
Introduction

Marchenko imaging is a novel imaging technique that is capable to retrieve images from single-sided
reflection measurements free of artefacts related to internal multiples (e.g. Behura et al., 2014; Broggini
et al., 2012). An essential ingredient of Marchenko imaging is the so-called focusing function which can
be retrieved from reflection data and a background model. Initially, the focusing function was defined
such that it focuses inside the medium of interest as a point in time and in space (e.g. Wapenaar et al.,
2014). The focusing property is used to retrieve the up- and downgoing Green’s functions associated to
a virtual point source or receiver inside the medium. Subsequently, the retrieved Green’s functions are
used to compute an image. Meles et al. (2017) introduced a new focusing function that focuses as a plane
wave inside the medium. The new focusing function allows to retrieve medium responses associated to
virtual plane wave sources or receivers inside the medium. Hence, imaging based on areal-sources as
suggested by Rietveld et al. (1992) becomes possible including the benefits of the Marchenko method.
In the following we compare Marchenko imaging using point and plane wave focusing.

Point focusing

In this section we review conventional Marchenko imaging which uses point focusing. We consider a
lossless medium that can be acoustic or elastic. Assuming that the medium has infinite lateral extent and
is bounded at the top by a reflection-free boundary ∂D0 one can derive the following two expressions
from the reciprocity theorems of the convolution- and correlation-type (for a detailed derivation we refer
to e.g. Wapenaar et al., 2014),

f̂−1 (x
′,x f ,ω)+{ĝ−(x f ,x′,ω)}T =

∫
∂D0

R̂(x′,x,ω)f̂+1 (x,x f ,ω)d2xH , (1)

f̂+1 (x
′,x f ,ω)−{ĝ+(x f ,x′,ω)}† =

∫
∂D0

R̂∗(x′,x,ω)f̂−1 (x,x f ,ω)d2xH . (2)

Here, we use one-way power-flux normalised wavefield potentials: the Green’s function ĝ±, the focusing
function f̂±1 and the reflection response R̂. In addition, we neglect evanescent waves. The superscripts
"+" and "−" describe down- and upgoing waves, respectively. We denote complex conjugation by a
"∗", transposition by a "T " and complex-conjugate transpose by a "†". For all wavefield potentials the
first coordinate refers to the receiver position x = (x1,x2,x3)

T , the second coordinate refers to the source
(or focusing) position and the third coordinate refers to the temporal frequency ω . The subscript "H"
denotes the horizontal coordinates, i.e. xH = (x1,x2)

T . Further, we use hats (" ˆ ") for quantities in the
frequency domain. All equations in this abstract are valid for acoustic as well as elastodynamic waves.
Wavefield potentials are scalars for the acousic case and 3×3 matrices for the elastodynamic case. For
example, the elastodynamic downgoing focusing function can be written as,

f̂+1 (x
′,x f ,ω) =

( f̂+1 )Φ,Φ ( f̂+1 )Φ,Ψ ( f̂+1 )Φ,ϒ

( f̂+1 )Ψ,Φ ( f̂+1 )Ψ,Ψ ( f̂+1 )Ψ,ϒ

( f̂+1 )ϒ,Φ ( f̂+1 )ϒ,Ψ ( f̂+1 )ϒ,ϒ

(x′,x f ,ω), (3)

where the subscripts Φ, Ψ and ϒ refer to P-, S1- and S2-wavefield potentials, respectively. The first
and second subscript describe the wavefield potential at the receiver position x′ and at the focusing (or
source) position x f , respectively. The focusing function f̂1 is a wavefield that is injected into the medium
at the upper boundary ∂D0 and focuses at time zero at the focusing position x f . In the space-time
domain, the focusing property can be formulated as,

f+1 (x
′,x f , t)

