describes how the method for estimating the singular-
ity exponent o can be applied to reflectors in real well-logs. Well-logs are
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densely sampled (%ft = 0.1524m) measurements of local velocities in a bore-
hole. It gives the velocity profile at a much finer sampling than can be ac-
quired by a surface seismic experiment, and it is used in constructing velocity
profiles for migration and characterization of the very fine properties of the
subsurface. Herrmann recognized that velocity functions of the subsurface
show a striking resemblance with other multifractal functions, which can be
found in pure mathematics (e.g. the Cantor set), in physics (the temperature
in Rotterdam) and in economics (the stock rates at Wall Street).

Figure 2.7a shows a typical example of a well-log, which was kindly pro-
vided by Mobil. It shows the very high frequent variations in the seismic
velocity, and shows that our conventional view of reflectors in the subsurface
by stepfunctions [Zoeppritz (1919)] must be a strong simplification to the
real Earth. In Fig. 2.7a three reflectors are depicted, which will be further an-
alyzed by multiscale analysis. Figures 2.7b and c are both representations of
the continuous wavelet transform, just as in Section 2.6. For the wavelet the
second derivative of the Gaussian was used and yx = 1. In Fig. 2.7c the modu-
lus maxima lines corresponding to the three reflectors in Fig. 2.7 are drawn.
Figure 2.7d shows the AVS-curves measured along these modulus maxima
lines. We can see that the slopes of these lines can range from slightly pos-
itive to negative, indicating that the reflectors can be scale-dependent and
can not all be described by stepfunction interfaces. A thorough analysis by
Herrmann on many different well-logs showed that interfaces in the subsur-
face have singularity exponents ranging from strongly negative (o ~ —2) up
to slightly positive (o = 0.5). Although the slope along the AVS-curves is
not perfectly constant, the approximation that « is constant in a certain scale
range is much less restrictive than assuming stepfunction interfaces (o = 0
everywhere), as is usually done. In the next section these results will be used
to develop a generalization of Zoeppritz boundaries to self-similar interfaces.
This generalization will be used in this thesis to describe and characterize
reflectors and seismic reflections.

2.8 A generalized parameterization of reflectors in the subsur-
face

The foregoing section has shown that for many reflectors in the earth’s sub-
surface, a representation by stepfunctions in the velocity or impedance is not
sufficient. Therefore, I discuss a generalized model for the velocity function
that better captures the singular behavior of real well-logs.
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Figure 2.7: Multiscale analysis of a well-log [Herrmann (1997)].

(a) The original well-log (courtesy Mobil).

(b) The wavelet transform of the well-log in (a).

(¢) Modulus maxima lines, obtained from the modulus of (b).

(d) Double-logarithmic plots of the amplitudes along the depicted modulus maxima
lines in (c). A positive, a zero and a negative slope (singularity strength) can be dis-
cerned.
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As has been show in Section 2.7, the following self-similar relationship
holds approximately for many reflectors in the subsurface, within a limited
scale range

c(Bz) = B%(2). (2.64)
For stepfunctions, this relation simplifies to
c(Bz) = (), (2.65)

which means that stepfunctions are invariant under scaling. Comparing
eq. (2.65) with eq. (2.64) shows that for stepfunctions the parameter « is
equal to 0. When we compare this result with the slope in the AVS-curve
corresponding to the middle singularity in Fig. 2.6a (the stepfunction), we
see that these results are consistent. If the parameter o deviates from 0, it
means that we are not dealing with stepfunctions, but with other types of
reflectors.?2 Therefore, in this thesis I will use a model for reflectors in the
subsurface that must be:

1. a generalization of stepfunction interfaces,
2. able to represent a parameter « in multiscale analysis (for realistic o).

The model I will use fulfills both requirements and is described by a well-log
that contains (shifted versions of) a singularity in the velocity function ¢(z)
of the form

o(z) = Cl|z/21|a forz< 0 (2.66)
c2|z/z1|*  for z > 0,

in which a is the dimensionless singularity exponent. c; ; are constants which
define the actual velocity at z = +2z;. The parameter z; serves two purposes:
one is to make the division |z/z;| dimensionless and the second is to deter-
mine the distance between the two points where ¢(z) is ¢; at z < 0 and ¢; at
z > 0 respectively. As both sides of the velocity model (i.e. above and below
z = 0) obey local self-similar behavior, this model will be called the two-sided
singularity model.

It should be noted that other models for singularities in the subsurface are
proposed, which are also a generalization of stepfunctions. As an example of

“This argument can not be reversed. When we measure a singularity exponent of & = 0
for a reflector, we do not necessarily have a stepfunction, cf. the middle reflector in Figure 2.7.
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such models, I refer to Dessing (1997), who proposes a so-called one-sided
singularity model described by either

c1lz/z|* forz <0
(2) = co + 2.67
«(z) = co {0 for z > 0, ( )
or
0 forz <0
c(z) = co+ _ (2.68)
02|Z/Z1|02 for z > 0.

Dessing (1997) has chosen this parameterization to acquire a generalized
model for reflectors in the subsurface. An important result acquired by Dess-
ing is the so-called (¢, a)-diamond, which classifies one-sided singularities
by their effect on the phase of seismic reflection responses.

It will be shown in Chapter 3, Section 3.5, that velocity functions de-
scribed by the two-sided singularity model are equally well able to account
for these phase shifts. The simplicity of the two-sided singularity model in
eq. (2.66), however, is one of the main reasons for choosing this model as
the standard singularity model in this thesis.

2.9 Conclusions

This chapter has given an overview of transformations that are used within
this thesis to process well-log and seismic reflection data. It has been shown
(e.g. by Herrmann (1997)) that well-logs exhibit multifractal behavior over
a large range of scales, which can be quantified by a singularity parameter
c. This singularity parameter describes the local self-similar behavior of the
velocity field. In the remainder of this thesis, we consider the possibility of
extracting this local self-similar behavior from seismic reflection data. To
this end, analytical expressions for the rayparameter-dependent reflectivity
at the proposed generalized reflector model will be derived. Further, inver-
sion schemes based on these analytical expressions are developed and tested
on synthetic and field data.



36

Chapter 2. Transformations and multiscale analysis




Chapter 3

Multiangle multiscale
characterization of acoustic seismic
reflection data

In Chapter 2 the definition of the continuous wavelet transform and an overview
of a method for extracting a singularity parameter o from well-logs were given.
This chapter is focused on a method for retrieving this singularity parameter
from seismic reflection data modeled in these well-logs. A method for. the in-
version for the singularity parameter is presented, which makes use of raypara-
meter-dependent seismic reflection data. Furthermore, it will be shown that the
instantaneous phase of a reflection event contains complementary information
that can be used in the inversion for both the singularity parameter and a ve-
locity contrast ratio.

3.1 Approximation of singular velocity fields by superposition
of homogeneous layers

The velocity model that is proposed in Chapter 2, Section 2.8, is given by

o(z) = {c1|z/z1|°‘ forz <0 3.1)

ca|z/z1|* for z > 0.

Obviously, for a < 0, the velocity function ¢(z) becomes infinite for z — 0 or,
for a > 0 and z — 0, the velocity becomes zero. As is shown by Wapenaar
(1999), taking the usual boundary conditions at z = 0, i.e. continuity of
the pressure and the vertical component of the particle velocity, closed form
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finite reflection and transmission coefficients for this model can be acquired.
This means that the wave equation can handle these singularities, in a similar
way as it can handle stepfunction interfaces.

In conventional numerical modeling techniques for the construction of
wave fields, the background velocity (and density) model is a discretized
version of the actual model. Hence, in numerical modeling, the velocity
function of eq. (3.1) can not be used at the point z = 0, as infinite or zero ve-
locities are generally not properly treated. The preferred modeling technique
in this thesis is the reflectivity method, as developed by Kennett (1983). This
method assumes homogeneous layers with stepfunction interfaces, which is
clearly different from the model described by eq. (3.1), with a # 0. We
therefore approximate this model by a stack of thin layers with increasing or
decreasing velocities. Note that thin is quantified as being much thinner than
the minimum spatial wavelength of the modeled wave. A practical choice is
to take the spatial sampling of the model in the order of the spatial sampling
of most well-logs, which is % ft (0.1524 m), which is much smaller than the
minimum spatial wavelength of real and modeled wave fields (in the order
of 5-10 m). We put the singular point halfway between two sample points,
to avoid practical problems concerning zero or infinite velocities.

Figure 3.1 shows a singular velocity model, for a = —0.3, ¢; = ¢3 = 1800
m/s and z; = 1 m, depicted by the black line. The gray line is the approxima-
tion of this model, with homogeneous layers of 0.2 m thickness and where at
z = 0, the velocity is now finite. Every time a synthetic model is generated,
we assume that the above approximation sufficiently describes the analytical
singularity. In the remainder of this chapter, it is shown that analytical ex-
pressions for the reflection at these velocity functions are in agreement with
the modeled reflection data, which supports this assumption.

3.2 An implicit relation for the angle-dependent reflectivity of
the singular velocity model

In this section, an implicit relation is derived for the multiangle multiscale
reflectivity of a singular reflector described by eq. (3.1). This relation will
be used to estimate the singularity parameter a from seismic reflection data.
The starting point of this derivation is the scalar acoustic wave equation in
the space-time domain, where we assume a line-source (taken as the y-axis),
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velocity (km/s)

Figure 3.1: (a) singular velocity function c(z) (black), for « = —0.3, ¢; = ¢z = 1800
m/s and z1 = 1 m. (b) approximation of c(z) by homogeneous layers of 0.2m thickness
(grey).

given by

o 02 1 52
l—aﬁ + 57 W@] u(z,z,t) = 0. 3.2)

As is shown, e.g. by McCowen and Brysk (1989), we can rewrite eq. (3.2)
such that it describes the wave field in terms of plane waves, according to

9? 1 & |
i:a—zi - (6—2(7) - p2) W] U(Z,p,T) =0. (3.3)

Equation (3.3) is the scalar acoustic wave equation in the Radon transform
(p, 7) domain. In Chapter 2, Section 2.2.5, the linear Radon transformation
has been treated, which transforms seismic reflection data from the space-
time domain to this domain.

Using eq. (3.3), it is now possible to derive an implicit expression for the
rayparameter-dependent reflectivity of singular velocity models described by
eq. (3.1). We replace z by Bz, and substitute the self-similar relation of
velocity functions obeying eq. (3.1), which is ¢(8z) = 8%c(z) [cf. eq. (2.64)].
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Next, we multiply the result by 32 to get from eq. (3.3)

2 2
[% - (% - (ﬂap)‘z) @T@f—l—r)_i] @(Bz,p,7) = 0. (3.9)

The term between the square brackets is the same as in eq. (3.3), with p
replaced by 4%p and 7 replaced by 3*~1r. Hence, eq. (3.4) is satisfied by
@z, B%p, B> 11) as well as @(8z, p, 7). Consequently,

a(z, 8%, 87 '7) = f(a)@(Bz,p,7), (3.5)

where f() is an undetermined a-dependent factor. In the upper half-space
2 < 0 we define an ‘incident’ wave field @™ and a ‘reflected’ wave field @f,
both obeying eq. (3.5) with one and the same factor f(a). For our analysis
we do not need to specify this ‘decomposition’ any further. We relate these
incident and reflected wave fields via a reflection kernel #(p, 7), according to

oo

,&reﬂ(_e’p, T) = / F(p,'r - T,)ﬁ’inc(_e’p: T,)dT,, (36)

—00

with ¢ — 0. When we replace ¢ by B¢ and substitute eq. (3.5) for @"¢ and
@'fl, we can compare the result with eq. (3.6), which shows that the reflec-
tion kernel 7(p, 7) obeys the following similarity relation

#(p, ) = 7 (B%p, B2 7). (3.7)

We now apply the continuous wavelet transformation to 7(p, 7) [cf. eq. (2.50}],
according to
oo '
#(p,0,7) = / (o, 7Y (T )ar. (3.8)
a

—00

Note that in this case we have taken the normalization coefficient x = 0.
Substituting eq. (3.7), replacing 7’ by 8!~/ and d7’ by B! ~*dr’ yields

oo ! _ pa-—1
’f‘(p,O',T)Z/ f(Bap,T')'z?(T s T)d'r', (3.9

—oo ﬁa— 1y
or, comparing the right-hand side with that of eq. (3.8),

#(p,o,7) = #(8%p, % 0,3 7). (3.10)



Chapter 3. Characterization of acoustic data 11

Let 7 = Tmax denote the r-value for which |#(p, o, 7)| reaches its maximum
for fixed p and . We will refer to this level in the data set as a modulus
maxima plane; in Section 3.3.3 this concept will be more accurately defined.
It follows from eq. (3.10) that the reflection amplitude in a modulus maxima
plane behaves as

|7(p, &, Tmax)| = |7(8%D, 8%, 8% M imax)|- (3.11)

The latter equation implies that contours of constant reflection amplitude in
a modulus maxima plane are described by

pl_aaa = constant. (3.12)
Note that for a = 0 (e.g. the reflection at a stepfunction interface) these con-
tours reduce to straight lines, described by p = constant. This means that
the reflectivity of an interface between two halfspaces is scale independent,
which is a well-known result. On the other hand, any deviation from these
straight lines indicates that we are dealing with a singularity, other than the
stepfunction. If we assume normal incidence data (p = 0) only, eq. (3.12)
is not defined. This means that, using the implicit relation of eq. (3.12), it
is not possible to resolve the singularity parameter « when only normal inci-
dence data is available. The incorporation of rayparameter-dependent data
is therefore required. When we incorporate rayparameter-dependent data,
we can see that eq. (3.12) is only dependent on «, because ¢ and p are the
variables which define the axes of the modulus maxima plane |7(p, &, Tmax)|-
In the next section a method is proposed to recover the singularity parameter
a from seismic reflection data, making use of eq. (3.12).

3.3 Estimating the singularity exponent from the amplitudes in
modulus maxima planes

In section 3.2 an implicit expression [eq. (3.12)] is derived for the rayparam-
eter and scale dependency of the amplitudes of the reflection at a self-similar
interface. In this section a method is proposed for retrieving the singularity
parameter « from seismic reflection data, making use of this expression. The
method consists of four steps:

First, the data are transformed to a plane-wave representation, by means
of the linear Radon transformation. Following, the data are imaged to the
(p, z) domain, to acquire flat events, which are more easily analyzed. Third,
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the data are wavelet-transformed to create the data cube R(p, o, 2). In this
data cube, the modulus maxima planes are constructed, and finally, the re-
flection amplitudes in these modulus maxima planes are inverted for the
singularity parameter .

In the following subsections these four steps are further treated. A syn-
thetic example illustrates the method.

3.3.1 Linear Radon transformation of seismic reflection data

Seismic reflection data are normally measured in shotgathers. A source is
ignited, and a set of detectors measure the Earth’s response. In the follow-
ing analysis we require that the sources and receivers are organized along
one line, such that the measurements are dependent on one spatial coor-
dinate (denoted by z) and the time ¢. Now, from several shotgathers, the
measurements are combined that share the same midpoint of source and re-
ceiver, to acquire common midpoint gathers (CMPs). As was posed in the
foregoing section, for wave fields that are generated by a line-source, the
Radon transformation is exactly a decomposition into plane waves, fulfilling
the wave equation given by eq. (3.3). Therefore, we assume that the Earth
can be locally approximated by a 1-D medium (only contrasts in the depth
(2) direction). In practice, this means that we require that fluctuations of the
medium parameters in the inline (z) and crossline (y) direction around the
midpoint of a CMP are small, such that they can be ignored.

The first step in the inversion for the singularity parameter « is the appli-
cation of the Radon transformation to the CMP-gathers. A synthetic data set
was generated, using the velocity function shown in Fig. 2.6a in Chapter 2.
Note that this velocity function contains isolated singularities for both a neg-
ative and a positive singularity parameter o. Further, a stepfunction interface
is present. The density was chosen at a constant value of 1500 kg/m3.

Figure 3.2a shows a synthetic CMP-gather in the space-time domain,
Fig. 3.2b shows the same gather, but now in the Radon domain, as modeled
in the velocity function in Fig. 2.6a. The forward modeling used for these
data is the acoustic reflectivity method, as developed by Kennett (1983).

3.3.2 Imaging of the rayparameter-dependent reflectivity

The second step in the inversion for the singularity parameter o, is to acquire
a depth section of the reflectivity @(p, 7). To this end, an imaging algorithm is
applied, that maps the intercept time 7 to the depth coordinate z, according
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Figure 3.2: (a) Synthetic CMP-gather in the space-time domain
(b) Synthetic CMP-gather in the Radon domain.

to the method of Clayton and McMechan (1981). This time-to-depth conver-
sion is performed in the temporal Fourier domain, therefore the reflectivity
@i(p, ) is Fourier-transformed to acquire the data set U(p, w). Imaging is per-
formed by multiplying U (p,w) with a simple phase-shift operator, and sum-
ming over the frequencies (equivalent to taking the zero time component),
according to

R(p, ) = Y Up,w) exp (2jwT(p, z) ) , (3.13)

where T'(p, z;) is defined as

%
1
T(p7zi) = 2(2 ) —p2A2k, (314)
k=0 ¥ (%

where Az is the thickness of each consecutive layer. The above imaging
procedure is performed for all depth levels z;, to acquire the full depth im-
age of the reflectivity R(p, z). Note that the above imaging procedure is a
strict primary wavefield operation, such that multiple arrivals are not im-
aged correctly. Figure 3.3 shows the rayparameter-dependent image of the
reflectivity acquired from imaging the data in Fig. 3.2b. Clearly, Amplitude-
Versus-rayParameter (AVP) effects are visible, especially on the first reflec-
tion.




44 Chapter 3. Characterization of acoustic data

) ; Q0 DRI
T
“O 0 Tl
o s 0 f:;Dafam::fp [L:ijm] "
seismic velocity [km/s]

(a) ()

Figure 3.3: (a) Synthetic velocity function (identical to the one in Fig. 2.6a) containing
three isolated singularities, with singularity exponents o of -0.4, 0 and 0.2 respectively.
(b) Imaged reflection data R(p, z) from imaging the data in Fig. 3.2b.

3.3.3 Construction of modulus maxima planes in the wavelet trans-
form of the rayparameter-dependent image of the reflectivity

The rayparameter-dependent image of the reflectivity R(p, ), constructed by
the above imaging procedure, is transformed to the wavelet domain accord-
ing to

o
/
R(p,o,2) = / R(p, z’)'(?(z — z)dz'. (3.15)
—00 G
The result is a ‘cube’ of data on which the following analysis is applied.

In Section 3.2, it was stated that the modulus maxima plane is the two-
dimensional generalization of the modulus maxima line. The construction
of these planes is as follows. The first step is to construct modulus maxima
lines for each wavelet-transformed trace R(p;, o, z). The result of this analysis
is a set of neighboring modulus maxima lines. Now the modulus maxima
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lines, belonging to the same seismic reflection are connected, to acquire the
complete modulus maxima planes, for each event in the data. Referring
to Chapter 2, Section 2.6, where the modulus maxima line is defined, the
modulus maxima plane is therefore defined as

o the union of the modulus maxima lines in the wavelet-transformed data
R(p, o, z), belonging to the same rayparameter-dependent seismic re-
flection event in the image R(p, z) is called a modulus maxima plane.
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Figure 3.4: The continuous wavelet transform R(p, o, z) of the imaged reflectivity in
Fig. 3.3b. The modulus maxima plane for the bottom reflection in the data is depicted,
where contours of constant reflection amplitudes are drawn.

An example of this cube of wavelet-transformed imaged data is depicted
in Fig. 3.4. In this figure, we see the wavelet transform of the image in
Fig. 3.3b, where the analyzing wavelet 9(z) is the first derivative of the Gaus-
sian. The left backplane is the image from Fig. 3.3b, the right backplane is
the continuous wavelet transform of the trace at p = 0. The modulus max-
ima plane belonging to the bottom reflection (the reflection connected to the
reflector with a = 0.2) is also depicted. Similar modulus maxima planes can
be constructed for the other two reflections.

On the modulus maxima plane, contours of constant reflection amplitude
in the wavelet-transformed image |R(p, o, z)| are drawn. In the next subsec-
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tion, it will be shown how, from these contours, an estimate of the singularity
parameter o can be acquired.

3.3.4 Inversion for the singularity parameter

From the three reflections in Fig. 3.3b, the modulus maxima planes are cre-
ated. In Fig. 3.5a-c we see surface plots of the absolute values of the ampli-
tudes in these modulus maxima planes, derived from the respective reflec-
tions in the data of Fig. 3.3b.

Fig. 3.5b shows clearly that an oblique reflection on a stepfunction in the
velocity field (a = 0) is scale-independent. When it is realized that scale o
is proportional to the inverse of frequency w, this effect can be easily under-
stood, as it is commonly known that the reflectivity of stepfunctions is fre-
quency independent. Reflections on singular velocity profiles, on the other
hand, are clearly scale dependent for oblique incidence [cf. Fig. 3.5a,c]. We
see that for a < 0, the reflectivity decreases with scale, whereas for a > 0,
the reflectivity increases with scale. Note that for higher p-values we see scale
independent behavior in both Figs. 3.12a,b. This is due to the incorporation
of post-critical reflections in this analysis.

From Figs. 3.5a-c, contours of constant reflection amplitudes are derived,
for pre-critical reflection only. These contours are shown in Figs. 3.5def. We
see that the contours have a distinct behavior for different values of a. For
a < 0 (Fig. 3.5d), we see that the contours follow a J-shaped pattern, for
a = 0 (Fig. 3.5¢e) they are vertical, and for « > 0 (Fig. 3.5f) they follow an
inverse J-shaped pattern. This qualitative behavior is typical for these three
ranges of the singularity parameter « and can be used as direct indicator of
the sign of a. The quantitative behavior of these contours is now used to
estimate the singularity parameter o from seismic reflection data.

The shape of the contours in these figures can be computed analytically
by applying eq. (3.12) in the range of p and o for which the data were ana-
lyzed. In Fig. 3.5g-1 we can see these analytical contours, for the three values
of @ (—0.4,0 and 0.2, respectively).

When we compare the contours of constant reflection amplitudes in
Figs. 3.5d-f with the — expected - analytical contours (Figs. 3.5g-i) we can
see that there is a strong resemblance.

The exact shape of the contours can be used to estimate the singularity
parameter o from the reflection data, by computing the contours of eq. (3.12)
for a range of a-values, which we expect to exist in the data set, and match
these with the contours extracted from the seismic data. Referring to Herr-
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Figure 3.5: (abc) Surface plots of reflectivity |R(p, 0, z;)| for o = -0.4, 0 and 0.2.
(def) Contourplots of pre-critical reflectivity |R(p, 0, z;}| for a = -0.4, 0 and 0.2.
(ghi) Analytical contours for o = -0.4, 0 and 0.2
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mann (1997), we assume that singularity parameters o in well-logs range
from quite strongly negative (amin = —1) up to slightly positive (apmax =~ 0.5).

