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Summary
A (spatial) wavelet transform is applied to the seismic data model
in the space domain, such that a data model in the wavelet domain
is obtained. The wavelet transform is a mathematical tool, which
transforms a signal to the mixed space-wavenumber domain. Be-
cause. of their compact support wavelets are cut out for analyzing
finite-length apertures. Moreover, wavelets can zoom in on local
high wavenumber aspects.
Subsequently a redatuming scheme (which is the heart of our migra-
tion scheme) is derived in the wavelet domain, corresponding to the
redatuming scheme in the space domain. The important difference
between the two domains is the fact that in the space domain reda-
turning can be carried out per point source experiment and in the
wavelet domain redatuming can be carried out per scale experiment.
Redatuming carried out per scale experiment is very advantageous.
A remarkably small part of the extrapolation operators already re-
veals the correct structural information.

Introduction
Our departure point is a wave equation based data model in the
discrete space domain. In its simplest form (i.e. after preprocessing)
it is given by the following matrix equation [1]

  (1)
where  contains the downgoing source wavefields at the surface,

 describes downward propagation into the subsurface,  de-
scribes reflection in the subsurface (at one depth level),  de-
scribes upward propagation to the surface and, finally,  contains
the upgoing wavefields registered at the surface. Equation (1) is a
monochromatic description of the seismic response of a single reflect-
ing depth level; the different elements in the matrices correspond to
different lateral positions.The matrix multiplications in equation
(1) represent generalized convolutions along the lateral space coor-
dinates. In a generalized convolution the convolution kernel changes
during the convolution process due to lateral variations of the sub-
surface parameters.
An image of the subsurface consists of the correct estimate of 
(phase and preferably also amplitude).  is directly related to the
velocity and density variations of the subsurface. So, if one knows
the reflectivity at all depth levels, then one has an image of the
earth. Inversion with respect to the reflectivity  of the data model
of equation (1) gives

    (2)
where we have used the modified matched filter approach [1, 8],
where  denotes complex conjugation and transposition, and where
we have assumed the source wavefields matrix  to represent a se-
ries of normalized dipole sources, i.e. an identity matrix. Redatum-
ing equation (2)is the heart of our migration scheme. It says that
the reflectivity at a certain depth level can be found by correcting
the data  for the propagation through the overburden between
the acquisition level of  and the new acquisition level of 
It is possible and advantageous [4] to transform equations (1) and
(2) to the wavenumber domain, even if one is dealing with a het-
erogeneous macro model. The transformation to the wavenumber

domain is naturally suggested by the fact that for laterally homo-
geneous macro models wavefield extrapolation in the wavenumber
domain is described by a diagonal matrix [5]. Generalization of this
concept for heterogeneous macro models leads to band matrices de-
scribing wavefield extrapolation in the subsurface.
The two afore mentioned data models are based on global solutions
of the wave equation.In the spatial description of the data angu-
lar information is not available; in the wavenumber description of
the data spatial information is not available. Intermediate space-
wavenumber data models that are based on transient wave phenom-
ena may be more appropriate, because of the finite size of macro
models generally used. A beautiful transform that can be used to
arrive at an intermediate description is the (spatial) wavelet trans-
form. The wavelet transform is usually called a space-resolution
transform rather than a space-wavenumber transform. It divides the
data model of equation (1)in different resolutions or scales. A scale
or resolution corresponds to a certain wavenumber interval. Each
scale or resolution step corresponds to a bisection of the wavenum-
ber interval. The division into scales facilitates zooming in on local
high wavenumber aspects. (See [6] for a general introduction.)
The wavelet transform creates the opportunity to do wavefield ex-
trapolation or redatuming in a very elegant stepwise approach. We
start with a rough scale approximation of the extrapolation oper-
ators. In the rough scales the structural information of the macro
model is already taken into account. The rough scales make up a
small part of the extrapolation operators in the wavelet domain. So,
redatuming can be carried out fast. Moreover, it gives the possibil-
ity to update macro models in an iterative way. This means that
the correctness of the macro model can be checked upon in an early
stage. By adding detail of the extrapolation operators the lateral
resolution can be improved.
In the next section wavefield extrapolation in the space domain will
be introduced. Next, the basic mathematical aspects of the wavelet
transform will be introduced. Subsequently, the wavelet transform
will be applied to the wavefield extrapolation operator. In the ex-
amples it will be shown that wavefield extrapolation in the wavelet
domain is carried out elegantly and efficiently.

Wavefield extrapolation in the space domain
Consider a 2-D monochromatic downgoing acoustic wavefield

   registered as a function of the horizontal coordinate
 at depth level  and frequency w. Downward extrapolation from

depth level  to depth level is mathematically described by the
generalized convolution integral [1]

        (3)

with

     = 
    =  . (4)

Here,    represents the extrapolated downgoing wavefield
at position   and        represents the 
going part of the Green’s wavefield at   related to a 
at  Hence, the extrapolation operator     
may be seen as the downgoing response at (x’,  of a dipole at
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Figure  The extrapolation matrix in the space-frequency domain.
Column  contains the (monochromatic) discretixed response as a
function of  at depth  for a dipole source at   (only the
modulus is shown; the actual matrix is complex valued)

 
For discretized wavefields (discretization interval Ax) equation (3)
can be rewritten in matrix notation, according to

 =  

Here,  and are column vectors, containing the (mono-
chromatic) discretized wavefields at depth levels  and  respec-
tively.   is an extrapolation matrix; column  contains
the (monochromatic) discretized response     
as a function of x’ at depth for a dipole source at (x,,  see
Figure 1. In practice this matrix is constructed by forward 
elling of dipole wavefields through a macro model of the subsurface
between depth levels  and and by storing the results for a given
frequency into the columns of the matrix.