∣∣
x′3=x3, f

= δ (t)δ (x′H −xH, f )I, (4)

where I is an identity matrix of appropriate size (a scalar for the acoustic case). We write the focusing
property (Eq. 4) in the space-time domain to emphasise that it describes a focus in space and in time.
In many imaging applications the medium of interest is only accessible from a single boundary. Hence,
in Eqs. 1-2 only the reflection response R̂ is known such that the system of Eqs. 1-2 is underdetermined.
However, several publications (e.g. Van der Neut et al., 2015) have shown that focusing and Green’s
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functions can be separated in the time domain. After applying a separation operator θ , Eqs. 1-2 become
the coupled Marchenko equations,

f̂−1 (x
′,x f ,ω) = θ ◦

∫
∂D0

R̂(x′,x,ω)(f̂+1,0 + f̂+1,m)(x,x f ,ω)d2xH , (5)

f̂+1,m(x
′,x f ,ω) = θ ◦

∫
∂D0

R̂∗(x′,x,ω)f̂−1 (x,x f ,ω)d2xH , (6)

which can be solved for f̂+1,m and f̂−1 , assuming f̂+1,0 is known. In Eqs. 5-6 we separated the downgoing
focusing function into a direct (or in the elastodynamic case forward-scattered) part f̂+1,0 and a coda f̂+1,m.
The circle "◦" denotes a Hadamard product. To obtain the desired Green’s functions ĝ± we evaluate
Eqs. 1-2 using the retrieved focusing functions f̂±1 . The resulting Green’s functions are associated with
virtual recordings inside the medium and can be used for imaging. Here, we use redatumed reflectivity
r̂ and a standard migration imaging condition ic in the frequency domain,

r̂(x f ,ω) =
∫

∂D0

ĝ−(x f ,x′,ω){ĝ+d (x f ,x′,ω)}†d2x′H , (7)

ic(x f ) =
∫

r̂(x f ,ω)dω, (8)

where ĝ+d (x f ,x′,ω) is a direct Green’s function in a background model. Since the Green’s function ĝ−
in Eq. 7 describes all orders of scattering correctly the image ic is free of artefacts related to internal
multiples. Note that Eqs. 7-8 imply that the Green’s function ĝ− must be determined for each imaging
point x f , therefore, we refer to this imaging method as Marchenko point imaging.
Next, we show a numerical example of Marchenko point imaging. To this end, we model the reflection
response of a 2D acoustic model (see Fig. 1a). We use the background model of Fig. 1b to retrieve
the Green’s functions ĝ− via the Marchenko method and compute an image according to Eqs. 7-8. We
repeat this process for each imaging point. The resulting image is displayed in Fig. 2a. The image is
close to the true model. In particular, it is free of artefacts caused by internal multiples.

Plane wave focusing

The focusing condition in Eq. 4 states that the focusing function f̂±1 focuses as a point in the space-time
domain. Therefore, we will refer to f̂±1 as point focusing function. Following recent insights on focusing
conditions (Meles et al., 2017) we suggest to define a plane wave focusing function F̂±1 that focuses as a
plane wave in the space-time domain,

F+
1 (x

′,pH ,x3, f , t)
∣∣
x′3=x3, f

= δ (t−pH ·x′H)I, (9)

where the horizontal ray-parameter is denoted by pH . The plane wave focusing condition in Eq. 9 can be
obtained by convolving the point focusing condition in Eq. 4 with δ (t−pH ·xH, f ) in the time domain and
integrating the result along xH, f . Hence, to obtain the plane wave focusing function F̂±1 (x

′,pH ,x3, f ,ω)

in the space-frequency domain we multiply the point focusing function f̂±1 (x
′,xH, f ,x3, f ,ω) by ejωpH ·xH, f

and integrate the result along xH, f ,

F̂±1 (x
′,pH ,x3, f ,ω) =

∫
∂D f

f̂±1 (x
′,xH, f ,x3, f ,ω)ejωpH ·xH, f d2xH, f . (10)

Here, the boundary ∂D f refers to the depth level x3 = x3, f . Analogous to Eq. 10 we define a plane wave
response,

Ĝ±(−pH ,x3, f ,x′,ω) =
∫

∂D f

ĝ±(xH, f ,x3, f ,x′,ω)ejωpH ·xH, f d2xH, f . (11)

Subsequently, we multiply Eqs. 1-2 by ejωpH ·xH, f , integrate the results over the surface ∂D f , use Eqs.
10-11 and obtain,

F̂−1 (x
′,pH ,x3, f ,ω)+{Ĝ−(−pH ,x3, f ,x′,ω)}T =

∫
∂D0

R̂(x′,x,ω)F̂+
1 (x,pH ,x3, f ,ω)d2x, (12)