The matching algorithm is set up as follows. For every « in the above
range, the analytical contours are constructed. Next, the standard deviations
s(a) of the reflection amplitudes in the modulus maxima planes along these
analytical contours are computed, according to

N P (|R(Pij’0ij,zmax)l - |R(pia0'iyzmax)|)2
(3.16)

s(ax) = MZ N,

=1

where a4, is one value in a range of singularity parameters & € [@min, ®max|-
In this equation, NN; is the number of samples for each analytical contour, M
is the number of analytical contours, along which the matching algorithm
is applied. |R(pi, 0, zmax)| is the mean value of the measured multiscale
amplitudes along an analytical contour.

Finally, an estimate of the singularity parameter « can be found by finding
the agp¢-value for which the standard deviation function s(o) exhibits its
global minimum, according to

aopt = {o|s(ax) = min(s(a))}. (3.17)

This inversion scheme is applied to the contours depicted in Fig. 3.5def.
Figs. 3.6a-c show the graphs of the respective standard deviations for these
contours. It is clear that pronounced minima in these graphs are present. For
each graph, the minimum occurs at the expected singularity parameter a-
value (—0.4, 0 and 0.2, respectively). Note that in Fig 3.6a, we see that there
can be more than one local minimum in these standard deviation graphs.
In this figure, a local maximum standard deviation is found at a = 0.1; for
a-values larger than 0.1, the standard deviation decreases. The contours for
a = 0.1 are maximally perpendicular to the ones for o = —0.4, thus giving
this maximum standard deviation. However, the optimal a-value can still be
found by taking the absolute minimum along these standard deviations.

An inversion scheme, based on matching analytical contours described
by eq. (3.12) with contours derived from multiscale reflectivity amplitudes
has been presented. It can be used to estimate a singularity parameter «
from seismic reflection data. This singularity parameter is consistent with
the one derived from a velocity model, in which the seismic reflection data
were modeled.
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Figure 3.6: Graphs of the standard deviation s(a) of multiscale reflection amplitudes
along analytical contours described by p' ~*0* = constant, for the cases (a) a = —0.4,
b) a =0and (¢) o = +0.2.

3.4 Application of the inversion scheme to data modeled in real
well-logs

The foregoing section has proposed a method for estimating the singularity
parameter « from seismic reflection data. To further analyze the method,
real data are used. First a test on synthetic seismic reflection data, modeled
in real well-logs, was performed. The results of this analysis are presented
in this section. The next step has been the application of the method to
a complete field data set. The analysis of such a field data set was per-
formed during a three-months visit at Shell Research Center in Rijswijk. For
this purpose, a field data set was made available, which was measured (on
land) in the northern part of Friesland. It consisted of common-offset mi-
grated gathers and one well-log of the P-wave velocity. Unfortunately, the
contours describing constant reflection amplitudes in the modulus maxima
planes were severely affected by the relatively high noise level in the seismic
data. Further, the maximum angle of incidence present in the data was not
sufficient to clearly exhibit AVO behavior in the data. Hence, the minimum
requirements for a successful application of the method were not reached.
As a result, it is decided not to cover this analysis in this thesis.

The proposed inversion scheme is applied to seismic reflection data mod-
eled in actual velocity functions from well-logs. Two distinct types of re-
flectors are analyzed. The first example covers a reflector that is described
by a negative singularity exponent, the second example covers a reflector
described by a stepfunction (o = 0). Figures 3.7a,b,c show the multiscale
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analysis of a real well-log, made available by Mobil, analogous to the mul-
tiscale analysis of the synthetic velocity function as shown in Fig. 2.6. A
reflector is chosen at the depth z = 155m (denoted by the black arrow in
Fig. 3.7a), for which the singularity parameter is measured. The slope along
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Figure 3.7: (a,b,c) Multiscale analysis of a singularity in a well-log: o = —0.32. (d,e,f)
Muiltiangle, multiscale analysis of its seismic response: a = —0.34.

the modulus maxima line in Fig. 3.7c characterizes the singularity. A value
of the singularity parameter is found at @ = —0.32. Data were modeled in
this velocity model, using an acoustic reflectivity method; the density was
chosen at a constant value of p = 2000kg/m3. In Figure 3.7e the imaged
rayparameter-dependent reflectivity is shown. The reflection at z = 155m
depth is recognized as the reflection that correlates with the depicted reflec-
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Figure 3.8: Graph of the standard deviation s(a) of multiscale reflection amplitudes of
Fig. 3.7f along analytical contours. A minimum is found at « = —0.34.

tor in Fig. 3.7a,d. For this reflector, the modulus maxima plane is computed,
and the contours of constant amplitude on this plane are drawn in Fig. 3.7f.
We see that the general behavior of these J-shaped contours is similar to the
contours drawn in Fig. 3.5d. It is therefore already clear that we have re-
covered the fact that we are dealing with a negative singularity exponent a.
The result of applying the contour matching algorithm of Subsection 3.3.4
is shown in Fig. 3.8. Although the minimum is not as pronounced as in
Fig. 3.6, we can find an estimate for the singularity parameter at a = —0.34.
Note that this corresponds very well to the value obtained directly from the
well-log (o = ~0.32).

Figure 3.9 shows a similar example, but this time the analyzed reflector
in Fig. 3.9a at z = 170m (denoted by the black arrow) clearly resembles a
stepfunction. This well-log was made available by Shell. The result of ap-
plying the multiscale analysis gave an estimate of the singularity parameter
at @ = —0.01, as can be visually checked in Fig. 3.9¢c. Again seismic reflec-
tion data were modeled, taking the density at p = 2000kg/m®. The reflec-
tion, identified to match the reflector indicated in Fig. 3.9a,d is depicted in
Fig. 3.9e. From this reflection the amplitudes in the modulus maxima plane
were acquired; the contours are drawn in Fig. 3.9f. The contours in Fig. 3.9f
show that for this reflection there is hardly any scale-dependency, as we ex-
pect from the singularity parameter derived from the well-log (o = —0.01).
The application of the contour matching algorithm presented us with the
standard deviations as shown in Fig. 3.10. A clear minimum is found at a
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Figure 3.9: (a,b,c) Multiscale analysis of a stepfunction in a well-log: o = —0.01.

(d.e.f) Multiangle, multiscale analysis of its seismic response: o = —0.03.

singularity parameter o« = —0.03. Just as in the first example, this corre-
sponds very well to the estimate of the singularity parameter from the well-
log (o = —0.01).

We have shown that the inversion for the singularity parameter « is sta-
ble, when applied to synthetic data, modeled in real well-logs. Although
the derived contours of constant multiscale reflection amplitudes are quite
strongly affected by surrounding events in the imaged seismic data, the re-
covered singularity parameters « from the seismic reflection data are consis-
tent with the singularity parameters derived from the well-logs.
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Figure 3.10: Graph of the standard deviation s(«) of multiscale reflection amplitudes
of Fig. 3.9f along analytical contours. A minimum is found at o = —0.03.

3.5 The normal incidence reflection coefficient of a singular in-
terface

In Wapenaar (1999), a derivation is given for the normal incidence reflection
and transmission coefficients R~ and T of the singular velocity model,
described by,

(3.18)

c1lz/z|* forz <0
c(z) =
calz/z1|® for z > 0.

In this section, the analytical expression for the normal incidence reflection
coefficient for the downgoing wave field R* is analyzed for its dependency
on the parameters c1, ¢; and a. The expression for this reflection coefficient,
as derived by Wapenaar (1999), is given by

) e—Jvm ,02021/ + ejwrp162u
RT = ][ N |, (3.19)
p2cy” + P16y
in which
v=1/(2 - 2a). (3.20)

Note that eq. (3.19) is only valid for the positive angular frequencies (w > 0).
The reflection coefficient for the negative frequencies follows from applying
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the relations in Chapter 2, Section 2.2.2. However, in the remainder of this
chapter we assume that all angular frequencies w are positive, which simpli-
fies the expressions.

We can check whether eq. (3.19) is a generalization of the conventional
expression for the normal incidence reflection coefficient of a stepfunction,
by taking o = 0. It is easily verified that for stepfunctions, eq. (3.19) reduces
to

R"'(oz =0) = w’ (3.21)
p2c2 + p1cy

which is the well-known normal incidence reflection coefficient of the bound-
ary between two halfspaces.

To properly analyze the effect of the parameters c;, ¢z and « on the re-
flection coefficient r*, we take p; = p» (no density contrast) and decompose
eq. (3.19) into a real and an imaginary part, according to

2
RY =sinvnr [1 n 772"] + jcosvm, (3.22)
where
n=2. (3.23)
C2

As we can see from eq. (3.22), the dependency of the reflection coefficient
R* on the velocities ¢; and c; is not explicit; only the ratio of ¢; by 2 is
present in the expression. This ratio (r7) will be referred to as the velocity
contrast ratio.

An interesting form of eq. (3.19) is acquired when we take n = 1

R™ = jcosvm. (3.24)

Equation (3.24) shows that the reflection at a singular velocity field is identi-
cal to applying a Hilbert transformation to the incident wave field [cf. Chap-

ter 2, Section 2.2.4] and multiplying this by — cos vn. For a < 0 this factor is
negative, for 0 < a < 1 it is positive. For a = 1 the factor is 1, such that the

reflected wave field is identical to the Hilbert transform of the incident wave
field.
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3.6 Instantaneous phase analysis

When a seismic wave is emitted from a source, the amplitude spectrum and
the phase of the emitted wavelet are important parameters that should be
known to perform further processing and characterization of the seismic
data.

When we assume that the estimate of the incident wave field is correct,
there is the possibility of performing a quantitative characterization of both
the amplitudes and the phase of a reflection event, and compare it with the
incident wave field. The method that is treated in this section is concerned
with the phase of the different reflection events and shows how measure-
ments of instantaneous phase can be used in seismic characterization.

In section 3.5, an expression for the normal incidence reflection coeffi-
cient of a singular interface was introduced [eq. (3.22)]. From this equation,
we can see that for a # 0, the reflection coefficient is complex, which means
that the reflected wave field contains a phase shift. In this section, it will be
shown how to extract the phase shift of a specific reflection event in a seismic
measurement. This phase shift is generally referred to as the instantaneous
phase of a seismic reflection event.

The concept of instantaneous phase was introduced in the geophysics
community by Taner et al. (1979) as a tool for attribute analysis in seismic
characterization. Taner et al. (1979) argue that the instantaneous phase
emphasizes the coherency of reflection events. From this observation, it can
be concluded that the phase shift measured by this technique is related to
lateral consistency of reflective behavior of an interface. However, Taner et
al. (1979) do not explicitly treat models or give reasons that could account
for the difference in instantaneous phases between separate reflectors.

A quantitative explanation for phase shifts of reflection events has first
been given by Widess (1973). Widess analyzes the reflectivity of a progres-
sively thinner high velocity layer, in which the bed below and above this layer
have the same velocity. The density is assumed to be constant. In this anal-
ysis it was assumed that the reflective behavior of an incident wave could
be characterized by its predominant wavelength \.g within the thin bed. It
was shown that the reflection of a bed with thicknesses d < Ao /8 is almost
identical to applying a first order differential operator to the incident wave
field.

Figure 3.11 is a modified version of Fig. 1 in Widess (1973), showing the
reflective behavior for a bed thickness of d = \.g/8. Figure 3.11a shows the
reflection at the top interface in Fig. 3.11c and d, denoted by u;(t), by a solid
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Figure 3.11: (a) reflections u;(t) (solid) and -u3(t) (dashed) as denoted in (d).

(b) total reflection ur(t) = u1(t) + uz(t) (solid), and the time-derivative of u.(t)
(dashed), which is scaled by a constant factor, to match the amplitude of ur(t).

(¢) velocity graph of the thin layer. (d) reflection ray diagram. [after Widess (1973)]

line. The time-delayed reflection at the bottom interface is displayed by a
dashed line.

It is clear from Fig. 3.11 that the reflected wave field ur(t) shows a strik-
ing resemblance with the time derivative of u;(¢). This shows graphically
that a thin layer acts as a differential operator on the incident wave field.

This effect can also be made quantitative by studying the experiment ana-
lytically. We define a wave field u(t), incident on the thin layer of Fig. 3.11d.
The wave field reflected at the top interface is then given by u; (t) = u(t), the
reflected wave field at the bottom interface by uy(t) = —u(t — At), where
At is the time delay due to the propagation in the fine layer. Therefore, the
resulting total reflected wave field, when transmission effects and internal
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multiples are neglected, is given by

Uy (t) + U2(t)
— w(t) — ul(t — Ab). (3.25)

I

up(t)

From basic calculus we know that,
u(t) — u(t — At) = At %u(t), for At = 0. (3.26)

From eqs. (3.25) and (3.26) we see that up(t) behaves similar to the first
derivative of the incident wave field «(¢). Due to the fact that the high veloc-
ity layer can not be infinitely thin, At in eq. (3.25) does not go to the zero
limit. Therefore, we see that because At keeps a value, we can quantify the
scaling term as used in Fig. 3.11b as being At.

The most important effect of a thin layer is that the reflected wave field
contains a phase shift. In general, the phase shift of a seismic event can by
quantified by means of the technique of instantaneous phase analysis [Taner
et al. (1979)]. The technique computes the instantaneous phase ¢j,s¢ of an
event as follows

i = tan~) T Hlma), (3.27)

where t,,,x is the point where the envelope of the analytical signal reaches
a local maximum. {H.} is the Hilbert transform, as defined in Chapter 2,
Section 2.2.4.

There exist other techniques for instantaneous phase estimation. E.g., the
matching pursuit approach, proposed by Mallat and Zhang (1993), is more
stable in the presence of noise and near-interfering events. Verhelst (2000)
has used this technique for the characterization of local wavelet shapes. In
this thesis however, the technique of Taner et al. (1979) has been given the
preference for its simplicity.

Applying this technique to the reflection at the thin layer, denoted by
ur(t) and shown in Fig. 3.11, shows that its instantaneous phase is given by
©Yinst = 90°. Note that the incident wavefield is described by a Ricker wavelet,
which is a zero-phase wavelet. When we compare this with eq. (3.22), this is
similar to taking the velocity contrast ratio = 1 and the singularity param-
eter a < 0, which would also give an instantaneous phase oj,s; = 90°.

We recall eq. (2.12) in Chapter 2, which states that a differentiation of a
function in the time domain forms a Fourier pair with the multiplication by
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Jjw of this function in the frequency domain, i.e.

o1(t) < jwF(w). (3.28)
ot
Now we compare eq. (3.28) with with the Fourier pair of the Hilbert trans-

form, given by
—{Hf(t)} & jF(w). (3.29)

We note that where the thin layer performs an approximate differentiation
(multiplication with jw in the frequency domain), the singular velocity model,
for n = 1, performs a Hilbert transformation and multiplies by — cos v7 (mul-
tiplication with jcos v in the frequency domain). Hence, the normal inci-
dence response of a thin layer is frequency dependent, whereas the normal
incidence response of the singular velocity model is scale independent. On
the other hand, the resemblance of the phase factor in eqs. (3.28) and (3.29)
in the frequency domain is an explanation for the fact that the reflection re-
sponses of a thin layer and the reflection response of the singular velocity
model described by eq. (3.1) are quite similar.

Accordingly, both models can explain a phase shift of £90° in reflection
data. However, the singular velocity model is more consistent with the find-
ing of Herrmann (1997) that well-logs exhibit local self-similar behavior,
than the model by Widess.

We now further analyze the effect of the singularity parameter « and the
velocity contrast ratio n on the instantaneous phase of the reflection response
of the singular velocity model. First we analyze the effect of the singularity
parameter o on the normal incidence reflectivity by taking the velocity con-
trast ratio fixed at n = 1. Note that this analysis is similar to the technique
of Dessing (1997), who recovers the so-called (piust, @)-diamonds from one-
sided singular velocity models. Figure 3.12a shows singular velocity models
for a range of singularity parameters a. Figure 3.12b shows the normal inci-
dence reflection responses for these singular velocity models. For clarity, the
responses are convolved with a Ricker wavelet. A clear phase shift is visible
as a function of the singularity parameter «. This phase shift is now quanti-
fied by means of the above instantaneous phase analysis. Figure 3.12¢ shows
the course of the instantaneous phase as a function of singularity parameter.
We see that within the range of a € [—1, .5] the instantaneous phase changes
a full 180°.
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Figure 3.12: Instantaneous phase as a function of c.

(a) Velocity functions as a function of singularity parameter o, with velocity contrast
ratio n = 1. (b) Normal incidence reflection response (convolved with a Ricker wavelet)
on these velocity functions. (c) The instantaneous phase as a function of c.

A similar analysis is performed to visualize the effect of the velocity con-
trast ratio 7 on the instantaneous phase of the normal incidence reflection
response, with the singularity parameter fixed at « = —0.4. Figure 3.13a
shows again the singular velocity models, but now for a range of the veloc-
ity contrast parameter € [0.2,2]. The reflection responses are depicted in
Fig. 3.13b, where again there is a strong effect on the phase of the reflectivity
visible. Figure 3.13c shows that for this range of 7, the phase changes from
approximately 45° to 135°.

In a further analysis, we can check the dependency of the instantaneous
phase on the angle of incidence of the incident wave field. As we do not have
an explicit expression for the rayparameter-dependent reflectivity of the sin-
gular velocity models, this must be checked numerically. To this end, data are
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Figure 3.13: Instantaneous phase as a function of 7.

(a) Velocity functions as a function of n, with a=-0.4. (b) Normal incidence reflec-
tion response (convolved with a Ricker wavelet) on these velocity functions. (c) The
instantaneous phase as a function of 7.

modeled in singular velocity models described by eq. (3.1). Both the singu-
larity parameter « and the velocity contrast ratio ) are varied. These angle-
dependent data are then analyzed, for every rayparameter, by the instanta-
neous phase analysis. In this modeling, fixed values of c; = 1200 and z; = 5
m were chosen. The derived rayparameter-dependent instantaneous phases
for « = —0.3,0 and +0.3 and n = 0.5,1 and 2 can be found in Fig. 3.14a-c.
The figure shows that the phase of the reflection response is almost constant
along the rayparameter (p) values, for fixed singularity parameter « and ve-
locity contrast ratio 7. Note that in Fig. 3.14b the phase for = 0.5 is only
constant up to the critical reflection angle, which is about 8 x 10~* s/m. Be-
yond this point the phase will gradually change to a value of 180 degrees,
which is the standard post-critical behavior of the reflectivity of stepfunction
interfaces.
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Figure 3.14: Instantaneous phase i, as a function of rayparameter p, for
n € [0.5,1, 2] where the singularity parameter « = —0.3 (a), « = 0 (b) and o = 0.3
©).

3.7 Inversion for contrast and singularity parameter

We have seen that both the rayparameter dependent amplitudes in the modu-
lus maxima planes and the instantaneous phase of the reflectivity are strongly
dependent on the singularity parameter « and the velocity contrast ratio 7.
The implicit formula for the contours describing the constant reflection am-
plitudes [eq. (3.12)] does not contain a reference to the velocity parameters
¢1 and cp. Using the results of Section 3.3 and Section 3.6, we propose a
one-step inversion scheme to estimate the parameters o and 7 for a specific
reflector from the rayparameter-dependent reflection response.

Referring to Menke (1984), the general expression for linearized damped
least-squares inversion is given by

dm ~ (JTJ + e1)71J376d. (3.30)

This is generally referred to as Gauss-Newton inversion. In this equation, ém
is the update to the model vector m = («,n)” and 4d is the misfit between
the modeled and the measured data. This misfit is quantified by a penalty
function E that is a combination of the misfit of the rayparameter dependent
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amplitudes in the modulus maxima planes and of the misfit of the instanta-
neous phase. The Jacobian J is defined as 3., and is acquired by modeling
data for perturbations of the starting model We note the presence of the pa-
rameter €, which is used to damp the inversion. The value of this parameter
is decreased when the update to the model gives too small an improvement
to the modeled data, where the parameter is increased when the update to
the model results in an increase of the value of the penalty function E. The
inversion scheme is continued until the penalty function E has reached a
smaller value than a certain stop criterion.

To analyze whether the singularity parameter « and the velocity contrast
ratio 7 are resolvable from the imaged angle-dependent reflectivity, the fol-
lowing steps must be taken. First, a penalty function is defined on the basis
of the amplitudes in modulus maxima planes and the instantaneous phase.
Second, this penalty function is analyzed for the shape of its error surface,
i.e. whether the minimum is unique and well-defined. After this analysis,
the stop criterion can be defined. Finally, the above Gauss-Newton inversion
procedure is applied to a synthetic data set, to assess its performance. In the
following two subsections the above steps are covered.

3.7.1 Creation of the penalty function in inversion for singularity pa-
rameter and velocity contrast ratio

The contours of constant reflection amplitude in the modulus maxima planes
in figures 3.7f and 3.9f show that there are some areas where the contours
seem to be very stable and some areas where the contours are strongly af-
fected by noise or interference with other events. Therefore, for both the
penalty function for the multiscale amplitudes E4 and the penalty function
for the instantaneous phases E,, ,, we choose an expression that does not
emphasize on outliers or bad measurements in the data. A stable choice is
then to take the ¢;-norm of the difference between data and modeled data

1 N
= <" |4f - apl, (3.31)
i=1

in which A? are the amplitudes measured in de modulus maxima plane of
the data we want to analyze and N = N, x N, is the number of sample
points in these planes. A™ are the amplitudes in the modulus maxima plane
from the modeled data and are found by creating a synthetic velocity model,
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modeling reflection data in it and creating the modulus maxima plane for
these data.

For the instantaneous phase ;s it was shown (Fig. 3.14), that the phase
is almost constant for all rayparameter-values, as long as we are in the sub-
critical reflection domain. So for this penalty function, a logical choice would
be to take the absolute difference between the phase of the measured data
and the modelled data, according to

—-d _
Eﬁainst = lQDinst. - ‘Pg\lstI? (3‘32)

in which @i, is the mean of the instantaneous phases for all subcritical ray-
parameter values. Namely, when we take the mean of the phases, a wrong
value of the instantaneous phase for one p-value is (partially) cancelled. A
weighted sum of these two penalty functions form the total penalty function
E, according to

E = %Eﬂoinst
W is the weight factor and it must be chosen such that the total penalty
function E has a balanced sensitivity to both the errors in multiscale reflec-
tion amplitudes and the instantaneous phases. This weight factor W can be
found by trial-and-error, using an inversion problem on reflection data, for
which we already know the solutions apt and 7op. It turned out, empiri-
cally, that when the instantaneous phase ¢y, is measured in radians a good
estimate for the weighting factor is W=1.

