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Summary

A (spatial) wavelet transform is applied to the seismic data m
in the space domain, such that a data model in the wavelet d
is obtained. The wavelet transform is a mathematical tool, w
transforms a signal to the mixed space-wavenumber domair
cause. of their compact support wavelets are cut out for anal
finite-length apertures. Moreover, wavelets can zoom in on |
high wavenumber aspects.

domain is naturally suggested by the fact that for laterally hgmo-
bogeéneous macro models wavefield extrapolation in the wavenumber
niiimain is described by a diagonal matrix [5]. Generalization of this
hieencept for heterogeneous macro models leads to band matrices de-
. paibing wavefield extrapolation in the subsurface.
zikae two afore mentioned data models are based on global sol{tions
bcef the wave equationin the spatial description of the data angu-

lar information is not available; in the wavenumber description of
i data spatial information is not available. Intermediate space-

Subsequently a redatuming scheme (which is the heart of our mighe

tion scheme) is derived in the wavelet domain, corresponding t
redatuming scheme in the space domain. The important diffe
between the two domains is the fact that in the space domain
turning can be carried out per point source experiment and
wavelet domain redatuming can be carried out per scale experi
Redatuming carried out per scale experiment is very advantag
A remarkably small part of the extrapolation operators already
veals the correct structural information.

Introduction
Our departure point is a wave equation based data model i
discrete space domain. In its simplest form (i.e. after preproces|
it is given by the following matrix equation [1]

P =W BW*s* (1)

where §* contains the downgoing source wavefields at the surf
w describes downward propagation into the subsurR.ake-
scribes reflection in the subsurface (at one depth lew ~)de-
scribes upward propagation to the surface and, finP*/contains

the upgoing wavefields registered at the surface. Equation (1) is

monochromatic description of the seismic response of a single re

b thavenumber data models that are based on transient wave phgnom-
eff® may be more appropriate, because of the finite size of
rgt@dels generally used. A beautiful transform that can be usgd to
nahée at an intermediate description is the (spatial) wavelet tfans-
mépm. The wavelet transform is usually called a space-resolition
edtgnsform rather than a space-wavenumber transform. It divideg the
idata model of equation (1 different resolutions or scales. A scdle
or resolution corresponds to a certain wavenumber interval. Each
scale or resolution step corresponds to a bisection of the wavehum-
ber interval. The division into scales facilitates zooming in on Igcal
n ligh wavenumber aspects. (See [6] for a general introduction.)
sidde wavelet transform creates the opportunity to do wavefield
trapolation or redatuming in a very elegant stepwise approach
start with a rough scale approximation of the extrapolation o
ators. In the rough scales the structural information of the m
model is already taken into account. The rough scales make
ACSmall part of the extrapolation operators in the wavelet domain
redatuming can be carried out fast. Moreover, it gives the pos
ity to update macro models in an iterative way. This means
.the correctness of the macro model can be checked upon in an|
ge. By adding detail of the extrapolation operators the |4
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ing depth level; the different elements in the matrices correspo
different lateral positions.The matrix multiplications in equatio
(1) represent generalized convolutions along the lateral space
dinates. In a generalized convolution the convolution kernel chal
during the convolution process due to lateral variations of the
surface parameters.

An image of the subsurface consists of the correct estimge|
(phase and preferably also amplitudz)s directly related to thq
velocity and density variations of the subsurface. So, if one ki
the reflectivity at all depth levels, then one has an image o
earth. Inversion with respect to the reflectivigyof the data mode|
of equation (1) gives

R=w" prwi”

where we have used the modified matched filter approach |
where i denotes complex conjugation and transposition, and W
we have assumed the source wavefields mg*ito represent a se|
ries of normalized dipole sources, i.e. an identity matrix. Redaf
ing equation (2)is the heart of our migration scheme. It says {
the reflectivity at a certain depth level can be found by corre
the datep— for the propagation through the overburden betwf
the acquisition level oo~ and the new acquisition level K.