The  transform
The continuous  transform is defined by

 b) =       

 (a, b) is the inner product of f(x) and the function  (x) which
is a shifted and dilated version of the function g(x)

    
a

The parameter b gives the position of the  while the dilation
parameter a governs its frequency. For   1,  (x) is a highly
concentrated version of g(x) which means that it extracts the high
frequency content of the signal f(x). For   1, the 

 is very much spread out: it extracts the low frequency
content of the signal f(x).
Discretization with respect to the parameters a, b such that a = 
and b =  is particularly interesting. Each step in m corresponds
to a bisection of the frequency content. The  transform
then elegantly fits into the theory of multiresolut ion analysis 

The idea of multiresolution analysis is to write a function f(x) as
a limit of successive approximations each of which is a smoothed
version of f(x), by using more and more concentrated smoothing
functions. The successive approximations thus use a different res-
olution, whence the name multiresolution analysis. The difference
between two successive approximations is the detail at a certain
resolution. This detail is exactly a  transform for a certain
value of m. The theory of multiresolution analysis and the discov-
ery of orthogonal compactly supported   made it possible
to implement the  transform as an O(N) algorithm. In its
discrete implementation the  transform can be interpreted in
the following way

  = 1,    , N       . ,  

An operator  divides the discretized version of the signal f(x) in
a coarse approximation a  (consisting of 2 points), a coarse scale de-
tail  (2 points) and subsequent finer details  points), . . . , 
(N/2 points), where  is the finest detail. The total amount of
points does not change and an exact reconstruction of the original
data is feasible.

Wavefield extrapolation in the  domain
The transformation of the wavefield extrapolation equation (5) in
the space domain to the  domain is now realized in the fol-
lowing way. Define the forward and inverse  transform in the
matrix notation respectively by

 = and  = 

in which  is the  transform operator and is the trans-
posed  transform operator, which equals the inverse 
transform operator. Application of equations (9) to equation (5)
yields

where

   

    
Here, the wavefield extrapolation operator   is trans-
formed both at the receiver side (with  and at the source side
(with  independently. Such a transform is generally called the
standard  transform of a 2-D operator  The global struc-
ture Of  for a homogeneous medium is shown in Fig-
ure 2. The full matrix consists of 256 x 256 points. It describes
extrapolation in the  domain from depth level  = 0 m

  800 m. So, it is a non-recursive extrapolation operator.
In  terms it consists of a coarse approximation   
which gives the response of coarse approximation sources measured
by coarse approximation receivers (a 2 x 2 matrix!), and it consists
further of all combinations of approximations and details of sources
and receivers. It is important to notice that the 2-D  trans-
form divides an operator into an approximation and a number of
details. The coarse approximation, which consists of aspects with a
low wavenumber content, can now be used to get a first impression
of the quality of the macro model.
The forward and inverse  transform have been defined and
now we can write the data model of equation (1) in the 
domain by applying the operators  and  which yields
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With this data model in the wavelet domain, we can derive a re-
datuming scheme in the wavelet domain, which is comparable with
the scheme of equation (2)
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trapolation operators the lateral resolution improves (Figure 4c-f).
For a 32 x 32 matrix in the wavelet domain (the coarsest approxi-
mation and 4 details) the inversely extrapolated wavefield is nearly
equal to that obtained with the full operators (256 x 256 matrices)
in the space domain.

The important difference with redatuming in the space domain is the
fact that in the wavelet domain redatuming may be carried out per
scale experiment, whereas in the space domain redatuming may be
carried out per point source experiment. In the examples it will be
shown that the division into scale experiments is very advantageous.

Conclusions

Examples
In this section the two following aspects of processing in the wavelet
domain will be illustrated. Firstly, it will be shown that inverse ex-
trapolation in the wavelet domain gives exactly the same inversely
extrapolated wavefield as in the space domain. This feature proves
that the wavelet domain is not an approximation, but merely an-
other description of the data. Secondly, it will be shown that only
a small part of the extrapolation operators in the wavelet domain
Need to be used to get a good image of the subsurface. This feature
Illustrates the potential power of the wavelet domain in relation to
fast migration algorithms and in relation to macro model estimation.

Two data models have been generated: in the space domain and in
the wavelet domain. The redatumed result is independent of the do
main chosen. In the wavelet domain redatuming can be carried out
per scale experiment. In the example it is shown that this is very
advantageous. The coarsest scale gives the structural information
of the macro model, while the details improve the lateral resolution.
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Figure 2: The wavefield extrapolation
operator for a homogeneous medium in
the wavelet domain for one frequency
component. The subscripts "s" and "r"
denote the source and receiver side re-
spectively. a) the full matrix; b) a mag-
nification of the top left part of a).
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4 Extrapolation using the wavelet transform

Figure 3: a) Homogeneous macro model with the source positions;  The response at the surface.