To test the quality of the defined penalty functions, two synthetic exam-
ples are created. A data set of rayparameter-dependent reflectivity is gen-
erated on a reflector model described by eq. (3.1). This data set is referred
to as the measured data. Then, for a range of singularity parameters « and
velocity contrast ratios 7, similar data sets are generated. For all these data,
the penalty functions E4, E,, , and E are computed, and are analyzed for
their shape and how well they perform in resolving the singularity parameter
o and the velocity contrast ratio 5. This type of analysis shows whether the
penalty functions contain local minima or not. If local minima are present,
this would seriously trouble the inversion.

The first example treats the penalty functions for a stepfunction interface
(a = 0), where the velocity contrast ratio was set at » = 0.5. In this example,
we assume that we know the background velocity parameter ¢; = 1000m/s.
Figure 3.15 shows the gray-scale plots of the values of the penalty functions,
as a function of « and 7.

+Eqp (3.33)
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(b)

Figure 3.15: (a) Penalty function for multiscale reflection amplitudes E 4, (b) Penalty
function for instantaneous phase E,, ., and (c) Total penalty function E, all for a
stepfunction interface, with desired optimal solution a=0 and 1=0.5, denoted by the

+ sign.

It is clear that the total penalty function E in Fig. 3.15c is well able to
resolve the parameters from the angle dependent reflectivity, as the minimum
is pronounced and well-defined.

A similar example is generated for a singular reflector model, where the
singularity parameter was chosen at a = —0.3 and the velocity contrast ratio
at n = 1. The velocity parameter c; is again assumed to be known and is
¢y = 1000m/s. The results of this analysis are depicted in Fig. 3.15. Again
the total penalty function E shows a pronounced and unique minimum at the
expected position.

An interesting aspect is recognized in Figs. 3.15ab and 3.16ab, namely
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that the penalty functions E4 and E,, , have complementary resolving power.
In neither of the examples is one of these penalty functions separately suf-
ficient to derive both the velocity contrast ratio n as well as the singularity
parameter a. Furthermore, from Figs. 3.16a,b, we see that to derive the ve-
locity contrast ratio n from the angle-dependent reflectivity of a singularity
with negative «, the instantaneous phase ¢y, is far more important than the
multiscale reflection amplitudes. This behavior is completely different from
the behavior of the angle-dependent reflectivity of stepfunction interfaces,
in which the multiscale reflection amplitudes resolve primarily the velocity
contrast ratio.

Figure 3.16: (a) Penalty function for multiscale amplitudes E 4, (b) Penalty function
for instantaneous phase E,,. ., and (c) Total penalty function E, all for a two-sided
singularity model, with desired optimal solution a=-0.3 and n=1, denoted by the +
sign.
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From this behavior we can conclude that the multiscale reflection am-
plitudes and the instantaneous phases are independent parameters, which
must be both used for the characterization of seismic events, if we want to
estimate both the singularity exponent o and the velocity contrast ratio 7.

3.7.2 Gauss-Newton inversion to estimate the singularity parameter
and the velocity contrast ratio

As we have seen in Figs. 3.15c and 3.16¢ the penalty function E is well
defined, and approximately convex, so the use of a gradient method like
Gauss-Newton is justified.

To illustrate the inversion for the singularity parameter « and the veloc-
ity contrast ratio n, an inversion on synthetic data is performed. The data to
which the inversion is applied is the same as the one used to compute the
penalty functions in Fig. 3.16 (o = —0.3 and n = 1, ¢; = 1000 m/s). Choos-
ing quite arbitrarily starting values of the model parameters a9 = —0.6 and
1o = 1.7, the Gauss-Newton inversion scheme is applied.

Fig. 3.17 gives an overview of the behavior of this inversion. Figure 3.17a
shows the value of the singularity parameter o for each inversion step,
Fig. 3.17b the value for the velocity contrast function 7. Figure 3.17c shows
the decrease of the penalty function, only for the inversion steps where the
update to the model parameter was accepted (i.e. where the value of the
penalty function E had sufficiently decreased). Quite unexpectedly, only af-
ter 33 inversion steps, the value of the penalty function decreased to a value
below the stop criterion.

We see in Fig. 3.17a that after 14 steps the singularity parameter a was
resolved, however, the determination of the velocity contrast ratio turned out
to be much more time consuming (cf. Fig. 3.17b). Because the convergence
rate is very slow and due to the fact that for each inversion step a forward
modeling must be performed, this inversion is not practically applicable to
perform multiangle, multiscale analysis of seismic data. Further, field mea-
surements are always affected by transmission and scattering losses, which
are hard to measure or estimate. The penalty function for the multiscale am-
plitudes E 4 is however based on true amplitudes, assuming that the losses
are corrected for, such that this penalty function will be unreliable in practice.
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Figure 3.17: (a) course of a as a function of the number of penalty function evaluations
(b) course of 1 as a function of the number of penalty function evaluations

(c) course of the penalty function E as a function of the number of penalty function
evaluations.
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3.8 Conclusions

This chapter has given a framework for extracting a singularity parameter o
from seismic reflection data by analyzing the contours of constant reflection
amplitudes in modulus maxima planes. The application of this method to
synthetic data, modeled in both synthetic and real well-logs, showed that an
estimate of the singularity parameter « can be found that is consistent with
the one derived from reflectors in these well-logs.

Furthermore, it was shown that the instantaneous phase of a specific re-
flection event contains information complimentary to the multiscale reflec-
tion amplitudes. This can be used to resolve both the singularity parameter «
and a velocity contrast ratio 77 from seismic reflection data. A Gauss-Newton
inversion scheme is proposed that is theoretically able to solve for these pa-
rameters using a penalty function based on a combination of these multiscale
amplitudes and instantaneous phases. However, the rate of convergence of
this inversion scheme is not sufficient for applying it to real data.

In the next chapter, an inversion scheme is proposed that is faster in con-
vergence and more stable in the presence of noise than the inversion scheme
proposed in this chapter.




Chapter 4

Multiscale characterization of
velocity contrast functions

In this chapter, an alternative technique for multiangle, multiscale analysis of
seismic reflection data is presented. This technique facilitates the analysis of
both acoustic and elastic reflection data. To this end, the singular velocity model
of Chapter 2, Section 2.8 is extended to an elastic parameterization. A two-step
inversion scheme for estimating the singularity parameter « from seismic reflec-
tion data is presented, in which first velocity contrast functions are derived from
reflectivity sections by Linearized Zoeppritz Inversion. These velocity contrast
functions are then analyzed by a multiscale analysis, to acquire an estimate of
the singularity parameter for every contrast.

4.1 Introduction

The direct inversion for both the singularity parameter o and the velocity
contrast ratio 7, as described in Chapter 3, Section 3.7, is strongly dependent
on a consistent high quality of the seismic reflection data and their process-
ing. Especially the constraint of a perfect deconvolution with the source
wavelet is extremely difficult to fulfill in practice. The inversion method for
the singularity parameter «, based on the contours of constant reflection
amplitude in modulus maxima planes, suffers from the same problem. Fur-
thermore, no closed-form implicit expression (such as in eq. (3.12)) for these
contours in the elastic situation has been found.

In this chapter an alternative inversion technique for the determination
of the singularity parameter « is proposed, which is less sensitive to the con-
straints on deconvolution and other processing. Contrary to the inversion
methods of Chapter 3, this method can be used on acoustic as well as elastic
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reflection data.

To this end, first an elastic singular velocity model is presented that is an
extension of the acoustic singularity model in eq. (2.66) in Chapter 2.

On the basis of the above model, an inversion method is presented that
consists of two steps. First, velocity contrast functions are derived from the
seismic reflection data, using the method of Linearized Zoeppritz Inversion
[Van Wijngaarden (1998)]. Second, the singularity parameters « is esti-
mated from modified versions of these velocity contrasts. For this purpose
the adapted form of the technique for retrieving the parameter a from well-
logs (Chapter 2, Section 2.6) is applied.

4.2 An elastic singular velocity model

As is generally known, real seismic reflection data are more completely de-
scribed by the elastic wave equation than by the acoustic wave equation,
as the Earth behaves predominantly as an elastic medium. Therefore, in
practice, pre-stack seismic characterization like AVO analysis is performed in
either the elastic or poro-elastic approximation.

The singular velocity model described by eq. (2.66) is however an acous-
tic model. In this section, a parameterization of a singular elastic velocity
model is proposed, that is an extension of this acoustic model. With this
model, it is possible to perform a multiscale analysis of elastic velocity func-
tions, similar to the technique described in Chapter 2, Section 2.6.

In this model, we define singularities in the P-wave velocity function
cp(z) as (shifted versions of)

ep(z) = cpilz/z1|*F forz <0 “.1
P cpalz/z1|*F  for z > 0, )

where ap is the local P-wave singularity parameter. cp; and cpy are the

P-wave velocities at z = —2z; and z = z; respectively. Singularities in the
S-wave velocity function are defined as (shifted versions of)
¢ z|*s forz<0
es(z) = { 511#/ 1'(1‘ (4.2)
cs2l|z/z1|*  forz >0,

where ag is the local S-wave singularity parameter. It is noted that these
velocity functions obey the local scaling relations

cp(Bz) = B*cp(2), (4.3)
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and

cs(Bz) = B*es(z), 4.4)

similar to eq. (2.64). We assume this model for singularities in the P- and
S-wave velocities in the remainder of this thesis.

4.3 Linearized Zoeppritz inversion

Explicit analytical expressions exist for the elastic rayparameter-dependent
reflection coefficients. Knott (1899) was the first to derive an analytical ex-
pression for the reflection of ultrasound wave-packets. This formulation was
subsequently refined for seismological use by Zoeppritz (1919). Zoeppritz’s
result, the Knott-Zoeppritz matrix equation, describes the rayparameter-de-
pendent reflection coefficients of an elastic medium, at a boundary of two
half spaces.

The elastic singular velocity model, described by egs. (4.1) and (4.2) can
be approximated by a superposition of stepfunction interfaces, as is described
in Chapter 3, Section 3.1. Consequently, the reflectivity of these singular
velocity models is approximated by a cascade of the reflection coefficients of
these stepfunction interfaces.

Using the full Knott-Zoeppritz matrix equation, it is in principle possible
to invert for the medium parameters from seismic reflection data. Unfortu-
nately, this inversion is strongly non-linear, as there are many higher order
coupled terms to take into account. The full matrix equation can however
be linearized in such a way that it only describes the pre-critical parts of
the rayparameter-dependent reflection coefficients. An example of such a
linearization can be found in Aki and Richards (1980). By this linearization,
the full Knott-Zoeppritz matrix equation reduces to a set of scalar expressions
for the reflection coefficients, that contain only a small number of lower or-
der terms. These expressions enable us to acquire an estimate of the medium
parameters by inversion of the pre-critical seismic reflectivity.

4.3.1 Linearized P-P reflection coefficient

In Van Wijngaarden and Berkhout (1995) a modified version of the linearized
expression of Aki and Richards (1980) for the rayparameter-dependent P-P
reflection coefficient Rpp(p) is presented. This linearization is written in
terms of the following normalized contrasts of seismic parameters:
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P-Wave velocity contrasts Acp/ cp,
Impedance contrasts AZ/Z, and (4.5)
Shear modulus contrasts Ap/ji.

At the boundary of two halfspaces, the overlined variables ép, Z and [ are
defined as the means of the P-wave velocity, the impedance and the shear
modulus over the boundary, respectively.

The linearized Zoeppritz equation for the rayparameter-dependent re-
flection coefficient Rpp(p) in terms of potentials, expressed in the above
contrasts, is given by

. 1AZ 1 [ &p® \ Acp 5 2A
N —— + = C .6
Rpp(p) ~ 5— 2(1_5@2) o 2P (4.6)

which, when [1 — &}p? ~! is approximated by 1 (a zeroth order series trun-
cation), becomes

~ 1AZ IACP 2Au 2 2
RPP(p) ~ '2'7 + l: —_— =2 (CP) 7:[ Cpp . (47)

Due to the linearization and the above series truncation, eq. (4.7) is only
valid for £%p? < 1, so only small angles of incidence are taken into account.
In practice, these angles of incidence are limited to approximately 30 degrees
[Van Wijngaarden and Berkhout (1995)]. It is shown by De Haas (1992) that
the above relation is also valid for the rayparameter-dependent reflection
coefficient in terms of particle displacements.

From eq. (4.7) it can be seen that the normal incidence reflectivity gives
the estimate of the impedance contrast. The rayparameter-dependent P-P
reflectivity Rpp gives, for small values of ¢ ¢2,p?, the combined estimate of the
P-wave velocity contrast and the shear modulus contrast. Note that an a
priori model for the relation between the P-wave velocity cp and the shear
modulus g has to be specified, to decouple these contrasts.

The acoustic rayparameter-dependent reflection coefficient R(p) is ac-
quired from eq. (4.7) by taking ¢g = 0, from which follows

R(p) = 57 T3 & cpp”. (4.8)




Chapter 4. Characterization of velocity contrast functions 73

4.3.2 Linearized SV-SV reflection coefficient

Equally well, linearized S-wave reflection coefficients can be derived. This
subsection covers the reflection of a vertically polarized SV-wave on an
elastic boundary. We only consider the rayparameter-dependent SV-SV-
reflectivity. Mode conversions to P-waves are not covered.
Again referring to Van Wijngaarden (1998), the linearized Zoeppritz
equation for Rsy,sv (p) in terms of potentials, is given by
- 1Ap 1 1 Acs 5 Ap
Rsvsv(p) e =— 4+ = | —=— | — — 2¢5p"—, .
sv,sv(p) 55 +3 (1 — E?qu) Z P (4.9)
where Ap/p is the (normalized) density contrast. We now substitute for the
contrast of the shear modulus g

mmaf VY i A (4.10)
The series expansion of eq. (4.9) onto ¢%p?, dropping all terms with powers
of p larger than 2, leads to

. [A—_Cﬁ + ﬁ] - [ZA—_"ﬁ - 29_—"] &, (4.11)
2] ¢s p p

2 cs
When we substitute for the contrast of the S-wave impedance Zg

AZ A A
45 268 2P (4.12)
Zs Cs p
we arrive at the following linearized expression for the vertically polarized
S-wave reflection coefficient Rgv sv (p)

1AZg

Rsv.sv(p) ~ 3 Zs [

Rsv,sv(p) ~

—— 42— . A
2 Zs + ZS ]Csp (4 3)

To acquire the rayparameter-dependent reflection coefficient Rsv.sv(p) in
terms of particle displacements, we substitute Rgy,sv(p) — —Rsv.sv (p), as
is shown by De Haas (1992). Similar to the linearized expression of the ray-
parameter-dependent P-P reflection coefficient, this expression is only valid
for small values of ¢Zp?. Comparing eq. (4.13) with eq. (4.7), we see that,
contrary to the P-wave velocity contrast, the S-wave velocity contrast can
be solved for independently. Namely, first the S-wave impedance contrast is
derived from the normal incidence reflectivity. Second, using this estimate
of the S-wave impedance contrast, the S-wave velocity contrast follows from
the #4p?-dependent term.
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4.3.3 Linearized SH-SH reflection coefficient

For a horizontally polarized SH-wave, the SH-SH reflection coefficient is
fully decoupled from the SV-SV and P-P reflection coefficients [e.g. Aki
and Richards (1980)].

The linearized expression for the rayparameter-dependent SH-SH re-
flection coefficient RSH,SH(p) in terms of potentials is given by [cf. Riiger
(1996)],

_ 18Zs 1 &p® \ Acs
Rsusu(p) = 27 7Zs 2 (1—_%? o 4.149)

which, when [1 — ¢%p?] ~! is approximated by 1, becomes

Rsm,su(p) ~ %éz—if - %—Agé? 2. (4.15)
Similar to the SV-SV case, the reflection coefficient in terms of particle
displacements is acquired by substituting Rsy sup(p) — —Rsmsu(p). In
eq. (4.15) we observe that the S-wave impedance contrast and the S-wave
velocity contrast are fully decoupled. Note the similarity of eq. (4.15) with
the linearized rayparameter-dependent acoustic reflection coefficient R(p) in
eq. (4.8).

4.3.4 Linearized Zoeppritz Inversion

In Van Wijngaarden (1998) it is shown that the contrasts in eq. (4.5) can
be recovered from seismic reflection data, by means of Linearized Zoeppritz
Inversion (LZI). To this end, first images of the rayparameter-dependent re-
flectivity are generated, according to the method described in Chapter 3, Sub-
section 3.3.2. These images can be looked upon as cascades of rayparameter-
dependent reflection coefficients. Hence, the linearized Zoeppritz equation,
governing the data type under consideration, can be solved at a specific imag-
ing depth to acquire estimates of the parameter contrasts at that depth.

As an example, Fig. 4.1 shows how the inversion for the contrasts is per-
formed on a rayparameter-dependent P-P reflection coefficient. The fig-
ure shows that the intercept with the vertical axis gives the estimate of the
impedance contrast. The rayparameter-dependent P-P reflectivity Rpp in
eq. (4.7) gives, for small values of ¢%p?, the combined estimate of the P-wave
velocity contrast and the shear modulus contrast, by means of the slope along
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Figure 4.1: A rayparameter-dependent P-P reflection coefficient. Note that the hori-
zontal axis is ¢p?. Referring to eq. (4.7), the intercept with the vertical axis gives the
estimate for the impedance contrast, the slope of the thick black line gives a combined
estimate for the P-wave velocity contrast and the shear modulus contrast.

the depicted thick black line. In a similar way, this inversion can be applied
to the rayparameter-dependent SV-SV and SH-SH reflectivities.

Linearized Zoeppritz Inversion (LZI) is now defined as solving the lin-
earized Zoeppritz equation at every imaging depth separately. The results
of applying LZI to a rayparameter-dependent reflectivity image are continu-
ous estimates of the contrasts as a function of depth. In this thesis we refer
to these results to as contrast functions. In this inversion, we assume that
smoothed versions of the actual functions cp(z), Z(2) and p(z) are sufficient
approximations of the functions ¢p(z), Z(z) and ji(z), respectively.

In Van Wijngaarden (1998) an analysis is performed on the influence of
errors in the value of the background P-wave velocity ¢p on the estimates
of these contrasts. It was shown that especially the estimate of the shear
modulus contrast is affected by errors in this background function; the P-
wave velocity contrast function is affected in a lesser degree, the impedance
contrast is not affected, as it is estimated independently from the background
function of the P-wave velocity [cf. eq. (4.7)].

LZI is applied to field data in Chapter 5 and 6, to construct the velocity
contrast functions from P-P and S H-S H-wave reflection data, respectively.
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4.4 Multiscale analysis of velocity contrast functions

The foregoing section has given a framework for deriving P- and S-wave ve-
locity contrast functions Acp(z)/ép(z) and Acg(z)/¢s(z) from imaged angle-
dependent reflectivity gathers. In this section, a method is presented for de-
riving the singularity exponent o from these velocity contrast functions. The
derivation presented is valid for singularities in both P- and S-wave velocity
functions, therefore the dependence of the contrast functions and the singu-
larity exponent on either P or S is dropped.

When we perform multiscale inversion on well-logs, as described in Chap-
ter 2, Section 2.6, we retrieve a local self-similar behavior of the velocity
function, described by

c(Bz) = %(z), where o > 0. (4.16)

The result of this inversion is an estimate of the singularity parameter «, for
the scale ¢ in some bounded, positive region [omin, O max)-

From the contrast functions Ac(z)/¢(z), a modified velocity contrast func-
tion D(z) is defined according to

1 Ac(2)
- 2¢(z) Az

D(z) 4.17)
Note that these velocity contrast functions can either be derived from velocity
functions c(z), where they are referred to as D.(z), or from seismic reflection
data, referred to as Dg(z). In eq. (4.17) we recognize the approximation of a
differentiation of the velocity function ¢(z) with respect to z, so we can write

1 de(z)
D(z)~26(z) dz -~

(4.18)

Note that this is the well-known expression for the continuous reflectivity, for
constant density. If we now substitute z by 3z, we get

1 de(B2)
20e(Bz) dz

We now assume that the background function &(z) is sufficiently smooth,
such that

D(Bz) ~ (4.19)

é(Bz) = ¢(z). (4.20)
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This constraint is satisfied when the background velocity function ¢(z) con-
tains no fluctuations within the scale range used in multiscale analysis of
the velocity contrast function D(z). The consequence of taking the real ve-
locity function ¢(z) instead of the smooth background function ¢(z) on the
inversion for « is treated in Section 4.5.

Substituting eq. (4.20) and (4.16) into eq. (4.19) leads to

B de(z)

D(3z) = 2202)

(4.21)

Comparing the right-hand side of eq. (4.21) with that of eq. (4.18) gives the
following self-similarity condition for velocity contrast functions

D(B3z) ~ p*'D(z). (4.22)

Now we follow a similar derivation as in Chapter 2, Section 2.6. The
wavelet transform D(a, z) (for real-valued wavelets ¥(z)) of D(z) is defined

as
Do, 2) = /D (

Replacing 2’ by o2/, z by oz and using eq. (4.22), where 3 is replaced by o,
for o > 0, we arrive at

)d ! (4.23)

D(o,02) = a*# / D(Z)Y(2' — 2)d7, (4.24)

—00

or, comparing the right-hand side with that of eq. (4.23) for o = 1, it follows
that for the AVS-curves connected to local maxima of the wavelet transform
of these velocity contrast functions D(z)

D(0,02max) = 0% * D(1, Zmax)- (4.25)
Taking the logarithm of the modulus of both sides of eq. (2.60) gives
logs|D(0, 0 2max )| = (o — ) logso + Cp, (4.26)

with
Cp = logy|D(1, zZmax)|-
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Note that if we would take p = 1, as in the derivation in Chapter 2, Sec-
tion 2.6, the slope of the AVS-curve would give (a — 1). Therefore we take
in the multiscale analysis of velocity contrast functions 4 = 0, such that
eq. (4.26) becomes

logy| D (0, 02max )| = alogya + Cp. (4.27)

Now the slope of the AVS-curve, connected to a singular point in the velocity
contrast function, gives the same estimate for the singularity parameter o as
in the multiscale analysis of well-logs.

4.5 Influence of the background velocity on the inversion for «

The self-similar condition in eq. (4.22) is only valid when the background
velocity profile ¢(z) does not contain fluctuations within the scale range used
in multiscale analysis. Note that this was also recognized by Dessing (1997).
This effect can be made clear by taking &(z) = ¢(z), the velocity function
that contains all self-similar behavior. In that case %c(z) and ¢&(z) satisfy the
following scaling relations

dc(ﬂz) — ﬁa—ldc_(z)
dz dz ’ (4.28)
c(Bz) = pe(z).