It is possible and advantageous [4] to transform equations (1

(2) to the wavenumber domain, even if one is dealing with &
erogeneous macro model. The transformation to the waveny

Solution can be improved.

the next section wavefield extrapolation in the space domain

introduced. Next, the basic mathematical aspects of the w3

nsform will be introduced. Subsequently, the wavelet trans

ggﬁ be applied to the wavefield extrapolation operator. In the
mples it will be shown that wavefield extrapolation in the wav

gomain is carried out elegantly and efficiently.
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Wavefield extrapolation in the space domain
Ot nsider a 2-D monochromatic downgoing acoustic wavel
P (, zo, w), registered as a function of the horizontal coordin
x at depth levek, and frequency w. Downward extrapolation frg
depth levek, to depth levet,, is mathematically described by th
generalized convolution integral [1]
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edtere, P+ (', z,, w) represents the extrapolated downgoing wavef
at positiorn(z’, z,,) andG+ (', zm; =, z = z9,w) represents thdown-
ging part of the Green's wavefield(z', z..) related to anonopole
hét(x, ). Hence, the extrapolation operaw+{z’, z,; , 20, w)
mbaay be seen as the downgoing response &, xbf a dipole at

oQ
P+($I';zm7w)=/ W+(-T’,zm;z7 207W)P+(x’207w)dxv (3)
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Figure 1: The extrapolation matrix in the space-frequency domain.
Column n contains the (monochromatic) discretixed response as a
function of x’ at depth zy for a dipole source at (Tn, 2zy) (only the
modulus is shown; the actual matrix is complex valued)

(z, z0).
For discretized wavefields (discretization interval Ax) equation (3)
can be rewritten in matrix notation, according to

P (zm) = W (25 20) P (20). (5)

Here, P*(2) and P*(z,,) are column vectors, containing the (mono-
chromatic) discretized wavefields at depth levels zp and 2, respec-
tively. W (2; z0) is an extrapolation matrix; column n contains
the (monochromatic) discretized response AzW ™ (z!, 2m; Tn, 20, w)
as a function of x’ at depth z,, for a dipole source at (x,, 29}, see
Figure 1. In practice this matrix is constructed by forward mod-
elling of dipole wavefields through a macro model of the subsurface
between depth levels zp and z,, and by storing the results for a given
frequency into the columns of the matrix.

The wavelet transform
The continuous wavelet transform is defined by

(. b) = il () 1 (a: -b
= ) —
f (a, [ - \/|‘a'| g a
f (a, b is the inner product of f(X) and the function ¢®* (x) which
is a shifted and dilated version of the function g(x)

1 z-—b

. 7
70 (52) ™)
The parameter b gives the position of the wavelet, while the dilation
parameter a governs its frequency. For |a| < 1, g(“"’) (x) is a highly
concentrated version of g(x) which means that it extracts the high
frequency content of the signal f(X). For |a| > 1, the wavelet
g () is very much spread out: it extracts the low frequency
content of the signal f(x).
Discretization with respect to the parameters a, b such that @ = 2™
and b = 2™n is particularly interesting. Each step in m corresponds
to a bisection of the frequency content. The wavelet transform
then elegantly fits into the theory of multiresolut ion analysis [7].

)dx a#0. (6)

g*V(z) =

The idea of multiresolution analysis is to write a function f(x) as
a limit of successive approximations each of which is a smoothed
version of f(x), by using more and more concentrated smoothing
functions. The successive approximations thus use a different res-
olution, whence the name multiresolution analysis. The difference
between two successive approximations is the detail at a certain
resolution. This detail is exactly a wavelet transform for a certain
value of m. The theory of multiresolution analysis and the discov-
ery of orthogonal compactly supported wavelets [3] made it possible
to implement the wavelet transform as an O(N) algorithm. In its
discrete implementation the wavelet transform can be interpreted in
the following way

I
{fl}7 1= 1/ Tty N =% {aJsdedJ—l:dJ_zv ey dzadl}“ (8)

An operator I divides the discretized version of the signal f(x) in
a coarse approximation a ¥ (consisting of 2 points), a coarse scale de-
tail d¥ (2 points) and subsequent finer details d”~*(4 points), . . . , dt
(N/2 points), where d'is the finest detail. The total amount of
points does not change and an exact reconstruction of the original
data is feasible.