F̂+
1 (x

′,pH ,x3, f ,ω)−{Ĝ+(pH ,x3, f ,x′,ω)}† =
∫

∂D0

R̂∗(x′,x,ω)F̂−1 (x,pH ,x3, f ,ω)d2x. (13)
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The expressions in Eqs. 12-13 are again an underdetermined system of equations. However, it has been
observed that the plane wave focusing functions F̂±1 (x

′,pH ,x3, f ,ω) can be separated from the plane
wave responses Ĝ±(−pH ,x3, f ,x′,ω) in the space-time domain (Meles et al., 2017). Thus, analogous
to the point Marchenko method after applying a separation operator Eqs. 12-13 become the coupled
Marchenko equations which can be solved. In order to compute an image from the resulting plane wave
responses Ĝ±(−pH ,x3, f ,x′,ω) we multiply the redatumed reflectivity (Eq. 7) as well as the standard
migration imaging condition (Eq. 8) by ejωpH ·xH, f , integrate the results along xH, f and find,

R̂(−pH ,xH, f ,x3, f ,ω) =
∫

∂D0

Ĝ−(−pH ,x3, f ,x′,ω){ĝ+d (x f ,x′,ω)}†d2x′H , (14)

Ic(pH ,xH, f ,x3, f ) =
∫

R̂(−pH ,xH, f ,x3, f ,ω)ejωpH ·xH, f dω. (15)

The plane wave imaging condition (Eq. 15) only takes into account a single ray-parameter, i.e. it is
illuminating the image point x f from a single angle. In contrast, the point imaging condition (Eq. 8)
uses implicitly all ray-parameters, ergo, it is illuminating the image point x f from a range of angles.
The benefit of the plane wave imaging condition is that it only requires one plane wave response Ĝ− per
depth level ∂D f whereas the point imaging condition requires one Green’s function ĝ− for each image
point on a depth level ∂D f . In other words if there are N image points per depth level, plane wave
imaging reduces the computational costs by a factor of N compared to point imaging.
To illustrate the differences between point and plane wave imaging we retrieve the plane wave responses
Ĝ− using the reflection responses of the model in Fig. 1a as well as the smooth background model in
Fig. 1b. In this example we consider the plane wave component p1 = 0sm−1. The resulting image is
shown in Fig. 2b. Comparison to a migration image using standard extrapolation of virtual plane waves
(see Fig. 2c) demonstrates that the plane wave Marchenko image does not suffer from artefacts due
to internal multiples. Despite using a single plane wave component the plane wave Marchenko image
is nearly as good as the point image which uses all plane wave components. Yet, a close look at the
image in Fig. 2b-c reveals that the plane wave images lack a reflector at about x3 = 1100m. In fact, the
reflection coefficient of the missing reflector for a ray-parameter p1 = 0sm−1 is about 100 times smaller
than the strongest reflection coefficient of model. This explains why plane wave imaging can hardly
detect the missing reflector.

Figure 1: (a) True and (b) smooth velocity model. The true and smooth density model have a similar
spatial variation as the velocity model, however, they are not displayed.

Discussion and conclusions

We demonstrated two imaging strategies using point and plane wave focusing conditions. Both ap-
proaches use medium responses that are retrieved from reflection data and a background model via
the Marchenko method. In consequence, both strategies take into account all orders of scattering cor-
rectly, resulting in images free of artefacts due to internal multiples. The plane wave imaging condition,
compared to point Marchenko imaging, reduces the computational costs significantly but provides less
illumination of each image point. Plane wave Marchenko imaging raises the opportunity to apply imag-
ing for a limited number of plane wave components to meet a case dependent illumination versus cost
balance.
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Figure 2: (a) Migration result using imaging condition of Eq. 8 and virtual point responses ĝ− retrieved
via the Marchenko method. (b) Migration result using imaging condition of Eq. 15 and virtual plane
wave responses Ĝ− retrieved via the Marchenko method. (c) Migration result using virtual plane wave
responses Ĝ− retrieved via standard wavefield extrapolation. Images (b) and (c) correspond to a plane
wave defined by p1 = 0sm−1.
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