If we recall the approximation of the modified velocity contrast function D(z)
in eq. (4.18)

D(z) ~ 1 de(z)

T 2(2) dz (4.29)

we see that when egs. (4.28) hold we obtain, instead of the self-similar rela-
tion (4.22)

D(Bz) = 71D(2), (4.30)

which does not contain a reference to « anymore. Under this condition each
a-estimate for a singular point in D(z) will be 0 (cf. egs. (4.22) to (4.27)).
This result shows that in the inversion for the singularity parameter «, care
should be taken in choosing the background velocity function &(z).
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4.6 Application of the two-step inversion scheme to a synthetic
data set

To test the two-step inversion scheme for the retrieval of the singularity pa-
rameter « from velocity contrast functions, a synthetic experiment is per-
formed. Figure 4.2 shows real well-logs of the P- and S-wave velocities cp

o 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700
depth (m)

Figure 4.2: Real well-logs of the P- and S-wave velocities cp and cs (provided by
Mobil).

and cg with a depth sampling of .5 ft (0.1524 m). The density function is
given by a constant value of 2000 kg/m?. In these functions, synthetic data
were modeled, using an elastic reflectivity method [Kennett (1983)]. In this
experiment, only the P-P and the SV-SV reflectivities are analyzed. For
brevity, the SV-SV data are referred to as S-S data.

Following, the P- P data were imaged up to an angle of 50° to acquire the
angle-dependent image Rpp(p, z). As a background velocity in this imaging,
a heavily smoothed, down-sampled version of the P-wave velocity in Fig. 4.2
was used. The depth sampling of this background velocity function was 1
m. The angle dependent image Rpp(p, z) is shown in Fig. 4.3b. We can see
strong reflections in the range of 200 to 400m depth, which clearly correlate
with outliers in the P-wave velocity function in Fig. 4.3a, at the same depths.

Similarly, the rayparameter-dependent image Rss(p, z) is constructed for
angles up to 50°. The result of this imaging is shown in Fig. 4.4b. We note
that the spatial resolution of the image is much higher than the spatial reso-
lution of the image of the P-P reflectivity in Fig. 4.3b. This is due to the fact
that the S-wave velocity is much lower than the P-wave velocity (as can be
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Figure 4.3: (a) Real well-log of the P-wave velocity
(b) Imaged rayparameter-dependent P-P reflectivity Rpp(p, 2), as used for the Lin-
earized Zoeppritz Inversion, imaged up to an angle of 50 degrees.

visually checked in Fig. 4.2) and, consequently, the wavelength of S-waves is
much smaller.

Again, we see that there is a good correlation between reflections in the
image Rggs(p,z) and outliers in the velocity function cg(z). A careful in-
spection of the image Rss(p, #) in Fig. 4.4b shows however an unexpectedly
strong reflection at about 120 m depth, that does not correlate with a bound-
ary in the S-wave velocity field. Comparing the velocity functions in Fig. 4.2
we see that there is a strong spike in the P-wave velocity at this depth, there-
fore this reflection can be contributed to higher order terms in the explicit
Zoeppritz equation for the S-S reflectivity. Note that these higher order terms
are not accounted for in the linearized expression for the S-S reflectivity in
eq. (4.13).
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Figure 4.4: (a) Real well-log of the S-wave velocity
(b) Imaged rayparameter-dependent S-S reflectivity Rss(p, z), as used for the Lin-
earized Zoeppritz Inversion, imaged up to an angle of 50 degrees.

To the data sets Rpp(p, z) and Rgs(p, z) in Figs. 4.3b and 4.4b, the LZI
algorithm is applied. The background P- and S-wave velocity fields were
chosen identical to the migration velocities. The maximum angle of incidence
taken into the inversion was 30°.

Figure 4.5 shows the inversion result Dg,...(z), depicted by the black line.
The quality of the inversion result can be assessed by comparing the inversion
result Dg,,,.(2) with the function D..(z), constructed from the actual P-
wave velocity function (denoted by a grey line). To be able to compare both
velocity contrast functions, the D, (z) is low-pass filtered and down-sampled
to a 1 m spacing, such that it contains the same spatial bandwidth as the
Drpp(2).

It is clear that the velocity contrast function Dg,,,.(z), derived from the
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Figure 4.5: Inversion result D, .(z), derived from the image in Fig. 4.3b (black) and
D, (z) derived from the well-log in Fig. 4.3a (grey).

imaged P-P reflectivity, is well recovered, as it is almost identical to the ve-
locity contrast function D, (z), derived directly from the well-log. However,
starting from a depth of 600m, we note a mismatch between the two veloc-
ity contrast functions. Referring to Fig. 4.3a, we see that the reflections in
the image Rpp(p, z) are relatively strong, which would normally enhance the
quality of the inversion. However, we suspect that the image is contaminated
with internal multiples, generated by the dense distribution of outliers in the
velocity function around that depth range (Fig. 4.3a). Nevertheless, the gen-
eral trend of the actual velocity contrast function D, (z) is well recovered by
the Dr,.,(2).

We now assess the quality of the inversion on the S-S reflectivity. The
inversion result Drg(2) is shown in Fig. 4.6, denoted by the black line; the
low-pass filtered and down-sampled D, (%) is represented by the grey line.

We note that a larger discrepancy between both velocity contrast functions
than in the analysis of the P-P reflectivity. Especially in the ranges of 100-
200 m depth and below 600 m depth, we see large mismatches between the
DR, (2) and the D, (z). The mismatches at shallow depths can be explained
from the fact that higher order terms in the explicit Zoeppritz equation are
not taken into account by the inversion. For the mismatches below 600 m
depth, we suppose that this is caused by internal multiples, similar to the ef-
fect we have seen in the inversion of P-P reflectivity. Still, the general trend
of the velocity contrast function Dg,.(z) matches the trend of the actual
velocity contrast function D,y well.
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Figure 4.6: Inversion result Dg(z), derived from the image in Fig. 4.4b (black) and
D. () derived from the well-log in Fig. 4.4a (grey).

The proposed multiscale analysis to derive the singularity parameter « is
now applied to the velocity contrast functions for both the P-wave velocity
and the P-P reflectivity (Fig. 4.5). Its results are shown in Fig. 4.7. Similar
to the conventions in Fig. 4.5, the black circles represents the a-estimates de-
rived from Dg,,,,(z) (denoted ar,,) and the grey circles are the a-estimates
derived from D,,(z) (denoted by a.,.). The lines interconnecting the circles
are drawn for clarity only. The consistency of the estimate of the ag,,.-profile
with the estimate of o, -profile is rather convincing. Beyond 600 m depth
however, the estimate is slightly in error, which we could expect from the mis-

1 n —T T T T T T

- URep

0 100 200 300 400 500 600 700
depth [m]

Figure 4.7: Estimated o-profile derived from Dg,.(z) (black) and a-profile derived
from D.,.(z) (grey)
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Figure 4.8: Estimated a-profile derived from Dg,.(z) (black) and a-profile derived
from D (2) (grey)

match in that depth range between the velocity contrast functions (Fig. 4.5).
As noted before, this is probably caused by internal multiples.

In Chapter 5, a method is proposed to reduce the amount of internal mul-
tiples in walk-away VSP data. It will be shown that the reduction of internal
multiples from field data greatly improves the consistency of the estimates of
the og,, with the estimates of the a,.

The results of applying the multiscale analysis to the velocity contrast
functions Drg(2) and D) is shown in Fig. 4.8. The a-estimates derived
from Dg,.(z) (denoted arg,) are depicted by the black circles and the a-
estimates derived from D, (z) (denoted by a.,) by the grey circles. As we
could expect from the lower quality of the velocity contrast function, derived
from the S-S reflectivity, we note larger mismatches between both a-profiles.
The general trend is however recovered quite nicely. The largest mismatch
is found between 100-200 m depth. We attribute this to the fact that the
linearized expression for the S-S reflectivity insufficiently accounts for the
higher order terms in the explicit Zoeppritz equation.

4.7 Conclusions

A method for multiangle, multiscale analysis of both acoustic and elastic
seismic reflection data has been proposed. The method consists of two steps.
The first step is the application of Linearized Zoeppritz Inversion (LZI) to
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imaged rayparameter-dependent reflectivity gathers, to acquire velocity con-
trast functions, which are estimates of the velocity contrasts at each imaging
depth. A test on synthetic data has shown that the velocity contrast functions
derived from the rayparameter-dependent reflectivity gathers are generally
good estimates of the actual velocity contrast functions.

The second step is a multiscale analysis of these velocity contrast func-
tions. A technique, similar to the technique used to estimate the singularity
parameter « from well-logs, is used to estimate the parameter a from veloc-
ity contrast functions. This method is applied to both the velocity contrast
functions constructed by LZI and the velocity contrast functions derived di-
rectly from the velocity fields. It is shown that the estimates of singularity
parameters « derived from both velocity contrast functions give consistent
results. Higher order terms in the explicit Zoeppritz equations that are not
accounted for in LZI and internal multiples are the main causes of errors in
this inversion.

In the following two chapters this technique is applied to field data sets.
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Chapter 5

Multiangle processing and
multiscale characterization of
walk-away VSP data

The research described in this chapter is a joint effort of dr. Menno Dillen and
the author of this thesis. In this chapter the method for multiangle, multiscale
analysis of elastic seismic data is applied to walk-away VSP data. Both synthetic
and real data are treated. It is shown that a migration algorithm, specifically
developed for walk-away VSP data, effectively suppresses multiple arrivals and
improves the overall image quality. Furthermore, the multiscale analysis of well-
log and seismic data is performed. It is shown that the results of the multiscale
analysis of the well-log correlate better with the results of the multiscale analysis
of the updated imaging scheme than with the results of the conventional imaging
scheme.

5.1 Introduction

In this thesis, multiscale analysis is presented as a method for characterizing
seismic reflection data and well-logs. The method has been tested on both
synthetic (Chapters 3 and 4) and real (Chapter 6) surface data and well-
logs. In this chapter, an approach is proposed for processing walk-away VSP
data. Figure 5.1 shows the basic setup of a walk-away VSP configuration.
The major difference with surface seismics is that the receivers are not at the
surface, but are lowered in a bore-hole. Note the difference with normal VSP
data, in which only one source at the surface is used. Normal VSP data are
often used to construct a (1-D) velocity model of the subsurface, to calibrate
surface data.
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Figure 5.1: Walk-away VSP-configuration.

The reason for working with walk-away VSP data instead of surface data
in this research, is that the receivers in a VSP experiment are close to the
interfaces that we are analyzing. From fig. 5.1 we can see that the upgo-
ing transmission path (from reflector to receiver), denoted by W, is shorter
than the downgoing transmission path (from source to reflector), denoted by
W, From the above observations, we understand that the propagation dis-
turbances in walk-away VSP data are less than in surface data. Moreover, in
the multiscale analysis, the correlation of the results with well-logs is easier,
since no time-to-depth conversion is required. Therefore, VSP data are an
excellent data type to apply the multiscale analysis to, if we want to test the
method on real elastic data in a controlled way.

In walk-away VSP data we normally measure the inline, crossline and
vertical particle velocities denoted by v,, v, and v, respectively. To these
data a complete processing sequence is applied, to arrive at rayparameter-
dependent imaged reflectivity sections, which are the input of the multiscale
analysis.

The method consists of the following steps:
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1. Decomposition of the particle velocity components into P- and S-wave
potentials. For this purpose an explicit polarization scheme is presented
which uses the curl and the divergence of the inline and vertical particle
velocity fields.

2. Separation of the P- and S-wave potentials into up- and downgoing
wave field potentials. To this end the walk-away VSP’s (which are
common-receiver gathers) are reorganized into normal VSP’s (which
are common-source gathers). In this domain the separation is per-
formed by applying a median filtering technique in the common-source
domain.

3. Radon transform and rayparameter-dependent imaging of the raypara-
meter-dependent P-P and P-S reflection data. An improved imaging
scheme is presented that uses the images from all receivers to construct
more reliable imaged sections of these wave field potentials.

The multiscale analysis is then performed on the results of the imaging
scheme above, making use of the technique described in Chapter 4.

4. Construction of velocity contrast functions from the imaged P-P data,
making use of the Linearized Zoeppritz Inversion (LZI) by Van Wijn-
gaarden and Berkhout (1995).

5. Multiscale correlation of the velocity contrast functions with the well-
log. The results of the updated imaging scheme are compared with the
results of the conventional imaging scheme.

First, synthetic walk-away VSP data are created, to assess the proposed
processing sequence. Results of the application of the above processing
scheme to these data are analyzed to detect possible weaknesses in the pro-
cessing.

Using the experience from this analysis, the processing is then applied to
a real walk-away VSP data set, which was recorded in a well near Boulogne-
sur-Mer in France. In the remainder of this chapter, this data set is referred to
as the Boulogne VSP data set. In the Boulogne VSP experiment, a P-wave ve-
locity log was also recorded, which makes it possible to perform a multiscale
correlation of the seismic reflection data with the well-log.
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5.2 Multiangle processing and multiscale characterization of syn-
thetic walk-away VSP data

In this section, the proposed processing and imaging scheme is further ex-
plained and illustrated with two examples on synthetic data. The results of
these synthetic experiments are analyzed and conclusions from this analysis
are given.

5.2.1 Decomposition of walk-away VSP data into P- and S-wave po-
tentials

The decomposition of the particle velocity field » into P- and S-wave poten-
tials is performed on two synthetic data sets. The source in these experiments
is a pure P-wave source; no S-waves are excited by the source. Further, we
choose a model that is invariant in the horizontal z- and y-directions, so
no out-of-plane converted wave motion is generated. Therefore, we only
consider the inline v, and the vertical v, particle velocities. The first syn-
thetic 2-D data set is generated using an elastic reflectivity method [Kennett
(1983)1, where the densities and velocities are given by the plane-layered
model shown in Table 5.1.

interface depth  cp cs p

[m] [m/s]  [m/s] [kg/m’]

1800 1200 1500
300

2100 1400 1700
400

2200 1500 1800
550

2500 1700 2000
700

3000 2100 2400

Table 5.1: Parameters of the plane-layered model, as used for modeling the data in the
first synthetic experiment.

The model contains four interfaces at 300, 400, 550, and 700 m depth,
respectively. The wave fields are computed at depths ranging from 300 to
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Figure 5.2: (a) v, and (b) v, common-receiver gathers at a depth of 350 m.

700 m with 10m interval, i.e., at 41 depth levels. The computed wave fields,
with one source at the surface at zero offset from the bore-hole, and 512
receivers at various offsets from the bore-hole, at 41 depths, are converted to
the walk-away VSP-configuration of Fig. 5.1, in which we have 41 receivers
in the bore-hole and 512 sources at the surface. Interchanging sources and
receivers and applying a reversal of the z-axis, utilizing the lateral-invariance
of the layered medium, we obtain a common-receiver gather for every VSP
depth. In Fig. 5.2 the v, (a) and v, (b) common-receiver gathers are shown
for a depth of 350 m, i.e. between the first and second interface (see Ta-
ble 5.1). We observe in both figures a primary downgoing wave and three
reflections from the second, third, and fourth interface, respectively. The re-
flection from the second interface almost coincides with the primary down-
going wave.

In Fig. 5.3 the v, (a) and v, (b) common-source gathers are shown for
a source-bore-hole offset of 320 m. Clearly, the down- and up-going wave
field components are recognized, but also, from the slopes of the events,
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Figure 5.3: (a) v, and (b) v, common-source gathers for a source-bore-hole offset of

320 m.

the P- and S-wave field components can be distinguished. We observe in
Fig. 5.3 that the v,-wave field contains better discernible S-wave reflections

than P-wave reflections, whereas in the v,-wave field the P-wave reflections
are more pronounced.

In order to decompose the v,- and v,-wave fields into P- and S-wave field
potentials, we use the following definition [Wapenaar and Berkhout (1989)]:

v (z, z,t)

_p_ét— =V (z,2,t)+V x P (z,2,1t),

(5.1

where ¢ (z, z, t) is the scalar P-wave potential and ¥ (z, z,t) is the vectorial
S-wave potential. If we take the divergence of both sides of eq. (5.1) we

arrive at

where the 2-D wave equation for the

oV -v(zx, 2t
, (z,2,t)

ot

—V2¢ (17) 2, t)

1 8%¢(x,z,t)
AT

2
cp

(5.2)

P-wave potential is used. When we
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integrate both sides of eq. (5.2) with respect to time, we obtain

%¢($,Z,t) = —pchVv(z,z,t)

where )\ and p are the local Lamé parameters, which are related to cp, cs

and p according to
A2
cp = _—
P

cs = E (5.4)
P

Similar to eq. (5.2) we can take the curl of both sides of eq. (5.1) to arrive at

p?Vx—giw,z,_t) = -V xVx¢(z,z,1)
1 8% (x,2,t)
-, (5.5)
c% ot?

where the wave equation for the S-wave potential is used. Integrating both
sides of eq. (5.5) with respect to time, and taking only the y-component,
gives the following expression for the scalar S-wave potential ¢, which is
the y-component of the vectorial S-wave potential 1,

0 .
az/)y (z,2z,t) = pc&(V x v), (z, z,t)
= pu(Vxwv),(z,21). (5.6)

For brevity, we will drop the index y, such that ¢ = ¢,. In eq. (5.3) the
time-derivative of the scalar P-wave potential ¢ is obtained by taking the
divergence of the velocity wave field vector v = (v,,v,)T. The y-component
of the curl of v in eq. (5.6) produces the time-derivative of the scalar S-wave
potential ¢».  Writing the V-operators in egs. (5.3) and (5.6) in terms of
spatial partial derivatives and integrating with respect to time, gives

t 8 ! a ! !
¢ (z,z,t) = —()\+2,u)/_oo [%v, (z,2,t') + 55 (w,z,t)] dt', (5.7)
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Figure 5.4: (a) ¢ and (b) {» common-receiver gathers at a depth of 350 m.

and

—0Q

t 8 ! i a / /
1/)(w,z,t)=p/ [avw(z,z,t)—a—xvz(:p,z,t)]dt. (5.8)

These last two equations are solved numerically to obtain the P- and S-
wave field potentials from the v,- and v,-wave field components. The partial
derivatives with respect to the z- and z-coordinates are solved using second-
order central finite-differences. The partial derivative with respect to the
z-coordinate is computed using common-receiver data, as shown in Fig. 5.2.
In this domain the sources cover the z-axis along the surface which makes
it possible to compute these finite differences. The central finite-difference
operator uses three offsets to calculate a partial derivative with respect to the
z-coordinate, assuming lateral-invariance of the medium. The partial deriva-
tive with respect to the z-coordinate is obtained from the common-source
data, as shown in Fig. 5.3, using three depths. At the data boundaries end-on
left or right finite-differences are employed. Subsequently, the integrations
with respect to time, in egs. (5.7) and (5.8) are applied numerically to the
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Figure 5.5: (a) ¢ and (b) vy common-source gathers for a source-bore-hole offset of 320
m.

computed partial derivatives. On noisy field data the integrations produce a
large time-variant DC-component. The DC-component is removed from the
time-integrated result by smoothing the integrated data by convolving the
data with a low frequent gaussian function and subsequently subtracting the
smoothed data from the time-integrated data.

In Fig. 5.4 the common-receiver P- and S- wave potential gathers are
shown for a receiver depth of 350 m. The down- and up-going P- and S-
wave events are best recognized in the common source gathers in Fig. 5.5
from the slopes associated with the respective wave velocities. We observe
in Fig. 5.5 residual S-wave amplitudes in the ¢-gather, and residual P-wave
amplitudes in the -gather, due to the finite difference approximation of the
spatial partial derivatives.

5.2.2 Separation of P- and S-wave potentials into up- and downgoing
wave field components

The P- and S-wave potentials of the previous section are now separated
into up- and downgoing wave field components by means of subtraction of
down- and upgoing wave fields respectively. The simplest way to remove
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the up- or downgoing wave modes is by applying an (f, k)-based filter to the
data. To this end, the walk-away VSP data are reorganized into common-
source gathers, in which representation the downgoing wave fields are visi-
ble as events with a negative slope and upgoing wave fields as events with
a positive slope. If the data are then transformed into the (f, k)-domain, the
half-plane described by k& > 0 represents the downgoing wave field, which
can be removed by applying a pie-shape filter to this part of the data. How-
ever, it is known from literature [e.g. Sheriff (1984)], that applying such a
filter to seismic data induces the —sometimes very strong— unwanted effect of
Rieber mixing. This Rieber mixing is characterized by a spatial averaging of
the upgoing data along the position of each removed downgoing event and
vice versa. Therefore, this technique is not particularly apt to the separation
of up- and downgoing wave fields.

A better method for this separation is described by Hardage (1983), in
which the respective down- and upgoing wave fields can be estimated in the
linear move-out or LMO-domain, by means of median filtering. This tech-
nique has the advantage that, because of the fact that it is performed in the
(2,t)-domain, it does not have the problem of spatial averaging. The first pro-
cessing step (for acquiring the upgoing wave field) is to accurately pick the
downgoing wave modes and perform a negative time-shift to each reflection,
such that all downgoing wave modes align vertically. After this alignment
we refer to these data as LMO-corrected VSP data. Note that performing the
LMO accurately is the most crucial step in the processing, as very small time
shifts will introduce large amounts of noise to the whole data set! In the LMO-
corrected VSP data, the upgoing events are attenuated by applying a vertical
median filter to the data, where the median is typically taken over five sam-
ples. The effect of the median filter is that all strictly vertical events (the
downgoing events) in the data set are preserved, whereas all non-vertical
events (the upgoing events) are strongly attenuated. After the median filter-
ing, the result is inversely LMO-corrected, and subtracted trace-by-trace from
the original data set. In this way, the downgoing wave field components are
attenuated, which gives an estimate of the upgoing wave field. The same
technique is also applied vice versa, to arrive at an estimate of the downgo-
ing wave fields. An important mathematical property of the median filter is
that it is a non-linear process. The footprint of the median filter is therefore
dependent on the position at which it was performed in the processing se-
quence. In our VSP processing sequence we chose to perform the median
filtering after the decomposition into P- and S-wave potentials, because of
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Figure 5.6: Up- and downgoing P- and S-wave potentials for a for a source offset of

(b) The downgoing S-wave potential ¥+

320m, constructed by median filtering. (a) The downgoing P-wave potential ¢+ .

(c) The upgoing P-wave potential ¢~ .
(d) The upgoing S-wave potential 1~
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the different linear move-outs of P- and S-waves. A second remark that has
to be made is that due to small errors in the LMO correction, we introduce
high-frequency noise (referred to as whiskers) to the estimates of the up- and
downgoing wave fields. We therefore have to apply a band-pass filter to the
data, such that the frequency content of the estimates is approximately equal
to the frequency content of the full data set, thus effectively removing these
whiskers.