Wavefield extrapolation in the wavelet domain
The transformation of the wavefield extrapolation equation (5) in
the space domain to the wavelet domain is now realized in the fol-
lowing way. Define the forward and inverse wavelet transform in the
matrix notation respectively by

Pt(z)= I P (20) and P'(z) = I'TP(2) @
in which I" is the wavelet transform operator and [g is the trans-
posed wavelet transform operator, which equals the inverse wavelet
transform operator. Application of equations (9) to equation (5)
yields

P (zp) = W (23 20) P (20) (10)

where

W (23 20) = Ly W (2m; 20) L (11)

Here, the wavefield extrapolation operator W+ (z; #) is trans-
formed both at the receiver side (with I ) and at the source side
(with Iﬁ) independently. Such a transform is generally called the
standard wavelet transform of a 2-D operator [2]. The global struc-
ture of W+(zm; #g) for a homogeneous medium is shown in Fig-
ure 2. The full matrix consists of 256 x 256 points. It describes
extrapolation in the wavelet domain from depth level zp = 0 m
to zm = 800 m. So, it is a non-recursive extrapolation operator.
In wavelet terms it consists of a coarse approximation (af —af),
which gives the response of coarse approximation sources measured
by coarse approximation receivers (a 2 x 2 matrix!), and it consists
further of all combinations of approximations and details of sources
and receivers. It is important to notice that the 2-D wavelet trans-
form divides an operator into an approximation and a number of
details. The coarse approximation, which consists of aspects with a
low wavenumber content, can now be used to get a first impression
of the quality of the macro model.

The forward and inverse wavelet transform have been defined and
now we can write the data model of equation (1) in the wavelet
domain by applying the operators I", and [‘5, which yields

P (z0) = W (203 2m) B(zm) W (2m; 2008 T (20} (12)
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With this data model in the wavelet domain, we can derive a retrapolation operators the lateral resolution improves (Figure 4
datuming scheme in the wavelet domain, which is comparable witFor a 32 x 32 matrix in the wavelet domain (the coarsest app

c-f).

OXi-

the scheme of equation (2) mation and 4 details) the inversely extrapolated wavefield is ngarly

equal to that obtained with the full operators (256 x 256 matri
X . - s 1 H - ; .
Rizm) [I:V (=0} 2m J] P~ () ['EV (zmiz)] . (13) in the space domain.

The important difference with redatuming in the space domain is the Conclusions
fact that in the wavelet domain redatuming may be carried out pef,,o data models have been generated: in the space domain
scale experiment, whereas in the space domain redatuming may pg, \,avelet domain. The redatumed result is independent of t

carried out per point source experiment. In the examples it will bg,ain chosen. In the wavelet domain redatuming can be carrie
shown that the division into scale experiments is very advantage%ésr scale experiment. In the example it is shown that this is

advantageous. The coarsest scale gives the structural inforn
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. . Ex_am ples o f the macro model, while the details improve the lateral resolyition.
In this section the two following aspects of processing in the wavelet
domain will be illustrated. Firstly, it will be shown that inverse ex- Acknowledgement
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a small part of the extrapolation operators in the wavelet domain References
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Figure 2: The wavefield extrapolatig
operator for a homogeneous medium
the wavelet domain for one frequen
component. The subscripts "s" and '
denote the source and receiver side
spectively. a) the full matrix; b) a ma
nification of the top left part of a).
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Figure 3: a) Homogeneous macro model with the source positions; b) The response at the surface.
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Figure {: Inversely extrapolated wavefields with different parts of the wavelet transformed wavefield extrapola-
tion operators. a) the full operator (256x 256 matriz) in the space and in the wavelet domain; b) the coarsest
approzimation in the wavelet domain (2x2 matriz); c) the coarsest approzimation and the coarsest detail
(4% 4 matriz); d) the coarsest approzimation and the two coarsest details (8x 8 matriz); e) the coarsest ap-
prozimation and the three coarsest details (16x 16 matriz); f) the coarsest approzimation and the four coarsest
details (32x 82 matriz). Note that the structural information is obtained already in the coarsest approzimation
and that the details improve the resolution.
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