Figure 5.6 shows the result of this filtering technique, in the common-
source domain. In these figures an example has been given for the interme-
diate source offset of 320m. The downgoing P-wave potential ¢+ (fig. 5.6a)
shows a strong attenuation of the other wave modes. No energy of the upgo-
ing wave modes is visible, and there is no spatial averaging of the downgoing
wave fields visible. In the downgoing S-wave potential y* (fig. 5.6b) we see
that the upgoing wave field is also strongly attenuated. Because the source
in this experiment is a strict P-source, all downgoing S-waves are converted
waves generated at the boundaries in the model. In Figs. 5.6¢c,d we see the
upgoing P- and S-wave potentials. It is clear from these figures that the
down-going field is not fully attenuated. The reason for this effect lies in
the relatively strong downgoing wave field compared to the upgoing wave
field. In real walk-away VSP data we normally do not encounter such strong
downgoing events as in the synthetic data. Therefore we will also use this
technique for separation of up- and downgoing wave fields on real walk-away
VSP data.

5.3 Imaging and characterization of rayparameter-dependent
synthetic walk-away VSP data

5.3.1 Imaging of rayparameter-dependent synthetic walk-away VSP
data

In this section it is explained how upgoing wave fields ¢~ and )~ (which are
in the (z, t)-domain) can be imaged to the rayparameter-dependent P-P and
P-S§ reflectivity in the rayparameter-depth (p, z)-domain. Two imaging ap-
proaches are discussed, the conventional rayparameter-dependent imaging
technique as described in Chapter 3, Section 3.3.2, and a novel adaption to
this imaging technique, that combines the images at all receiver depths into
one piecewise constructed image.

To compare the proposed novel imaging scheme with the conventional
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scheme, a test is performed on a synthetic data set. Figure 5.7a shows a
real cp- and cg-velocity function, a 182m long section of well-log ranging
from 300 to 482m depth. The real well-log data is made available by Mo-
bil. The density is taken constant at a value of 2000 kg/m3. The seismic
velocities from the surface to 300m depth are taken at a constant value of
1000m/s (cg) and 2300m/s (cp). In this velocity model, synthetic walk-
away VSP data (particle velocities v, and v,) are modeled for 24 receiver
depths, ranging from 300 to 482m, with a constant receiver spacing of 7.9m.
The up- and downgoing wave fields are constructed by the method described
in Section 5.2. After the separation into up- and downgoing wave fields, the
upgoing wave fields are organized back into common-receiver gathers. The
results of this processing (i.e. the upgoing wave field potentials ¢~ and y~)
are shown in Fig. 5.7b,c.

Before imaging to the rayparameter-depth (p, z)-domain can be perform-
ed, the data are transformed into the Radon domain, by means of the Radon
transform (cf. Chapter 3, Section 3.3.1). By applying this transform, we
arrive at the data sets ¢~ (p,7) and zﬁ‘(p, 7) respectively. These data sets,
which are computed for every receiver depth, are the input of the described
imaging schemes.

The first imaging approach is the construction of rayparameter-depen-
dent depth images of the P-P and P-S reflectivity Rpp(p, z) and Rsp(p, 2)!
for every single receiver depth. This imaging approach is similar to the imag-
ing approach described in Chapter 3, Section 3.3.2, with the difference that
the upgoing wave field operators W~ do not range to the surface (2=0),
but to the respective receiver depths (z=2.ec). In this chapter we ignore the
dispersion effects caused by the fine-layering; ongoing research by prof. Kees
Wapenaar is focused on developing an approach for incorporating the atten-
uation estimates obtained from the downgoing wave fields ¢ and ¥+ to
improve the propagators W+ and W~ in this imaging approach.

Figures 5.8b and 5.9b show the results of this imaging approach for the
topmost receiver at 300m depth for the P-P and P-S data respectively. These
imaging results show clear horizontal reflections, however the imaged pri-
mary events are contaminated by internal multiples (the events which have
a negative move-out) and the deeper P-P reflections seem to contain some

'We refer to P-wave data converted to S-wave data as P-S data. However, the image for
this data type is called Rs»(p, z), to be consistent with prevalent operator notation.
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Figure 5.7: (a) Velocity profiles cp (solid) and cs (dashed) of the finely-layered target.
(b) upgoing P-wave potential ¢~ at 300m depth.
(c)upgoing S-wave potential 1)~ at 300m depth.
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Figure 5.8: (a) P-wave velocity profile.

(b) Depth image Rpp(p, z) for the receiver at 300m depth.

(¢) Piecewise depth image R%L(p, z) constructed by combining depth images of all re-
ceivers.

amplitude and phase distortions. However, the match between the velocity
profiles in Figs. 5.8a and 5.9a is good, as the depths of the main outliers in
the velocity profiles coincide with the main reflectors.

The second imaging approach is focused on improving the images cre-
ated by the first approach. In brief, it consists of constructing a piecewise
depth image RPY(p, z) by concatenating subimages from the receiver which
is nearest to a specific depth in the image.

With the first imaging approach, we have constructed rayparameter-de-
pendent images R, (p, z) for all receiver depths z,, separately. Let us assume
there are N receiver depths in the experiment. The piecewise constructed
image is built up as follows. First we select the reflectivity from the images
Rn(p, z) for the interval z € d, = [z, + Az, z,41], where Az is the depth

sampling in imaging. Hence, we define subimages R"®(p, z) as

(5.9)

Rsub(p Z) _ Rn(p, Z) for ze¢€ dn
n ’ 0 for = g d..

We now have N subimages, where every subimage represents the re-
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Figure 5.9: (a) S-wave velocity profile.

(b) Depth image Rsp(p, z) for the receiver at 300m depth.

(c) Piecewise depth image Ry (p, z) constructed by combining depth images of all re-
ceivers.

flected arrivals, nearest in vertical sense to the receiver at z,. The piecewise
constructed image RPY (p, z) is defined as the sum of these subimages, accord-
ing to

N
R™(p,2) = 3 R®(p, 2). (5.10)

n=1

By applying this technique, we reduce the number of internal multiples in the
image, because the subimages mainly contain the primaries reflected from
the nearest reflector below the receiver, or, when no reflector is present in
that depth interval, no reflections at all. Furthermore, the amplitudes of
the deeper events are better preserved in this piecewise constructed image
than in the image of the topmost receivers, because the upgoing transmission
paths are shorter.

The depths z; of the receivers for which the images RY,.(p, z) and RYL(p, 2)
have been created range from 300 to 482m, therefore the piecewise con-
structed images represent the same depth interval as the conventional images
from the receiver at 300m depth. Figures 5.8c and 5.9c show the results
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Figure 5.10: (a) Velocity contrast function D.,(z) from P-wave velocity profile in
Fig. 5.7a

(b) Continuous Wavelet Transform of (@)

(c) Position of modulus-maxima lines in wavelet transform

(d) Estimates of a as a function of depth

of the piecewise imaging approach. It is clear that this imaging technique
has considerably decreased the amount of imaged internal multiples. Note
that only at points where the velocity profiles change rapidly, we see reflec-
tion events in the piecewise constructed images R}, and R},. Furthermore,
there are neither amplitude nor phase distortions for the deeper events vis-
ible anymore. At first sight the piecewise imaging technique has drastically
improved the quality of the images.

5.3.2 Multiscale characterization of the imaged rayparameter-depen-
dent synthetic walk-away VSP data

The multiscale characterization on the imaged rayparameter-dependent P-
P reflectivity in Fig. 5.8, is performed following the approach discussed in
Chapter 4.

As a reference, we have constructed the velocity contrast function D,,,(z)
directly from the P-wave velocity profile in Fig. 5.7a. The result is depicted
in Fig. 5.10a; it shows strong outliers at the same depths as they are visi-
ble in the P-wave velocity profile. Next, we have computed the singularity
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Figure 5.11: (a) Estimate of Dg,(z) from the image Rpp(2=300m) in Fig. 5.8b

(b) Continuous Wavelet Transform of (a)

(¢) Position of modulus-maxima lines in wavelet transform

(d) Estimates of « as a function of depth from D, (z) (black) and from D..(z) (grey)

parameter profile (a-profile) of this velocity contrast function. The analysis
and the result are visible in Fig. 5.10b-d.

For the comparison of estimates of o from well-log and seismic data,
we now compute the velocity contrast functions Dr,,.(z) and Dgew (2) from
the data in Fig. 5.8b,c, where the Linearized Zoeppritz inversion for raypa-
rameter-dependent P-P reflectivity of Van Wijngaarden (1998) was used.
Figure 5.11a shows the estimate of Dg,,,(z) from the conventional image
Rpp(z=300m). Figure 5.12a shows the result acquired from the piecewise
constructed image Rpp. It is clear from these figures that the Dgew (z)-profile
in Fig. 5.12a is much more pronounced than the Dg,,(2) in Fig. 5.11a; it
mainly shows the strong reflectors in the finely-layered package, whereas
DR, (z) in Fig. 5.11a seems to be affected by the multiple arrivals.

Figures 5.11/5.12b-d show the results of performing the multiscale anal-
ysis on these data and extracting estimates of « for every modulus maxima
line (the black lines in Figs. 5.11/5.12d.) The grey line is the result from
Fig. 5.10d, to make it possible to accurately compare the different a-profiles.

The estimates of o from both data sets show a very good match with
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Figure 5.12: (a) Estimate of Dgos (z) from the piecewise constructed image Rpp in
Fig. 5.8¢

(b) Continuous Wavelet Transform of (a)

(c) Position of modulus-maxima lines in wavelet transform

(d) Estimates of « as a function of depth from Dgew (2) (black) and from D....(z) (grey)

the estimates directly from the velocity contrast function, derived from the
well-log. It seems that the estimation of o from velocity contrast functions
derived from the images is not very sensitive to the multiple arrivals, how-
ever the estimates from velocity contrast function, derived from the piece-
wise constructed image (Fig. 5.12d) are more accurate than the results of
the data constructed from the receiver at 300m depth (Fig. 5.11d). Espe-
cially at larger depth, the difference in quality is well visible.

The results of the above novel imaging scheme of rayparameter-depen-
dent synthetic VSP data, have shown that the novel scheme is capable of
effectively suppressing the imaged multiple arrivals. It has been shown that
inversion for « from velocity contrast functions derived from imaged raypara-
meter-dependent reflectivity is improved by applying the piecewise imaging
scheme. Therefore this technique will be tested on the Boulogne walk-away
VSP data set and compared to the results of the conventional imaging and
characterization scheme.
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5.4 The field data set of Boulogne-sur-Mer

The processing sequence described in Sections 5.1-5.3 is applied to a real
walk-away VSP data set, recorded in June 2000 near Boulogne-sur-Mer,
France. This VSP experiment is part of a larger research project, led by
dr. Guy Drijkoningen and funded by Netherlands Research Centre for Inte-
grated Solid Earth Sciences (ISES). In this project, the objective is to correlate
geological, petrophysical and seismic data. The VSP experiment is especially
meant for correlating the latter two.

This walk-away VSP experiment was performed in a bore-hole on the
tidal flat at the foot of a cliff about 6km north of Boulogne-sur-Mer, in the
village Wimereux. Around the position of the bore-hole, it is expected, from
geological measurements, that the subsurface is approximately horizontally
layered, with an estimated maximum inline dip (with respect to the shotline
orientation) of a few degrees. The crossline dip is negligible. The bore-hole
is approximately 136m deep and it shows about the same lithology as the
cliff about 1 km south of the bore-hole, because of a large monoclinal struc-
ture halfway between these two points. From the caliper run, it turned out
that there were major wash-outs in the bore-hole at 48m and at 95m depth.
At these depths, the geology consisted of unconsolidated clays, which were
washed out during the flushing of the bore-hole. In this bore-hole, a string
with eight 3-component geophones, with 2m separation, was lowered and
a full walk-away VSP was recorded, for every depth, with source-bore-hole
offsets ranging from 0 to 75m, with 1.5m spacing, thus making 51 offsets.
The string was pulled up from 126m depth to 2m depth, which gives 63
depth locations of the geophones, taking the 2m spacing of the geophones
into account.

The source in this experiment was the portable P-wave vibrator of the
University of Utrecht, which was developed by drs. Vincent Nijhof, as part
of a project funded by the Dutch Science Foundation STW. Every shotpo-
sition was covered 4-fold. The sweep of the P-wave vibrator ranged from
50-900Hz. The data were sampled at 250us; an anti-alias filter in the field
was active from 1kHz. It is to be noted that the P-wave vibrator is not a
strict P-source, like an airgun or dynamite. It is most accurately described as
a ‘vertical force’ source, which means that it emits S-waves at oblique angles
to the surface. From this we can understand that we have S-wave arrivals in
the down-going field at all shotpositions, except for normal incidence.

Before the well was cased, the combined monopole/dipole tool of ISES
was lowered in the borehole to measure the P-wave and S-wave veloci-
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ties. At the time of writing however, no reliable measurements of the P-
and S-wave velocities could be acquired. Instead, the P-wave velocities are
measured from the recovered core, which was performed by drs. Hendrik
Braaksma. Drs. Braaksma measured only the P-wave velocities for every
lcm, using the specialized equipment at the Free University of Amsterdam.
Therefore, no S-wave velocity profile is available for the Boulogne VSP data
set. In this research we use these core measurements to test the correlation
with the walk-away VSP data.

The preprocessing of the walk-away VSP data consisted of two steps. The
first step, which was deconvolution of the data by the measured base-plate
and reaction mass motion, was performed by drs. Vincent Nijhof of OYO-
CAG. We therefore do not have to apply deconvolution to this data set; it is
already the band-limited reflection response of the earth.

The second step was the rotation of the two horizontal components, such
that at every depth we have the true inline and crossline v, and v, compo-
nents. When we lower a cable with 3-component geophones in the bore-
hole, we do not know the rotation of the geophones around the vertical axis.
Therefore, we have to use an indirect technique to measure this rotation. To
this end, at every depth of the geophones, one recording with a true P-wave
source at intermediate offset has to be made. The true P-wave source in the
experiment was an airgun, which was hung in a large (1m3) bowl of water,
partially dug into the sand of the beach. The airgun was positioned about
70m from the bore-hole, normal to the shotline of the P-wave vibrator. The
rotation of the geophones can then be estimated by rotating the first break
measured at the two horizontal components in such a way that the v, compo-
nent has minimum amplitudes and the v, has maximum amplitudes. When
the same rotation is applied to measurements of the walk-away VSP data, we
arrive at the true inline v, and crossline v, components of the wave fields.
This processing has been performed by dr. Ranajit Ghose.

5.5 Wave field decomposition of the Boulogne VSP data set

The processing sequence of sections 5.2.1 and 5.2.2, which was demon-
strated on synthetic VSP data, is applied to the Boulogne VSP data. Fig-
ure 5.13 shows the inline (v,) and vertical (v,) particle velocity wave field,
received by the geophone at 40m depth, in the common-receiver domain.
A topmute of 7ms has been applied to remove the noise introduced by the
deconvolution process.
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Figure 5.13: (a) Inline particle motion v, of the Boulogne VSP data for the receiver at
40m depth. N
(b) Vertical particle motion v, of the Boulogne VSP data for the receiver at 40m depth.

At first sight, the data has the correct characteristics. The amplitudes
in the v, are stronger than in the v,, which can be understood from the
fact that in first approximation the v, represent the P-waves and the v, the
S-waves. Furthermore, in both the v,- and the v,-data clear reflections are
visible, however for VSP data, the quality is not exceptionally high. The main
problem in the data is encountered in the near-offset area. From Fig. 5.13
we can see that there is a time-shift and scaling of the seismic events up to a
source-offset of 4.5m. Given the almost horizontal layering of the sediments
and the non-disturbed flat beach, we suspect that this effect is caused by a
residual deformation of the subsurface due the weight of the platform that
was built to drill the bore-hole.

The result of applying the decomposition into P- and S-wave potentials,
followed by the separation into up- and downgoing wave field potentials is
shown in Fig. 5.14. Again a top mute of 7ms was applied to remove some
strong anti-causal noise, which was generated by the processing.
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Figure 5.14: Up- and downgoing P- and S-wave potentials for the receiver at 40m
depth, constructed by median filtering. (a) The downgoing P-wave potential ¢+

(b) The downgoing S-wave potential ¢

(c) The upgoing P-wave potential ¢~.

(d) The upgoing S-wave potential ¢~ .
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When we look at the results of this processing, we see that the time-shift
and scaling in the near-offset range has affected the continuity of the reflec-
tions considerably. This problem has to be solved before we can perform the
imaging and characterization. In the next section we will apply a homoge-
nization to the near-offset area of the data set.

Outside the near-offset range, comparing the downgoing ¢* and v with
the upgoing ¢~ and ¢~ respectively, we see some clear differences. Notably,
the first arrival in the downgoing wave fields is much stronger than in the up-
going wave fields. In the downgoing S-wave (i) section there is an event
at around 40ms, which is absent in the upgoing 1. These are clear evidence
that the applied processing has been able to separate at least a major part of
the up- and downgoing events.

The separation into P- and S-wave potentials is more difficult to assess.
Looking carefully at the upgoing wave fields, we can recognize more and
stronger events in the range of £ = [40ms,70ms] in the ¢~ than in the .
However, the quality of the decomposition into up- and downgoing wave
field potentials can only be assessed quantitatively by applying the proposed
imaging and characterization technique of Section 5.3. This will be the topic
of the next section.

5.6 Imaging of the rayparameter-dependent upgoing wave field
potentials of the Boulogne VSP data

In this section, the two imaging techniques presented in Section 5.3 are ap-
plied to the Boulogne walk-away VSP data. The first step is the application of
the Radon transform to the upgoing wave field potentials ¢~ and v ~. In this
respect we encounter the first problem, as the near-offset range is heavily
affected by the time-shift and scaling of the recorded wave fields. This will
strongly affect the result of performing the Radon transform, as the near-
offset irregularities will smear out over all rayparameters.

To solve this problem, we apply a normal move-out (NMO) correction
to the data sets, choosing a move-out velocity of 2000m/s, for both the P-
and the S-wave potentials. The data is mirrored to the negative offsets, to
arrive at a semi-splitspread data set. For the S-wave potential, the data at
negative offset are multiplied by a factor of —1, to take into account the
polarity change normally encountered in split-spread S-wave recordings. In
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these data sets we mute the affected near-offset ranges. Then we perform a
linear interpolation in the muted areas for the P-wave potentials. The muted
areas in the S-wave potentials are interpolated by a sine interpolation, to
create a smooth transition between the positive and negative offsets. After
this muting the data is inverse NMO corrected, to arrive back at the common-
receiver gathers.

The second problem is the fact that the data are spatially aliased in the
frequency range in which the data is recorded (50-1000Hz). Obviously, the
spatial aliasing is caused by the fact that the source spacing is too large (the
data were recorded with a source spacing of 1.5m). Referring to Dobrin and
Savit (1988), the preferred maximum shot-spacing is given by

A1"ma,x = Cmin/2fmax, (511)

where Az, is the maximum shot-spacing, fiax is the maximum frequency
where data is recorded and ¢y, is the minimum velocity in the subsurface.
In our case, where fy.x =~ 1000Hz and cy;, ~ 1900m/s, this would lead
to a preferred maximum shot spacing of Az, ~.95m. However, this was
not feasible in the walk-away VSP experiment. We can however interpolate
traces in between the recorded traces, before applying the Radon transform.
In our situation this is performed by linear interpolation in the NMO domain,
right after the muted zones are interpolated.

After the above interpolation steps have been performed, the data are
transformed to the Radon domain. Note that quantitatively analyzing data
in the (p,7)-domain is only valid in the 1-D approximation. Further, in
Chapter 2, Section 2.2, it was noted that in applying the Radon transfor-
mation to seismic reflection data, we assume a line source in the crossline
direction. The data in this experiment is, however, generated by a point
source. To correct for this difference, we normally apply a spatial filter to
the shotrecords, to put a relative gain to the far offsets. However, as we can
see in Figs. 5.13a,b, the noise level at far offsets is quite high. Hence, ap-
plying this filter increases the noise level in the data considerably, such that
the imaging results are seriously affected. Therefore, we have decided not
to apply this filter to the data. The consequence of this is that the contrasts
that are estimated in the Linearized Zoeppritz Inversion are generally some-
what larger. However, as only the small offsets are taken into the inversion
(maximum angle of incidence of 30 degrees), the error made is only of a few
percent. Further, as the multiscale characterization is focused on the relative
velocity contrasts, we expect that this does not affect the inversion results.
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Because of the fact that the dips in the Boulogne field are very small, we
can assume that this approximation is valid for this data set.

The first imaging approach is the construction of depth images Rpp(p, 2)
and Rsp(p,z). As a background P-wave velocity model, we have used a
constant velocity of 2000m/s, as the core velocities are not representative for
the actual velocity profile. This choice for the velocity is based on the slope of
the down-going P-wave in the common-source gathers at a small offset (9m)
from the borehole. The reason for not using the core velocities is that they
are measured at surface pressure and not at depth, therefore we expect that
the core velocities lack the DC component which should be added because of
the ambient pressure at depth. In multiscale characterization, this does not
trouble us, as we will perform the analysis on the velocity contrast function
D(z), which is insensitive to this DC component. The S-wave velocity is
estimated, using some empirical results by Hardage (1983), which gives as
a mean for 50% consolidated limestone and 50% non-consolidated clay an
S-wave velocity of about 900m/s.

Figures 5.15/5.16b show the results of the conventional imaging ap-
proach for the topmost receiver at 2m depth for the P-P and P-S data respec-
tively. This imaging result shows clear horizontal reflections, however they
are blurred by many internal multiples and therefore especially the deeper
reflections are hidden behind the multiple arrivals. The match between the
P-wave velocity profile in Fig. 5.15a and the image Rpp in Fig. 5.15b is only
visible up to around 50m depth, beyond this depth there is little correlation
between the well-log and the image. Next to the Rgp(p, z) in Fig. 5.16b, the
P-wave velocity profile is plotted. Because only the P-wave velocity profile
is available, a reliable analysis of the match between the well-log and the
seismic data is not possible.

The second imaging approach is the application of the piecewise imaging
scheme discussed in Section 5.3.1. The 63 depths z; of the receivers for which
the piecewise constructed images Rp,(p, z) and RSy, (p, z) have been created
range from 2 to 126m, with a 2m depth spacing. Figures 5.15/5.16c show
the results of the piecewise imaging. It is clear that this imaging technique
has decreased the amount of imaged internal multiples drastically. At many
points were the P-wave velocity changes rapidly, we see reflection events in
the piecewise constructed image R%}, (Fig. 5.15¢), where in the image Rpp
in Fig. 5.15b the deeper events do not correlate at all. For both piecewise
constructed images, the deeper reflections are stronger than in the conven-
tional imaging results in Figs. 5.15/5.15b.
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Figure 5.15: (a) P-wave velocity profile as measured from the core.

(b) rayparameter-dependent depth image of the P-wave potential ¢~ from receiver at
2m depth.

(c) rayparameter-dependent piecewise constructed depth image of the P-wave potential
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The next section covers the multiscale analysis of the velocity contrast
functions derived from the images acquired by both imaging approaches.

5.7 Multiscale characterization of the Boulogne walk-away VSP
data

The multiscale characterization of the rayparameter-dependent images of P-
P in Figs. 5.15b and c is performed according to the approach discussed in
Section 5.3.2.

Figure 5.17a shows the P-wave velocity profile, as measured from the
core, with a 1cm sampling. Note the interpolated areas in the velocity profile
around 48 and around 95m depth. At these points, unconsolidated clays are
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Figure 5.16: (a) P-wave velocity profile as measured from the core.

(b) rayparameter-dependent depth image of the S-wave potential ¢~ from receiver at
2m depth.

(¢) rayparameter-dependent piecewise constructed depth image of the S-wave potential
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present in the Boulogne stratigraphy, which made it impossible to recover the
core. Furthermore, from the topmost 8.7m of the borehole the core was also
not recovered, most probably because this was the thickness of the sand-layer
at the beach. Figure 5.17b shows the same velocity profile, sampled down,
after applying a low-pass filter, to a spatial sampling of % feet (i.e. .1524m).
This down-scaling makes it easier to recognize the reflecting boundaries in
this well-log. Figure 5.17c shows the velocity contrast function derived from
the velocity profile in Fig. 5.17b. The background velocity ¢p(z) was taken at
a constant value of 2000m/s. This velocity contrast function will be referred
to as D, (z).

Following, the velocity contrast functions are derived from Rpp(p, z) with
the receiver at 2m depth and from RYL(p,z), by applying the Linearized
Zoeppritz Inversion of Van Wijngaarden (1998). These velocity contrast
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Figure 5.17: (a) The P-wave velocity profile, as measured from the core.

(b) The P-wave velocity profile, sampled down to a spatial sampling of 0.1524m.

(c) The velocity contrast function D,.,.(z), constructed from the velocity profile in (b).
(d) The velocity contrast function Dg,(z), derived from Rpp(zrec = 2m) depth.

(e) The velocity contrast function Dgey (z), derived from Ripp.
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functions are referred to as Dg,.(z) and Dgex. (2), respectively. Both ve-
locity contrast functions, together with the D,,(z) derived from the core
velocities are shown in Fig. 5.17c-e. It is clear that the velocity contrast func-
tion D.,(z) in Fig. 5.17c has a higher spatial frequency content than the
Doy, (2) and DR, (2) derived from the images. In multiscale analysis this is
corrected for by taking the same scale range in the analysis for both types of
velocity contrast functions. Already the quality of the piecewise constructed
image shows off: many strong events (e.g. around 75 and 90m) in D, (z)
are also visible in Dgew (2), but not in Dg,,(z). The inversion results are
further assessed by applying a multiscale analysis to these velocity contrast
functions.

For the comparison between estimates of a from well-log and seismic
data, the semi-continuous a-profiles are computed by multiscale analysis
(cf. Section 5.3.2). Figure 5.18a shows the estimates of o from the depth
image Rpp, the estimates of o from the depth image R%}, are displayed in
Fig. 5.18b; both are depicted by the black line. The grey lines represent the
estimates of o from the velocity contrast function D, (z), derived from the
core velocities (Fig. 5.17a-c). The black double-headed arrows depict the
areas in which the velocity contrast function D,,(z) shows strong contrasts.
We expect that in these areas the estimates of o from the images are more
reliable than in the areas where there are only weak contrasts, because the
signal-to-noise ratio is higher.

If we look at Fig. 5.18a, we see that the estimates of o from the image
Rpp(zec=2m) (the black line), show hardly any correlation with the esti-
mates from the core velocities (the grey line) in the supposed reliable areas.
Only the general trend of the a-profiles seems to be similar. This shows that
the multiple events in the VSP data affect the multiscale behavior of the Rpp
considerably.

If we compare the results of Fig. 5.18a with those from Fig. 5.18b, we see
that the estimates of o from the image R}, show a much better correlation
with the a-estimates from the core velocities, within the areas depicted by the
double-headed arrows. Only some minor depth-shifts are present, when we
compare the a-profile from the piecewise constructed image to the estimates
of « from the core velocities. This can be explained by taking into account
the simple background velocity model (¢p(z) = 2000m/s), which was used
for imaging the VSP data. Generally speaking, the piecewise imaging scheme
has supplied us with a much more reliable image of the subsurface than the
conventional scheme.
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Figure 5.18: (a) Profile of o as a function of depth, derived from the velocity contrast
functions Dg,.,.(z) (black) and from D..(z) (grey).

(b) Profile of « as a function of depth, derived from the velocity contrast functions
Drey (2) (black) and from D,.(zz) (grey).
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5.8 Conclusions

A multiangle, multiscale imaging and characterization method for walk-away
VSP data has been proposed and was performed on synthetic and real data.

It was shown that from particle velocity wave fields v, and v,, the up-
and downgoing P- and S-wave potentials ¢*(z, z,t) and ¥*(z, z,t) can be
constructed. First a decomposition in ¢ and + is performed, by applying an
explicit polarization scheme, followed by a separation into up- and downgo-
ing fields, by means of a median filter technique.

These data sets have been the input of two imaging schemes. The first
scheme is a conventional approach to construct depth images Rpp(p, z) and
Rsp(p, z) for each receiver. The second approach combines the images from
each receiver, to construct piecewise constructed depth images RP%(p, z) and
REp(p, z) that contain less internal multiples than the images constructed
from the data received at only one receiver. Furthermore, the amplitudes
are better preserved in these piecewise constructed images, as the upgoing
transmission paths are shorter.

The depth images Rpp(p, z) (from the topmost receiver) and REL(p, 2)
have been analyzed by a multiangle, multiscale characterization method. To
this end, velocity contrast functions were derived from both images, by ap-
plying Linearized Zoeppritz Inversion. Also from the P-wave velocity profile,
a velocity contrast function was constructed. Following, a multiscale analysis
was applied to construct singularity parameter () profiles for each of these
velocity contrast functions. It was shown that the multiscale behavior of the
P-wave velocity profile, for these data, could be recovered from accurately
imaged seismic reflection data.

Further, by comparing the estimates of « derived from the conventional
and the piecewise constructed image with the ones derived from the P-wave
velocity profile, we found a better correlation for the piecewise constructed
image. This confirms that the novel imaging scheme preserves the raypara-
meter-dependent reflectivity better than the conventional scheme.




Chapter 6

Multiscale characterization of
shallow S-wave data and CPT data

The work reported in this chapter is the result of a fruitful cooperation between
dr. Ranajit Ghose and the author of this thesis. The method of multiscale anal-
ysis of velocity contrast functions is applied to shallow S-wave reflection data,
and is correlated with results of applying the method to Cone Penetration Test
(CPT) cone resistance. It is shown that singularity parameters, estimated from
CPT q. show a good correlation with singularity parameters, estimated from
velocity contrast functions, constructed from shallow S-wave reflection seismics.
In this chapter, the primary goal is to use the singularity parameter o to recog-
nize lateral variation of soil strength along a boundary. The results presented
show that an application in geotechnical site characterization is possible.

6.1 Introduction

A good knowledge of the subsoil is crucial in any underground utilization
project. In particular, the distribution of the in-situ soil strength is an im-
portant requisite in all foundation and stability problems. With growing de-
mand for underground space utilization, there is also an increasing number
of incidences of structural damages accompanied by other collateral losses
due to improper engineering design and planning, resulting from insufficient
knowledge of the subsoil condition.

A major concern in soil characterization is whether the soil is tested in
its natural physical, chemical and biological environment. Soil samples are
usually collected in boreholes and tested in laboratories. However, because
of the basic nature of soil, soil samples are often significantly disturbed from
their in-situ condition. Common causes of disturbances to the sample are
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mechanical disturbance during drilling, sampling, transportation, storage
and handling in the laboratory, changes in water content and stress condi-
tions, possible chemical changes, and mixing and segregation of the soil con-
stituents. In particular, where cohesionless (sandy) soils are encountered, it
is not possible to obtain reliable soil characteristics using conventional sam-
pling and laboratory testing methods.

To ascertain the in-situ, geomechanical properties of the soil, the two
common approaches are, (a) the use of the seismic methods, and (b) di-
rect probing using static and dynamic penetration devices. Seismic tests are
among the few in-situ tests that produce little or no soil disturbances, and
provide information of the mechanical properties of the soil, important to the
engineers. Seismic methods measure the very-small strain elastic properties
of the soil that are important in response analysis for small-strain dynamic
loads. However, the large-strain failure properties of the soil, such as shear
strength (S,), relative density (Dg), and friction angle (¢) of sand, are not
directly addressed by seismic methods. These strength properties are essen-
tial in foundation engineering (bearing capacity estimation) and in all prob-
lems involving earth pressure, landslides, liquefaction due to earthquakes,
and stability of slopes in cuts and fills. For such purposes, the penetration
tests are best suited. Penetration methods involving direct push technol-
ogy are the most rapidly developing geotechnical site characterization tech-
niques. The direct push devices produce little overall disturbance. The most
widely used static and dynamic penetration tests are respectively cone pene-
tration test or CPT (for soft soils) and standard penetration test or SPT (for
relatively hard soils).

The most popular test for geotechnical investigation in soil is CPT. In re-
cent years the use of CPT has dramatically increased. For instance, only in
the Netherlands (including the offshore territory) there are nearly 100,000
CPTs carried out each year [Barends et al. (1999)]. In CPT, a cone at the end
of a series of rods is pushed into the ground at a constant rate and measure-
ments are made of the resistance to the penetration of the cone, also known
as ’cone resistance’ or ¢., which is the total force (Q.) acting on the cone
divided by the projected area (A.) of the cone. The cone resistance, ¢ is a
direct indicator of the strength of the soil at a given depth. Cost-efficiency,
speed, simplicity, reliability, and the ability to provide near-continuous infor-
mation of the soil properties with depth are the important reasons for the
increasing popularity of CPT. The primary significance of CPT comes from
the fact that it represents a miniature driven pile or foundation in soil, and
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hence the pile bearing capacity (pressure between a foundation and the soil
which will produce shear failure in the soil) can be directly estimated from
g.. CPT provides, thus, valuable constraints for all settlement and stability
calculations for soil. CPT g, responds to soil changes within 5 to 10 times the
cone diameter (standard diameter 35.6 mm) above and below the cone, the
distance increasing with increasing soil stiffness [Meigh (1987)]. The three
main applications of CPT are: (i) to determine the soil stratigraphy and iden-
tify soil composition (using charts), (ii) to estimate important geotechnical
parameters like S, Dp, or ¢ of sand (unfortunately none measured directly
by CPT, but is derived indirectly using empirical relations that are limited in
the range of applicable soils), and (iii) to provide results (such as bearing
capacity) for direct geotechnical designing.

With regard to uncertainties inherent to the process of engineering de-
sign, those related to soil properties are among the most notorious ones.
Prediction of displacement, deformation, stress-distribution, and failure of a
structure are all subject to these uncertainties, because of the spatial variabil-
ity of the relevant geomechanical parameters. A realistic soil model is, thus,
of great importance to any engineering evaluation. Models of geomechni-
cal parameters can be process-based, stochastic, or probabilistic; also various
hybrid forms are in use. Both the non-linear behavior and the high spatial
variability make it impossible to predict the exact behavior of soil in time and
space, and therefore call for adoption of a factor of safety that ensures an ad-
equate margin against unexpected deviations in the predicted performance.

In particular, the lateral variability of the geomechanical parameters is
of prime concern. Lateral variability of soils is determined by the geological
processes during deposition of the sediment and the diagenesis afterwards.

Although CPT provides valuable information of the strength of the soil as
a function of depth, the information is restricted to the CPT location. CPTs
are commonly measured several tens to hundreds of meters apart. Large
lateral variations in soil generally take place within a significantly shorter
distance. It is obvious that soil models based on sparse CPT information
contain unrealistically large errors. Recently, field tests using horizontal CPTs
have uncovered the striking fact that horizontal variability in soil strength
can be comparable in magnitude to the vertical variability [Van Deen et al.
(1999)]. Soil models based on lateral interpolation of CPT data collected at
a few locations at a given site obviously contain large uncertainties, which
translates into large risk in the design of an engineering structure.



122 Chapter 6. Characterization of shallow data and CPT data

To overcome this problem, in recent years there have been attempts to
check whether shallow, high-resolution, seismic reflection methods, particu-
larly those using shear waves, can be used to define the lateral continuity or
variability of the soil layers of different strengths as seen by CPT, [e.g., Ghose
et al. (1996, 1998); Brouwer et al. (1997)]. The relevance of shear waves
for prospecting soft soils is well-known. Unlike compressional waves, shear
waves are sensitive mainly to the solid grains and their interaction, which
control the mechanical behavior of soil. Namely, the shear modulus is not
influenced by the pore-filling if its shear modulus is zero. For increasing fluid
saturation, we do have an increase in density, which mildly decreases the
shear wave velocity [see Schon (1996)]. Shear wave velocity, cs has indeed
been found to correlate better with the engineering properties of the soil
than the compressional wave velocity, cp [e.g., Imai and Tonouchi (1982)].
Further, since the cp/cg ratio in the soft soil is generally high (5~7), for the
same observed frequency, shear waves have much shorter wavelength than
the compressional waves, and thus offer higher resolution. On the other
hand, the penetration depth of shear-waves is generally less than that of
compressional waves. However, the observed penetration depths of shear
waves (> 40 m) are more than sufficient for geotechnical applications.

Possible extraction of the fine-scale nature of variation of the soil strength
as seen by CPT from the S-wave seismic reflection data holds the key to the
derivation of a 2-D distribution of soil strength along an interface which is of
vital interest to the geotechnical engineers.

In order to achieve this, the first requirement is a valid, quantitative
means to relate seismic reflections to CPT data. In this chapter, we propose a
new concept to relate the shallow, S-wave reflections to CPT data by means
of the multiangle, multiscale analysis of both CPT and velocity contrast func-
tions, derived from S-wave seismic reflection data. Further, we extend this
approach to map the fine-scale lateral variability of a subsoil interface, and
present results of extensive field experiments, including muitiple CPTs.

6.2 Relating S-wave reflection to CPT: physics and earlier ob-
servations

Seismic methods measure the small strain response of a relatively large vol-
ume of the ground, whereas the penetration of the cone measures locally the
large strain response of the ground, since the average stress levels around
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the cone approximately equals failure of the soil. Thus, seismic and CPT
represent respectively very different soil properties that correspond to very
different levels of strain. Figure 6.1 schematically illustrates the order of
strains corresponding to various measurements, including seismic and CPT,
and the nonlinear strain-dependency of soil deformation. Seismic S-wave
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Figure 6.1: Schematic illustration showing various soil testing approaches correspond-
ing to various strain levels and various problem areas. Note that seismic and CPT rep-
resent, respectively, two extreme ends of this very large range of strain, and hence they
indicate very different soil properties. Here, ug is the very small strain (elastic) shear
modulus, u is the shear moduls at larger strains, and q. is the CPT cone resistance.

velocity cg relates to the very-small strain (10~° — 1079) elastic properties of
the soil, specifically the rigidity or the small-strain shear modulus (denoted
by u by the geophysicists and by G by the engineers), while CPT ¢, repre-
sents the failure or strength properties of the same soil at very large strain
(> 10) - thus a strain difference in the order of a million.

The physics relating cg to q. is not straight-forward. There are two main
lines of reasoning which address the physics of the relation between cs and
g.. The first indirect indication comes from the theory of critical state soil
mechanics [e.g., Schofield and Wroth (1968); Roscoe and Burland (1968);
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Sladen et al. (1985); Muir Wood (1990); Collins (1990); Jefferies (1993); Yu
(1994, 1998); Robertson et al. (1995); Fear and Robertson (1995)]. Small-
strain shear modulus p and CPT g, are both independent of stress and strain
history. According to critical state theory, at critical state (when a soil de-
forms without any volume change) and assuming undrained shear and no
pore pressure redistribution (generally a valid assumption for CPT, consid-
ering the speed of penetration of the cone - 2 cm/s) and hence no change
in void ratio, the strength (and hence CPT ¢.) of a sandy soil of a given
compressibility is controlled by the initial void ratio or porosity, which, in
turn, defines the soil state parameter [Been and Jefferies (1985)]. For a
given soil type, the soil state parameter and the effective stresses determine
cg [Sasitharan (1994); Cunning et al. (1995); Robertson et al. (1995)]. For
(approximately) normal-incidence shear waves, horizontal stresses are im-
portant [e.g. Dillen (2000)]. Now, there is evidence that CPT ¢, is also more
strongly dependent on horizontal stress than mean stress [Baldi et al. (1986);
Houlsby and Hitchman (1988)]. These arguments indirectly explain the re-
lationship between cg and q.. However, while compressibility does not sig-
nificantly affect cg, it greatly affects ¢., and hence there cannot be a unique
relationship between cgs and ¢, but the relationship will be soil-specific, as
it is indeed observed on field data. The second explanation comes from the
modeling of the cone penetration process using the cavity expansion theory
[see Salgado et al. (1997); Yu (2000)]. The theory describes the penetra-
tion process in terms of an expanding cavity in soil, with plastic deformation
in the immediate vicinity of the penetrating cone, followed successively by
the non-linear elastic and the elastic zones of deformation, radially outwards
from the axis of the cone [see Salgado et al. (1997)]. The soil properties in
each of these three zones contribute to the observed g.. Since cg represents
an important intrinsic property of the soil in the elastic zone of deformation,
it will have influence on g., which can be estimated [Ghose and Drijkoningen
(2000)]. Modeling in the free-field condition, constrained by real field data,
has shown that for a given sandy soil a relative increase of cg by 9% [165
m/s to 180 m/s] corresponds to an relative increase of g. by slightly more
than 10%.

Despite the fact that c¢g and ¢, are physically very different quantities
and the physics behind their relation is complex, with the advent of seismic
CPT (where both cg and ¢, are measured by the same cone containing a
3-component geophone in addition to the pressure transducers), in recent
years there have been a number of careful and extensive field experiments
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at very different locations, which consistently show the existence of a power-
law relation between cg and ¢. [e.g., Eslaamizaad and Robertson (1998);
Goutbeek and Muijs (1999); Simonini and Cola (2000)]. Based on these
observations, a number of empirical relationships has been proposed. These
relationships depend greatly on the nature of the soil (sandy or clayey) and
the state of compaction, and are site-specific. Characterization of the fine-
scale nature of interfaces in q. and cg fields will enable one to relate the two
observations, and can be used to resolve variation in soil strength over an
interface.

6.3 Mapping lateral variability of a strength interface in soil:
geotechnical importance

In all projects pertaining to large infrastructures and buildings, like under-
ground storage and transportation facilities, tunnels, roads, railways, sub-
ways, airports, harbors, and underground city expansion, a knowledge of
the distribution of the soil layers of various strengths is of vital importance.
The presence of various weak and compressible layers at shallow depths,
particularly peat and clay, is problematic from the stability and construction
points of view. The thickness and lateral continuity of these cohesive layers,
interspersed between sand and gravel layers, are important constraints in site
and safety evaluations. As a well-known example, the leaning of the Tower
of Pisa in Italy is attributable to the distribution and the lateral variations
of the thickness and properties of the clay and sand layers in the subsoil
[Rampello and Callisto (1998)]. The design and construction of subways
and other large underground tunnels also largely depend on the lateral con-
tinuity and the thickness distribution of the soil layers of varying strengths
[e.g.,Schiphouwer et al. (1999); Van Kessel et al. (1999)].

The distribution of shear strength over a subsoil interface varies laterally,
as can generally be seen in CPT data [e.g., Lunne et al. (1997); Rampello
and Callisto (1998)]. Often the transition of shear strength over a given
interface is gradual; however along this interface this nature of transition
can change from gradual to a step-like one, or sometimes even a thin layer
of unexpectedly low or high strength may appear at the interface.

Lateral variations in cohesion and pore-pressure along a subsoil interface,
commonly associated with strength variations, can be significant, and have
important implications on engineering design and risk analysis. The knowl-
edge of such lateral variation of the interfacial nature is important for three
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primary reasons:

1. Critical decisions regarding foundation and safety are made based on
the estimated depth and thickness of a layer of given strength. How-
ever, the estimates of the depth and thickness depend on the vertical
and lateral definition of the layer, which is by itself characterized in
terms of its strength.

2. Lateral variation in the fine-scale nature of a subsoil interface indicates
variation in the processes of sedimentation and diagenesis, which is
important information in any process-based, spatial soil modeling.

3. Information of the fine-scale lateral variation of the nature of the inter-
face is important for interpolating sparsely sampled information such
as CPT ¢..

6.4 Integrating S-wave reflection to CPT: the multiangle, multi-
scale approach

The highest resolution obtained from conventional, high-frequency reflection
surveys on soft soils is in the range of 0.75 m to 1.0 m. Such resolutions are
normally evaluated on seismic trace data. But it is the fine-scale cg variation
that is expected to correlate with the observed variation of ¢., and not the
amplitude variation in the CMP stacked traces, where high frequency events
are often not visible for their small amplitudes. The tangibility of the cor-
relation between the depth distribution of cg and that of g, calls for a fine
definition of the cg field so as to bring the latter as close as possible to the
high resolution of the CPT g, data (¢. sampling being at every 2 cm). From
the results of modeling of the cone penetration process in the free-field con-
dition and from field-observed empirical relations it is clear that in order to
relate shallow, shear-wave reflection data to CPT, based on a quantitative
criterion (and not empirically), one needs to extract the fine-scale velocity
information present in the reflection data as detailed as possible. Seismic
reflection data usually have frequencies higher than those resolved by the
semblance velocity analysis. The resolution of the cg field obtained from the
conventional techniques of velocity analysis for stacking is low (Fig. 6.2).
Therefore, this velocity information is generally not useful for geotechnical
applications. Further, the variation of ¢, at an interface is generally not step-
like, as can be seen in Fig. 6.2b, e.g. at 4 and 9m depth. We recognize the
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Figure 6.2: Illustration showing the large disparity in resolution between (a) the RMS
velocity field obtained by conventional velocity analysis of seismic reflection data, and
(b) CPT cone resistance, q.. High q. indicates sandy soil, low ¢. implies clayey soil. One
needs to extract any fine-scale velocity information present in the seismic reflection data
in order to relate it reliably to the higher-resolution CPT data.

strong resemblance of g. with well-logs of seismic velocities (e.g. Fig. 4.2 in
Chapter 4). Although the CPT ¢, exhibits a power-law relation with cg, we
can, for relatively small ¢, contrasts, approximate this by a linear relation.
Therefore, the multiscale analysis of well-logs, as presented in Chapter 2 is
applied to the CPT ¢, functions to estimate singularity parameters « for its
singular points. These estimates are then used to correlate the local scal-
ing behavior of CPT ¢, with velocity contrast functions, derived from S-wave
seismic reflections, applying the method presented in Chapter 4.

The method is set up as follows. First the lateral course of a reflector
in the stacked and depth-converted seismic section is identified. Then, for
every CMP location, the identified depth in the stacked section is marked in
the cg contrast field, which is constructed from the field data by Linearized
Zoeppritz Inversion [see Chapter 4, Section 4.3]. The corresponding modu-
lus maxima lines in the wavelet transform of the cg contrast function at the
specific CMP is picked, along which the local singularity exponent « for the
seismic data is measured. Any change of the nature of the interface is thus
characterized by a change of the value of the singularity parameter «, where
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the lateral resolution is now far better than the CPT spacing. However, the
CMP spacing in shallow seismic reflection surveys is usually smaller than the
width of the Fresnel zone. Hence, we can not expect that the resolution of
the cg contrast field is identical to the CMP spacing. Given the observed
relation between CPT and seismic (which may be confirmed in the field),
one can now use the distribution of the o parameter to determine the lateral
variation of CPT g, along a subsoil interface, and hence can deterministically
interpolate the CPT ¢, in the lateral direction.

6.5 Tests on field data

In this section, we apply the above technique to two field datasets that are
acquired at sites with marked lateral variations in the subsoil.

6.5.1 Experiment 1: Field setting and acquisition parameters

Field experiments involving both shallow, shear-wave reflection profiling and
a CPT were carried out at a site located in the western part of the Nether-
lands, near Rotterdam. The site was grass-covered with the water-table at
less than a meter depth. The geology of this site is known from earlier bore-
hole measurements and is comprised of flat, alternating layers of Holocene
clay and sand continuing up to a depth of 22-25 m where stiff, Pleistocene
sand is encountered. The Pleistocene sand is relatively homogeneous. In the
topmost part, the appearance of sand layers at around 1-2 m, 4-5 m and 7-12
m depths has been marked in a number of boreholes. Table 6.1 shows the
acquisition parameters for the first experiment.

The CPT was carried out close to the beginning of the seismic line, but for
practical reasons it could not be located exactly on the seismic line. Hence,
the analysis performed for the first experiment is more focused on the stabil-
ity of the multiscale analysis with respect to multiple CMP locations, than on
the actual correlation of seismic reflection data with CPT ¢.. In experiment
2, the CPTs were measured right on the seismic line, such that a quantitative
correlation could be performed.

Figure 6.2b shows the CPT cone resistance (g.) in MPa. The distance be-
tween the CPT measurent and the seismic line is about 100 m. The soil layers
at this site are known to be almost horizontal, and hence the main features
seen in the CPT data are representative of the entire site. High ¢, represents
sand layers and low g, represents clay/peat layers. The presence of various
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Shallow shear-wave seismic reflection

S-wave source: sledgehammer

Receivers: 10 Hz* crossline horiz. geophones, 48 ch.
Vertical stack: 2

Shot interval: 20m

Receiver interval: 0.5m

Min. S-R distance:  0.5m

Data sampling: 0.5 ms

Total profile length: ~ 190m

Cone Penetration Test: 1 measurement
Depth: 26 m
Location: ~ 100 m away from the seismic line

*This is the natural (or resonance) frequency of the geophone

Table 6.1: Acquisition parameters of experiment 1

thin sand lenses at shallow depths (depth < 13 m) is clear in the CPT data;
at the Holocene-Pleistocene boundary at around 22-25 m depth, the CPT g,
sharply increases (Fig. 6.2b), representing the major change in soil strength.
It is also evident that this primary interface in the subsoil does not represent
a step-like change in strength, but it is a composite interface composed of a
number of thin sand layers of progressively increasing strength.

6.5.2 Preprocessing of S-wave reflection data

Careful amplitude-preserved preprocessing was carried out on the S-wave
reflection data. Preprocessing involved primarily trace-editing (kill/reverse),
deconvolution, surface wave elimination, and multiple removal. Surface
waves are dispersive and they have linear moveout in the shot gather. At
first linear moveout (LMO) correction was applied using the phase velocities
of the surface wave events, and then careful (f, k)-filters (polygons) were
designed and applied to eliminate these nearly infinite-velocity (after LMO)
surface-wave events. A subsequent inverse (f, k)-filter restored the filtered
shot gathers, that contained now primarily the S-wave reflections. This pro-
cessing was carried our interactively to tackle the spatially varying surface
waves and to prevent any artifacts or distortion. This approach was found
quite effective in removing the surface waves, which have different velocity
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than the shallow, S-wave reflection events. Special attention was then paid
to the removal of any multiple energy present in the data, and for this pur-
pose, the approach of Verschuur (1991) was employed. We acknowledge the
help of Eric Verschuur in applying this method to the data. Figure 6.3a illus-
trates two typical raw shot gathers (shot # 153 and 156) from the middle
of the profile; Fig. 6.3b shows the result of preprocessing involving deconvo-
lution, trace-editing and band-pass filtering; Fig. 6.3c shows the result after
surface wave and multiple removal. The entire multiangle, multiscale analy-
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Figure 6.3: S-wave reflections on soil. Two typical shot gathers: (a) raw data, (b) after
trace editing and band-pass filtering, (c) after surface wave and multiple suppression.

sis is next carried out on pre-stack data, but for the purpose of interpretation
and for checking the lateral continuity, a stacked section was prepared. From
interactive velocity analysis, a simple, 1-D RMS velocity (cs) function, with
velocity increasing with depth, was found and used to stack the data; lateral
velocity variation was ignored for this purpose. Figure 6.4 shows the stacked
time section containing 142 CMPs. The total lateral extent of the seismic
section in Fig. 6.4 is 35.25 m. An approximate estimate of the interval ve-
locity field was deduced from the RMS velocity function, and was used to
create a tentative depth section, which is shown in Fig. 6.5. For compari-
son, the CPT gq. is also displayed in Fig. 6.5. The distinct S-wave reflection
events at around 3-4 m and 6-12 m correspond to the Holocene sand-clay
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Figure 6.4: S-wave reflection data: stacked time section.

boundaries and match well with the sharp changes in the CPT data. In the
seismic section we notice also clear events at around 23-25 m, which is the
Holocene-Pleistocene boundary evident in the CPT data.

6.5.3 Multiangle, multiscale analysis of field data

To test the proposed method for multiscale correlation of seismic reflection
data with CPT q., we first give a detailed analysis for only a small number of
CMPs. Following, the full seismic reflection data set is treated, to analyze the
tangibility of the characterization of the lateral change of a soil interface.

For multiangle, multiscale analysis five equally spaced (lateral separation
7.5 m) CMP gathers were chosen. The locations of these CMPs are marked
by black triangles in Fig. 6.5. Linearized Zoeppritz Inversion (LZI) was car-
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Figure 6.5: S-wave reflection data: stacked depth section. The measured CPT cone
resistance at this site (same as in Fig. 6.2) is also displayed, for comparison.

ried out to obtain the local cg contrast functions for these five CMPs. The
result is depicted in Fig. 6.6. Due to transmission and scattering losses, the
velocity contrast functions show strongly decreasing amplitudes with depth.
Note that the estimates of the singularity parameter « are insensitive to the
absolute strength of an event, but only to its relative strength within a small
window around this event (i.e. the wavelength of the broadest analyzing
wavelet in the wavelet transformation [see Appendix A]). Therefore, in mul-
tiscale analysis, no correction for these losses is applied to the velocity con-
trast functions. However, to highlight the deeper events, in Fig. 6.6 an expo-
nential gain with depth has been applied to the trace plots. Note the good
resolution of a number of events in the local velocity contrast functions. The
contrast functions estimated by LZI (Fig. 6.6) clearly have much higher fre-
quency content than the RMS velocity field obtained from conventional ve-
locity analysis (Fig. 6.2a). Reliable estimation of such high-frequency, local
velocity contrast information is vital to the proposed approach of integration
of seismic reflection and CPT data. Some of the events in the contrast func-
tions can be followed laterally (Fig. 6.6). The contrast functions in the first
three CMP locations (CMP 586, 614 and 642) show similar nature; but the
events have a slightly different appearance in the last two traces (CMP 670
and 698).
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Figure 6.6: Results of LZI: local cs contrast functions estimated for CMPs 586, 614,
642, 670 and 698.

In the next stage, we carry out the multiscale analysis of both CPT data
and the local cg contrast functions. The two strongest events in CPT (Fig. 6.7a)
corresponding to the clay-sand interface at around 5 m depth and the Holo-
cene-Pleistocene boundary at around 22 m depth were chosen. These events
represent sharp changes in soil strength. For these two events, Fig. 6.7 il-
lustrates the result of the multiscale analysis. We have chosen the result
for CMP 642 (see also Fig. 6.6) because it is centrally located in our profile
and it represents well the most prominent reflectors at this site. Figure 6.7a
shows the velocity contrast function (CMP 642); Fig. 6.7b shows the wavelet
transform of this function; Fig. 6.7c illustrates the modulus maxima lines,
the two high-lighted events are nearly at the same depth as the prominent
CPT events; Figure 6.7d shows the amplitude-versus-scale (AVS) plots for
these two events, and the value of o estimated from the slope of these AVS
curves. The estimated « values are -1.50 and 0.30 for the events at around
5 m and 22 m, respectively. The same analysis was carried out on CPT g¢,;
the results are shown in Fig. 6.7a to Fig. 6.7d. The estimated « for the cor-
responding two events in CPT are respectively -1.39 and 0.26, and hence
are very close to those estimated from the local ¢g contrast function. As the
CPT was measured about 100 m away from the seismic line, these results
should be interpreted with care. We can expect from local geology that the
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Figure 6.7: Relating seismic to CPT based on the local scaling behavior: multiscale
analysis of the velocity contrast function at CMP #642 ((a) to (d)) and for CPT q. ((e)
to (h), for two prominent subsoil interfaces (highlighted). The arrows depict the events
that are analyzed. Note that the estimated o is remarkably close between seismic and

CPT.
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Holocene-Pleistocene boundary is continuous for this distance. The continu-
ity of the thin high-strength sand-layer over a large distance is improbable.
The correlation that is found for the event at five meters depth shows only
that thin sand-layers, which are present throughout the whole area, have
similar behavior in multiscale analysis.

6.5.4 Lateral continuation of the singularity parameter along a reflec-
tor

The result presented in Fig. 6.7 is significant, as it clearly indicates that the
nature of variation of the strength properties of soil over these two subsoil
boundaries, as seen by CPT, is very similar to the nature of variation of the
local cg contrast, as seen by S-wave reflections. In other words, by character-
izing the local scaling behavior of the cg and ¢, variation over an interface,
it has been possible to find a relation between the soil strength and small-
strain soil stiffness, both measured in-situ. The relatively small slope of the
AVS curve at 22 m indicates that it can approximately be described as a step-
like boundary (which can indeed be visually verified on the CPT data), and
this is observed almost identically by both seismic and CPT. The high negative
value of  (-1.50 and -1.39 for seismic and CPT, respectively) for the interface
at around 5 m suggests the presence of a thin high-cg or thin high-g. layer
at this interface, and this is also similarly observed by the local cg contrast
and CPT data. This illustrates that the a-parameter does have the potential
to serve as a reliable indicator of the nature of the change over an interface
of the soil-physical properties, and that the approach of multiscale analysis
serves as a promising tool to delineate this fine-scale interfacial nature. The
detected good correlation between the fine-scale nature of variation of cg
and CPT ¢, over an interface can be justified by the fact that both our mea-
surements (local c¢g and CPT cg) are in-situ ones, and as said earlier, they
both are primarily determined by the in-situ void ratio and the horizontal
stress in soil.

To check if the a-estimates are robust enough, we have carried out auto-
matic multiscale analysis for all the five CMPs shown in Fig. 6.6, for which we
derive, at first, the local cg contrast functions through LZI. At each of these
five CMP locations, all strong events which can be followed over a wide scale
range (with log,omin > 1.8) were chosen and o was estimated automatically.
The result is shown in Fig. 6.8. The derived « values as a function of depth
at these five CMPs are shown; the o values for the CPT events are also cal-
culated and presented there, for comparison. In Fig. 6.8, the two gray lines
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Figure 6.8: a-profiles for CPT q. and for local cs contrast functions for the CMPs shown
in Fig. 6.6. The two highlighted events correspond to two important subsoil interfaces
(see in Figure 6 the strong events both in CPT and seismic at around 10 and 22 m) at
this site. The estimated o values for these two events show good lateral consistency in
the seismic data, and closeness with the a values in CPT q..

connecting the events at round 10 and 22 m depths, respectively, correspond
to the two strong, laterally continuous, seismic reflection events as seen in
the stacked section (Fig. 6.5); the bottom one also corresponds to the one
shown in Fig. 6.7. It is evident that the a-estimates are consistently very
close to each other for the first three CMPs (CMP# 586, 614, 642) and then
the a-value slightly changes. Further, when we compare with the CPT, we
see that for the main events the a-estimates are fairly close to those of the
first three CMPs, giving an indication for similar geology for both locations.
This clearly shows the possibility of using the singularity parameter o as a
means to integrate seismic reflection and CPT data.

6.5.5 Application to field data: mapping lateral variability along a re-
flector

To further check the possibility of using the singularity parameter « for map-
ping the lateral change of a reflector, the local cg contrast functions for each
CMP location were computed. Figure 6.9 shows the resulting, local cs con-
trast field. At first sight it is clear that the resolution in the derived velocity
contrast field is quite high, much higher than the resolution in the RMS ve-
locity (Fig. 6.2). Although the inversion is carried out for each CMP indepen-
dently, we notice good lateral continuity of the contrast magnitude for many
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Figure 6.9: cg contrast field constructed by Linearized Zoeppritz Inversion, for experi-
ment 1.

distinct reflections. Multiscale analysis was then performed to the entire cg
contrast field and also to the CPT ¢.. The result is illustrated in Fig. 6.10.
Only events, that are visible over a wide scale range in the wavelet trans-
form have been used. Next, all events in the velocity contrast field which
exhibit a given « value (the chosen small range is shown on the left side) are
plotted (small white dashes) in Figures 6.10b and 6.10c. An estimate of the
singularity parameter « around 0 (Fig. 6.10b) indicates a step-like change at
the interface, whereas an estimate of « of about -0.5 (Fig. 6.10c) indicates
the presence of a thin high-velocity layer at the interface. The result of ap-
plying the multiscale analysis to CPT g is shown on the right-hand side of
Figures 6.10b,c. At first sight, Figures 6.10b,c may appear like scatter-plots:
a result of inevitable noise in real, field data. However, a careful look re-
veals a very interesting feature. In Fig. 6.10b between CMP 592 and 634,
there is a clear lateral alignment of events around 10 m depth (which corre-
sponds to a prominent reflection event from the sand-clay layer boundary as
seen in Fig. 6.10a), but this continuity stops at around CMP 634. However
when we change the a from around 0.0 to around -0.5 (Fig. 6.10c), we see
a clear lateral alignment again around 10 m depth between CMP 640 and
CMP 702. In Fig. 6.10a the reflection at around 10 m appears as a contin-
uous event, however its scaling properties remain unknown. On the other
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seismic data (left) and CPT q. (right), (b) position of points with singularity parameter
« around 0, (c) position of points with singularity parameter « around -0.5.
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hand, the multiscale analysis reveals that the nature of this transition is not
laterally constant. While it seems to behave as a step-like change in cg be-
tween CMP 592 and CMP 634, the transition behaves more like a thin high
velocity layer at the interface between CMP 640 and CMP 702. We mark that
there is indeed a slight change in apparent dip of this reflector occurring at
around CMP 639 (Fig. 6.10a).

The multiscale analysis has succeeded to detect the lateral variation of
the nature of the interface at around 10 m depth. We have checked this
result in relation to the CPT data at this site. Note that the CPT was located
closer to the left part of the seismic line. However, due to the relatively large
distance between the CPT location and the seismic line, we should be careful
in the interpretation of the results above. The right panels in Figures 6.10b,c
plot the CPT events that exhibit a certain value for the singularity parameter
. We see a clear CPT event at around 10 m depth with a around O (the
upper one), that matches in depth with the alignment that we notice between
CMP 592 and CMP 634 in the « estimates of the seismic data (Fig. 6.10b).
However, for « around -0.5, we find no relation for this event between CPT
and seismic. This indicates that, for this interface at around 10 m depth, the
details of the CPT data are similar to those of the fine-scale cg information
present in the left-half of the seismic reflection data, but for the right-half
of the seismic profile (CMP 640-702), the nature of the boundary appears
to be different. In absence of any CPT in this part, the multiscale analysis
has revealed this variation. Such variations are important information for
geotechnical evaluations.

6.5.6 Experiment2

The second, extensive field experiment was carried out at a site where mul-
tiple CPTs were measured right on the seismic line, and hence any subtle
variation at an interface can be directly compared between seismic and CPT
data. Table 6.2 shows the acquisition parameters for the second experiment.
The seismic source was a small, electromagnetic, horizontal vibrator source,
developed by OYO CAG for the controlled generation of high-frequency S-
waves, for shallow engineering applications [Ghose et al. (1996)]. As is
typical to the western Netherlands, the geology at this site is composed of
alternating sand and clay layers. At the shallowest part, there are peat lay-
ers, which act as important cap soil from environmental consideration. The
Holocene-Pleistocene boundary is situated at around 21-22 m depth. Fig-
ure 6.11 shows a detailed soil profile at this site, exactly below our seismic
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Shallow shear-wave seismic reflection
S-wave source: horizontal vibrator (OYO CAG)
sweep: 30-500 Hz
sweep length: 7500 ms
record length: 8190 ms

Receivers: 28 Hz crossline horiz. geophones, 48 ch.
Vertical stack: 4

Shot interval: 2.0m

Receiver interval: 0.5m

Min. S-R distance: 2.0 m

Data sampling: 0.25 ms

Total profile length: ~ 330 m

Cone Penetration Test: many measurements
Depth: 30-35m
Location: measurements right on the seismic line

Table 6.2: Acquisition parameters of experiment 2

line. This profile is derived from multiple CPTs (see CPT g, Fig. 6.11), sup-
plemented by data of testing of soil samples in a few boreholes.

Figure 6.12 shows three typical seismic reflection shot gathers at this
site. The data appear quite different from those of experiment 1. Because
the horizontal vibrator was used as the seismic source, generated surface
waves were much less (as the sweep started at 30 Hz). Most importantly,
the frequency content is clearly much higher (Fig. 6.13) for the vibrator data
(experiment 2) compared to the sledgehammer data (experiment 1). Distinct
S-wave reflection events can already be identified in the raw shot gathers for
two-way-times exceeding 500 ms.

Amplitude-preserved processing was carried out very carefully. Suppres-
sion of surface waves and multiple energy from the shot gathers turned out to
be the biggest challenge. Surface wave energy was eliminated using the same
approach as in Experiment 1. Again, multiple energy was suppressed using
the algorithm of Verschuur (1991). Many clear primary reflection events can
be seen in the preprocessed shot gathers. Because of the use of the higher fre-
quency content of the vibrator data a wider range of scale could be addressed
in the multiscale analysis. The use of a wider scale range does increase the
quality of the inversion for the singularity parameter o.
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Figure 6.11: Soil profiles derived from CPT data and continuous soil sampling in a
number of boreholes. CPT q. data (in overlay) defined the layer boundaries, while
soil sampling results determined the composition/type of the soil. Note distinct lateral
variations in the fine-scale CPT data along the boundary of two layers. The location of
this profile corresponds exactly to the location of our seismic line for experiment 2.

Figure 6.14a shows the stacked time section. The strong reflection at
around 330-350 ms is interpreted as the Holocene-Pleistocene boundary, as
the depths of these events obtained using realistic velocity models are close
to the known depth of this Holocene-Pleistocene boundary. Many shallower
reflections, between 75 ms and 200 ms are from various shallow sand-clay
and peat-clay interfaces as seen in the soil profile (Fig. 6.11).

Figure 6.14b shows the result of applying LZI to all the CMPs shown
in Fig. 6.14a. The local cs contrast field shows quite high resolution and
remarkable lateral continuity along prominent reflectors. This confirms the
stability of LZI.

Figure 6.15a shows the depth section obtained using a simple 1-D velocity
structure derived from the smoothed RMS velocity field. In Fig. 6.15b, cone
resistance (gq.) data from 7 CPTs located right on the seismic line are shown.
CPT locations are shown by black triangles on the top. It is clear that the
S-wave reflections follow remarkably well strong q. interfaces. However, the
fine-scale nature of the interface, that varies laterally and can be seen clearly
in the CPT data, cannot be discriminated in the stacked seismic data. We have
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Figure 6.12: Experiment 2: typical shot gathers, (a) raw field data, (b) data after
preprocessing, including surface wave and multiple elimination. Note in the raw data
that the surface waves are spatially varying.
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Figure 6.13: Average amplitude spectrum of raw shot gathers: (a) experiment 1: sledge-
hammer source (shot# 153), (b) experiment 2: horizontal vibrator source (shot# 47).
The vibrator data clearly have more high frequencies. The peak spectral amplitude in
the raw data corresponds to surface waves. In case of the vibrator, surface waves were
relatively suppressed by starting the sweep at 30 Hz (see shot gathers); such control is
not possible for the sledgehammer.

chosen 2 prominent boundaries in the CPT data: one at around 7.5-9.0 m
depth corresponding to a sand-clay boundary, and another at around 22 m
depth corresponding to the Holocene-Pleistocene boundary. Then we have
interpreted the corresponding events in the stacked seismic data. In absence
of a VSP here, the depth of the shallow event shows some discrepancy with
the depth of the CPT event. We attribute this to the frozen condition of the
top soil during the second half of the field data acquisition, which made it
difficult to assign a reasonable velocity for time-to-depth conversion in the
shallow part.

The two chosen events are marked in Figures 6.15a and 6.15b. For these
two strong, laterally continuous events we perform the multiscale analysis to
verify if the fine-scale, lateral variation in CPT data along a boundary can be
extracted from the local cg contrast field.

Figure 6.16a shows the chosen shallow event in the CPT data. Fig-
ure 6.16b shows the « values derived from the cg contrast field and from
the CPTs. We find that the estimates of the singularity parameter « for seis-
mic and CPT are remarkably close. This result illustrates that it is possible
to extract the lateral variation information of the CPT data from local cg
information implicit in the S-wave reflection data.

Figure 6.17D illustrates the result of applying the multiscale analysis to
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Linearized Zoeppritz Inversion.
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was performed, to check the relation between CPT and seismic.
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Field Experiment 2
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Figure 6.16: Comparison of o values between CPT and S-wave seismic data, for the
clayey sand lens at 7.5-9.0 m depth: (a) the chosen shallow event in the CPT data, (b)
estimated « for CPT (gray) and seismic (black).

CPT and seismic data for the chosen deep event - the prominent Holocene-
Pleistocene boundary (Fig. 6.17a). Again we find a remarkable similarity of
the a-estimates between CPT and seismic.

These results are striking, because they clearly demonstrate that S-wave
reflection data contain information on the local scaling behavior of the soil
strength that can be quantitatively correlated with the local scaling behavior
of CPT.

6.6 Discussion

The approach of multiscale analysis of true-amplitude, prestack seismic re-
flection data, that we have applied to a laterally continuous S-wave reflector,
proves to be capable of extracting and quantifying the local scaling behav-
ior over an interface. The lateral variation information thus extracted from
the S-wave seismic data correlates very well with the lateral variation of soil
strength as monitored by CPTs. Our results suggest that with this approach
it is possible to extract the continuous information of lateral variation of soil
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Field Experiment 2
Lateral variation as seen by Ac, and q,
(a) 169 249 373 469 569 669 749

0

15, 15 1 5] 15 ARy 151
Holo.-Pleisto. LS - Cyp e ) L, ~ . 20|
oot » T e
. LE . I S S .

)

RS —_
0 % 40 80 %0
0 20 40 €0 80 oo e 80 R0 0 20 40 60 80

Holocene Pleistocene Boundary (step like)
(b) ! ' T

_____

169 249 373 469 569 669 749
CMP #

Figure 6.17: Comparison of « values between CPT and S-wave seismic data, for the
Holocene-Pleistocene boundary at about 21-22 m depth: (a) the chosen deep event in
the CPT data, (b) estimated « for CPT (gray) and seismic (black).

strength, without digging holes or trenches. This is of great practical value,
as it is often not feasible to excavate the soil, particularly in urban environ-
ments.

The success of this approach relies on the ability of LZI to reliably esti-
mate the local, fine-scale velocity contrast information at a subsoil interface.
Unless such local velocity information is accurately and stably derived from
the seismic reflection data, the correlation with CPT (which is a local, in-situ
measurement) can not be justified.

The performance of this approach diminishes if the data contain unrea-
sonably high noise levels; careful preprocessing preserving correct amplitude
information of all primary reflections is, thus, an important requisite. Fur-
ther, lateral consistency in the quality of noise elimination is important in
order to obtain meaningful lateral variation information. This is due to the
fact that various kinds of noise, particularly the source coherent noise, like
surface waves and multiples, often show large lateral variation.

The multiscale analysis has shown its strength to characterize the fine-
scale lateral variation along a subsoil layer boundary. The singularity param-
eter a can indeed be a meaningful indicator of the nature of an interface.
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Having a wider range of frequency and hence a wider range of scale avail-
able in the reflection data enables one to estimate a more reliably. Use of
high-frequency vibratory sources, and careful data processing causing no re-
duction of the maximum available frequency bandwidth, are very important
to obtain accurate « estimates.

6.7 Conclusions

For integrating shallow, S-wave reflection data to CPT, we have presented a
new concept, based on the characterization of the local scaling behavior of
both data types. The fine-scale, local cg contrast information present in the
seismic reflection data can be reliably extracted by the Linearized Zoeppritz
Inversion of the preprocessed, true-amplitude, pre-stack S-S reflection data.
Based on the assumption that the extracted cg contrast function and the CPT
g obey locally a similar scaling behavior, we have characterized the nature
of fine-scale variation over an interface in terms of the singularity parameter
a, which is obtained by multiscale analysis.

Though CPT and seismic represent the soil properties at very different
levels of strain, our results clearly show a close similarity between their na-
ture of variation over a subsoil interface, in terms of the local singularity
parameter. This may serve as a method to relate the lateral variation of the
local cg information to that of the strength properties of the soil, as estimated
in-situ by CPT.

From testing this approach on two extensive field data sets containing
both S-wave seismic reflection and CPT data, some significant results could
be obtained. LZI can provide stable and reliable estimates of the local cg
contrast functions. Most importantly, the lateral variation of the nature of
the cg distribution over an interface was found to correlate remarkably well
with the lateral variation of the CPT g, at the same point of the interface.
To analyze the lateral variation objectively, multiscale analysis has proven
to be a reliable tool. Our finding on field data shows the possibility of this
approach to find lateral variations in soil strength over an interface without
boring holes.



Appendix A

The wavelength of the analyzing
wavelet

In this appendix, the link between the scale parameter ¢ in the continuous
wavelet transformation and the effective wavelength X7 of the analyzing
wavelet is derived. The continuous wavelet transform of a function f(z) as
used in multiscale analysis is given by

Wortors) = floro) = o [ fEwCE—paz, A

in which p = 1 for reasons given in section 2.6.
We have chosen as the analyzing wavelet J(z), the n-th order derivative of a
Gaussian, which is given in the wave-number domain by

O(k) = (jk)"T(k) = (jk)"e ™, (A.2)
which transforms to the depth-domain as

1 d® sy
- - — _( )
(=) 2ym dzn

(M1

(A.3)

When we change variables z — —%—, in which Az is the sampling interval of
the log and o the scale of the analyzing wavelet, we find a generic expression
of the analyzing wavelet, given by ¥(-%-) in the depth domain

oaz

z ) = (O-Az)n ﬂe_(QozAz )2
oAz 2y/m dzn

9 (A.4)
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or equivalently for ©(ckAz) in the wave-number domain
O(ckAz) = cAz(jkoAz) e~ (kA (A.5)

We now identify the effective wavelength of the analyzing wavelet by the
wave-number kS, the k-value for which ©(ckAz) is maximum. We can
easily verify that this wave-number kS for the n-th order derivative is located

at
1 n
eff
= —. A.
ko oAz \/; (A.6)

This wave-number is connected to the effective wavelength of the analyzing
wavelet in a straightforward way according to

2 2
ff __ —
Ay = k:;ff = ZWUAZ\/ - (A.7)

which shows that the higher order the derivative of the analyzing wavelet,
the smaller the effective wavelength.
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Samenvatting

Hoek- en schaalafhankelijke karakterisering
van seismische reflectiemetingen

Het is bekend dat boorgatmetingen van de golfvoortplantingssnelheden een
multi-fractaal, ofwel lokaal zelfgelijkend, gedrag vertonen over een groot
schaalbereik. Dit gedrag wordt gekarakterizeerd door een singulariteitspara-
meter, die de lokale fractale dimensie van een boorgatmeting kwantificeert.
Dit proefschrift behandelt methodieken om dit lokaal zelfgelijkende gedrag
van deze boorgatmetingen te schatten uit seismische reflektiemetingen.

In Hoofdstuk 2 wordt een overzicht van gangbare transformaties van seismi-
sche reflectiemetingen gegeven. Het gebruik van de continue wavelet trans-
formatie in de schaalanalyse van boorgatmetingen van de golfvoortplantings-
snelheid wordt behandeld. Om consistent met dit multifractaal gedrag van
deze boorgatmetingen te zijn wordt een snelheidsfunctie geintroduceerd, die
een generalizatie is van een Zoeppritz grensvlak naar een zelfgelijkende re-
presentatie.

Hoofdstuk 3 behandelt een impliciete relatie voor de straalparameteraf-
hankelijke reflectiviteit van de zelfgelijkende snelheidsfuncties van Hoofd-
stuk 2. Synthetische seismische reflectiemetingen zijn gemodelleerd in snel-
heidsfuncties die zelfgelijkende reflectoren bevatten. Gebruik makend van
deze impliciete relatie worden deze reflectiemetingen geinverteerd voor de
singulariteitsparameter.

De eerste methode is het analyseren van de contouren van constante re-
flectieamplitudes in modulus maxima vlakken. De toepassing van deze me-
thode op metingen, gemodelleerd in zowel synthetische als echte boorgat-
metingen van de voortplantingssnelheid, laat zien dat een schatting van de
singulariteitsparameter gevonden kan worden, die consistent is met schattin-
gen van deze parameter voor reflectoren in deze boorgatmetingen.

Verdere analyse van de reflectiecoéfficiént voor de zelfgelijkende snel-
heidsfunctie geeft een expliciete uitdrukking voor de instantane fase van een
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verticaal invallende gereflecteerde golf. Instantane fase en schaalafhanke-
lijke amplitudes van een seismische reflectie worden gebruikt om te inverte-
ren voor zowel een snelheidscontrast-ratio en de singulariteitsparameter.

Bovendien wordt aangetoond dat de instantane fase van een specifieke
reflectie informatie bevat, complementair aan de schaalafhankelijke reflec-
tieamplitudes. Dit kan worden gebruikt voor het schatten van de singulari-
teitsparameter en een snelheidscontrast-ratio van seismische reflectiemetin-
gen. Een Gauss-Newton inversieschema wordt geintroduceerd hetgeen het
theoretisch mogelijk maakt om te inverteren voor deze parameters, gebruik
makend van een kostfunctionaal gebaseerd op deze schaalafhankelijke am-
plitudes en instantane fases. Echter, de convergentiesnelheid van dit inver-
sieschema is onvoldoende om een toepassing op echte seismiek mogelijk te
maken.

In Hoofstuk 4 wordt een alternatieve methode voor hoek- en schaalaf-
hankelijke analyse van zowel akoestische als elastische seismische reflectie-
metingen voorgesteld. Deze methode bestaat uit twee stappen.

Als eerste voeren we een geLineariseerde Zoeppritz Inversie (LZI) op
straalparameterafhankelijke reflectiviteitssecties uit, om snelheidscontrast-
functies, welke schattingen zijn van de golfvoortplantingssnelheidscontras-
ten op elke beeldvormingsdiepte, te verkrijgen. Een test op gemodelleerde
metingen toont aan dat de snelheidscontrastfuncties, geschat uit de straalpa-
rameterafhankelijke reflectiviteitssecties, over het algemeen goede schattin-
gen zijn van de daadwerkelijke snelheidscontrastfuncties.

De tweede stap is een schaalafhankelijke analyse van deze snelheidscon-
trastfuncties. Een techniek die lijkt op de techniek om de singulariteitspara-
meter te schatten uit boorgatmetingen wordt gebruikt om de singulariteits-
parameter te schatten uit de snelheidscontrastfuncties. Deze methode is toe-
gepast op zowel snelheidscontrastfuncties verkregen door middel van LZI als
op snelheidscontrastfuncties die afgeleid zijn van de golfvoortplantingssnel-
heden. Het wordt aangetoond dat de schattingen van de singulariteitspara-
meter uit beide snelheidscontrastfuncties consistent met elkaar zijn. Hogere
orde termen in de expliciete Zoeppritz vergelijkingen die niet meegenomen
worden in de LZI en interne meervoudige reflecties zijn de voornaamste oor-
zaak van fouten binnen deze inversietechniek.

Hoofdstuk 5 is het eerste van twee hoofdstukken waarin de methode voor
schaalafhankelijke analyse van snelheidscontrastfuncties wordt toegepast op
echte metingen. Het hoofdstuk behandelt de toepassing van deze methode
op VSP metingen met meervoudige bronposities, waarbij de bronnen aan het
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oppervlak zijn gesitueerd en de ontvangers in een boorput.

Aangetoond wordt dat van golfvelden van deeltjessnelheden v, en v,
gemeten door de ontvangers in de boorput, de op- en neergaande P- en
S-golfpotentialen kunnen worden geconstrueerd. Eerst wordt een decom-
positie in P- en S-golfpotentialen uitgevoerd door middel van een expliciet
polarisatieschema, gevolgd door de scheiding in op- en neergaande golfvel-
den door middel van een mediaanfiltertechniek. De toepassing van deze
techniek op gemodelleerde metingen toont aan dat dit tot een hoogwaardige
decompositie leidt.

De opgaande golfveldpotentialen zijn de invoer van twee beeldvormings-
schema’s. Het eerste schema is een conventionele aanpak om diepteafbeel-
dingen van de straalparameterafhankelijke P-P en P-S reflectiviteiten voor
iedere ontvangerdiepte te construeren. De tweede aanpak combineert de
afbeeldingen van iedere ontvangerdiepte, waardoor stuksgewijs geconstru-
eerde diepteafbeeldingen worden verkrijgen, waarin zich minder interne
meervoudige reflecties bevinden dan in de afbeeldingen van slechts één ont-
vanger. Tevens worden de amplitudes beter behouden in deze stuksgewijs
geconstrueerde diepteafbeeldingen, omdat de upgaande transmissiepaden
korter zijn.

De conventionele diepteafbeelding van de bovenste ontvanger en de stuks-
gewijs geconstrueerde diepteafbeelding, beide voor de P-P reflectiviteit wor-
den geanalyseerd met de hoek- en schaalafhankelijke karakteriseringsme-
thode van Hoofdstuk 4. Hiervoor worden snelheidscontrastfuncties geschat
uit beide afbeeldingen door LZI toe te passen. Ook van het P-golfsnel-
heidsprofiel wordt een snelheidscontrastfunctie geconstrueerd. Hierop vol-
gend wordt de schaalafhankelijke analyse toegepast om singulariteitspara-
meterprofielen voor elk van deze snelheidscontrastfuncties te verkrijgen. Het
wordt aangetoond dat het schaalafhankelijke gedrag van het P-golfsnelheids-
profiel kan worden teruggevonden uit nauwkeurig afgebeelde echte seismi-
sche reflectiemetingen, wat overeenkomt met de resultaten verkregen uit het
toepassen van deze techniek op gemodelleerde metingen.

Door de schattingen van de singulariteitsparameter, verkregen uit de con-
ventionele diepteafbeelding en de stuksgewijs geconstrueerde diepteafbeel-
ding te vergelijken met die verkregen uit het P-golfsnelheidsprofiel, vinden
we de beste correlatie voor de stuksgewijs geconstrueerde diepteafbeelding.
Dit bevestigt dat de nieuwe beeldvormingstechniek een betere representatie
van de straalparameterafhankelijke reflectiviteit geeft dan het conventionele
schema.




166 Samenvatting

In Hoofdstuk 6 wordt een toepassing op ondiepe S-golf seismiek gepre-
senteerd. In geotechnische toepassingen is Conus Penetratie Test (CPT) het
meest gebruikte middel voor de karakterisering van grondlagen. Een poging
wordt gedaan om ondiepe seismische reflectiemetingen te correleren met
CPT conusweerstand. Hoewel CPT en seismische metingen de grondeigen-
schappen voor zeer verschillende schuifspanningsniveaus weergeven, wordt
door vele auteurs gemeld dat CPT conusweerstand goed correleert met S-
golf reflectiemetingen.

Dientengevolge stellen we voor om onze schaalathankelijke analyse toe
te passen als een techniek voor de integratie van S-golf reflectiemetingen en
CPT conusweerstand. We schatten, voor sterke reflecties, de singulariteits-
parameter verkregen uit snelheidscontrastfuncties van de S-golf reflectieme-
tingen en vergelijken deze met singulariteitsparameters die geschat zijn voor
sterke veranderingen in de CPT conusweerstand.

Door deze methode toe te passen op de metingen van twee experimenten
waarin zowel S-golf reflectieseismiek als CPT conusweerstand zijn gemeten,
hebben we significante resultaten kunnen verkrijgen. Het eerste experiment
is uitgevoerd op een lokatie waar laterale variaties in de ondergrond aan-
wezig waren. De toepassing van de schaalafhankelijke analyse op de seis-
mische metingen geeft een goede indicatie van de laterale positie waar een
specifieke grondlaag een veranderend schaalafhankelijk gedrag vertoont. Dit
kan worden geinterpreteerd als een verandering van grondsterkte langs een
grondlaag.

Het tweede experiment betreft meervoudige CPT metingen langs een
seismische lijn, zodanig dat de correlatie op verschillende laterale posities
in de seismische lijn kan worden uitgevoerd. De laterale variatie van de
fijnschalige karakteristieken van de S-golfsnelheidsdistributie correleert op-
merkelijk goed met de laterale variatie in de CPT conusweerstand. Schaal-
afhankelijke analyse is dientengevolge een waardevolle toevoeging aan de
bestaande geotechnische karakteriseringstechnieken.

Jeroen Goudswaard



Summary

Multiangle multiscale characterization
of seismic reflection data

It has been found that well-logs of the local wave-velocities exhibit multi-
fractal, or local self-similar, behavior of a wide range of scales. This behavior
is characterized by a singularity parameter, that quantifies the local fractal
dimension of a well-log. The thesis is focused on the recovery of this local
self-similar behavior of well-logs from seismic reflection data.

In Chapter 2 an overview of the transformations that are commonly applied
to seismic reflection data is given. The use of the continuous wavelet trans-
formation is treated for multiscale analysis of well-log data. To be consistent
with the local self-similar behavior of well-logs, a velocity function describing
a reflector is introduced, that is a generalization of a Zoeppritz boundary to
a self-similar interface.

Chapter 3 presents an implicit relation for the rayparameter-dependent
reflectivity of the self-similar velocity functions from Chapter 2. Synthetic
seismic reflection data are modeled in velocity functions, containing self-
similar reflectors. Using the aforementioned implicit relation, these reflec-
tion data are inverted for the singularity parameter. The first method is by
analyzing the contours of constant reflection amplitudes in modulus maxima
planes. From the application of this method to synthetic data, modeled in
both synthetic and real well-logs, it is shown that an estimate of the singu-
larity parameter can be found that is consistent with the one derived from
reflectors in these well-logs.

Further analysis of the reflection coefficient of the self-similar velocity
function, gives an. explicit expression for the instantaneous phase of a nor-
mal incident reflected wave. Instantaneous phase and scale dependent am-
plitudes of a seismic event are used to invert for both a velocity contrast ratio
and the singularity parameter.

Furthermore, it is shown that the instantaneous phase of a specific reflec-
tion event contains information complimentary to the multiscale reflection




168 Summary

amplitudes. This can be used to resolve both the singularity parameter and
a velocity contrast ratio from seismic reflection data. A Gauss-Newton inver-
sion scheme is proposed that is theoretically able to solve for these param-
eters using a penalty function based on a combination of these multiscale
amplitudes and instantaneous phases. However, the rate of convergence of
this inversion scheme is not sufficient for applying it to field data.

Following, in Chapter 4, an alternative method for multiangle, multiscale
analysis of both acoustic and elastic seismic reflection data is proposed. The
method consists of two steps.

First, we perform a Linearized Zoeppritz Inversion (LZI) to imaged raypa-
rameter-dependent reflectivity gathers, to acquire velocity contrast functions,
which are estimates of the velocity contrasts at each imaging depth. A test
on synthetic data shows that the velocity contrast functions derived from the
rayparameter-dependent reflectivity gathers are generally good estimates of
the actual velocity contrast functions.

The second step is a multiscale analysis of these velocity contrast func-
tions. A technique, similar to the technique used to estimate the singularity
parameter from well-logs, is used to estimate the parameter from velocity
contrast functions. This method is applied to both the velocity contrast func-
tions constructed by LZI and the velocity contrast functions derived directly
from the velocity fields. It is shown that the estimates of singularity param-
eters derived from both velocity contrast functions give consistent results.
Higher order terms in the explicit Zoeppritz equations that are not accounted
for in LZI and internal multiples are the main causes of errors in this inver-
sion.

Chapter 5 is the first of two chapters in which the method for multiscale
analysis of velocity contrast functions is applied to real data sets. The chapter
treats the application of the method to walk-away VSP data, in which the
sources are located at the surface and the receivers in a borehole.

It is shown that from particle velocity wave fields v, and v,, measured
by the receivers in the borehole, the up- and downgoing P- and S-wave po-
tentials can be constructed. First a decomposition in P- and S-wave poten-
tials is performed, by applying an explicit polarization scheme, followed by a
separation into up- and downgoing fields, by means of a median filter tech-
nique. The application of this technique shows a high-quality decomposition,
in which events of other modes are hardly visible.

The upgoing wave field potentials are the input of two imaging schemes.
The first scheme is a conventional approach to construct depth images of the
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rayparameter-dependent P-P and P-S reflectivity for every receiver depth.
The second approach combines the images from each receiver depth, to con-
struct piecewise depth images that contain less internal multiples than the
images constructed from the data received by only one receiver. Further-
more, the amplitudes are better preserved in these piecewise constructed
images, as the upgoing transmission paths are shorter.

The conventional depth image from the topmost receiver and the piece-
wise constructed image, both for the P-P reflectivity, are analyzed by the
multiangle, multiscale characterization method of Chapter 4. To this end, ve-
locity contrast functions are derived from both images, by applying LZI. Also
from the P-wave velocity profile, a velocity contrast function is constructed.
Following, the multiscale analysis is applied to construct singularity parame-
ter profiles for each of these velocity contrast functions. It is shown that the
multiscale behavior of the P-wave velocity profile can be recovered from the
accurately imaged real seismic reflection data, in accordance with the results
of applying this to synthetic data.

Further, by comparing the estimates of the singularity parameter derived
from the conventional and the piecewise constructed image with the ones
derived from the P-wave velocity profile, we find the best correlation for the
piecewise constructed image. This confirms that the novel imaging scheme
gives a better representation of the rayparameter-dependent reflectivity than
the conventional scheme.

In Chapter 6 an application to shallow S-wave seismics is given. In
geotechnical applications, the most used tool for soil characterization is the
Cone Penetration Test (CPT). An attempt is made to correlate shallow seis-
mic reflection data with CPT cone resistance. Though CPT and seismic data
represent the soil properties for very different levels of strain, it has been re-
ported by many authors that CPT cone resistance correlates well with S-wave
reflection data.

Therefore, the multiscale analysis is proposed as a technique to integrate
the S-wave reflection data with CPT cone resistance by applying this to both
data types. We estimate, for strong reflections, the singularity parameter,
derived from velocity contrast functions that are constructed from the S-
wave reflection data, and compare this with singularity parameters estimated
from sharp changes in CPT cone resistance.

From testing this approach on two extensive field data sets containing

both S-wave seismic reflection and CPT data, some significant results could
be obtained. The first data set under consideration was recorded at a site
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where lateral variations of the subsoil are present. The application of mul-
tiscale analysis to the seismic data gives a good indication of the lateral po-
sition where a specific soil layer shows some changing multiscale behavior.
This can be interpreted as a change in soil strength along a soil boundary.

The second data set contains multiple CPTs along the seismic line, such
that the correlation can be tested at different lateral positions in the seismic
section. The lateral variation of the fine-scale nature of the S-wave veloc-
ity distribution over an interface is found to correlate remarkably well with
the lateral variation of the CPT cone resistance. Multiscale analysis is shown
to be a valuable addition to the existing geotechnical characterization tech-
niques.

Jeroen Goudswaard
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