
Inverse Elastic Wave Field Extrapolation 

G. C. HaimP and C. !? A. Wupenaar; Lle[ft Unlwrsit> of Tti~htwio,e~, :\rtherlatd> 

SP 8.6 

Abstract 

Tbc elastic Klrchhoff-Hclmholtz imegral expresses the componcms of the 
monochromatic displacement vector at any point A in terms of rhc elasuc 
wave field at any closed surface surrounding A. The volume inside and 
outside the closed surface may be arbitrarily inhomogeneous and 
anisotropic. By innoducing Green’s functions for P and S waves, it is 
shown that the elas1ic Kirchhoff-HelmholE integral can be split into two 
separate imegrals; 1he firs1 one expresses the P wave potential a1 A and a 
second one expresses the S wave potential a1 A, both in terms of the elastic 
wave field at the closed surface surrounding A. These integrals aTe then 
transformed into one-way elastic Rayleigh-typz integrals for forward and 
inverse extrapolation of downgoing and upgoing P and S waves. The 
inverse one-way elastic extrapolation operators, derived in this paper, are 
the basis for a new prestack migration scheme for elastic data (Berkhoul and 
Wapcnaar.1988). 

Introduction 

Berkhout and Wapenaar (1988) propose a new approach for processing of 
elastic seismic dab which consists of the following steps: 
I .Decomposition of Ihe multi-component seismic data into one-way F-P, 

P+-S -, St-P - and Sf-S - data. 
2.Eliminadon of the surface related mulriple reflections and conversions. 

3.Esdmation of Ihe elastic macro subsurface model from Ihe P’+-P-- and St- 
S - data. 
4.Modeling of inverse onc-way extrapolation operators for primary P and 
S waves. 
5.Shor record m&radon of the P+-P -, F-S -, S+-P- and St-S -- data, 
yielding the subsurface reflectivity in terms of R& R&. Rl,and R.&, 
optionally as a function of angle a. 
h.Elastic inversion for the detaIled velocity and density information 
(C&‘P). 
7. Lithologic inversion for the rock and pore parameters. 

II IS mteresting to note that the actual elastx migration (srep 5) is not more 
complicated than acoustic shot record migradon. Of course the quality of the 
migrated sections will depend largely on the accuracy of the extrapolalion 
operators, which are modeled in step 4. Tbc theory of the true amplitude 
inverse extrapolation operators for primary P and S waves is rhe subjecct of 
this paper. 4 

The elastic Kirchhoff-Helmholtz integral for inhomogeneous, 
anisotropic solids 

We consider a sub-volume V in an inhomogeneousanisorropic solid see 
Figure 1, The elastic wave field at any point A within V (source free) can be 
calculated using the full elastic Kirchhoff-Hebnholtz integral which reads 
(De Hoop, 1958) 

U,_,(r.& = s [r G, $&” U].” dS 
id 

(1) 

whereU,=U,(r,,o) for m = I, 2, 3 represents one component of the 
monochromatic displacement vector U(r,.w) in A: U=U(r,w) and 
r=l(r,w) represent the elastic wave field on S, due to sources outside V, in 
terms of displacemen1s and stresses, rcspcctively; G,=G,(r,r,,o) and g 
,=g,(r,r,.o) rcpresenr the Green’s functions on S, due to an impulse 
force in the m-dir&on in A, in terms of displacements and stresses, 
respectively; w rcprcscnts the radial frequency. lo lhis paper we use equation 
(1) as the starting point for the dcrivalion of forward and inverse one-way 
extrapolation operators for primary Pand S waves. 

One-way elastic Rayleigh integrals for forward wave field 
extrapolation 

i’onslder now the simanon depicted in Figure 2, in which sub-volume V is 
shaped as a pill-box. The (secondary) sources are supposed to be beneath 
surface S,. lf we assume that Ihe medium is homogeneous and isomopic in a 
(infinitely) thin region around surface S,. Len. in this region the wave field 
can bc separated into upgoing and downgoing waves. In addition, for tie 
Green’s functions we choose a homogeneous and isofxopic lower half space. 
This choice is justZed. because in the derivation of the Kirchhoff-Helmholtz 
mtegral we only considered the medium inside S. With this choice, the 
Green’s fumxions at z1 representpurely downgoing waves. If we choose 
surfaces S, and S, mco infinity (this is allowed since the sources are 
suplnved to be bcncath S,). then, equation (1) can be rewritten as an integral 
over S, only. By introducing P and S wave potentials in A we obtain two 
separate Integral relations similar 10 the one described above. One describes 
Ihe P wave in A due 10 a Green’s P wave soorce in A and another one which 
describes the S wave in A due lo a Green’s S wave source in A. 
Funhcrmore, we define P and S wave potentials at z1 for the wave field and 
for Ihc Green’s functions, according to 

[v],, z i[“C+ v&l,, , 
Pm2 

04 

it],, ^= p:’ [ vr; + vxr;],, (2b) 

Then, by applying ox-way wave equations for the P and S wave potentials 
at 7,. the two separate P and S Kirchhoff-Helmholtz integrals can be 
approximated by (aqsurnmg P wave sources in the lower half-space) 

and (assummg S wave sources in tie lower half-space) 

(3b) 

No1e thal these exprr~ons have the same simple form as the acoustic one- 
way Rayleigh II integrals. Furthermore, it should be emphasized that these 
simple elastic expressions (3a) and (3b) hold for arbitrarily inhomogeneous, 
anisotropic solids. The errors are of tie same order as the negligence of 
multiply converted waves. 

The elastic Kirchhoff-Helmboltz integral with back-propagating 
Green’s functions 

The one-way elastic rayleigh integrals discussed sofar describe forward 
wave field extrapolation: assuming the sources are in the lower half space z 
> q, the upgoing part of the elastic wave field at z, is extrapolated away 
from the sources lowards a point rA in the subsurface, z < ~1. In the 
followmg WC dcrlvc expressions for elastic inverse wave field 
extrapolalion, towards ihe sources. therefore we introduce the back- 

propagaiing Green’s functions Ga(r.r& and ,O_ Xr,r~.u), where * 
denotes complex conjugation. Using the back-propagating Green’s functions 
we may derive the following Kirchhoff-Hclmholtz integral 

U,(r*,o)= [zG:-g,,U].ndS. 
I 

(4) 
S 

This elotic Kirchhoff-Hclmholtz integral is exact and is equivalent 10 elastic 
Kirchhoff-Helmholtz imcgral (I). However. the back-propagating Green’s 
functions in equation (4) appear LO be a convenient choice when deriving 
onuse wax fieldextrapolation olxxators. 
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2 P and S inverse extrapolation 

One-way elastic Rayleigh integrals for inverse wave field 
extrapolation 

The seismic measurements U(r,o) and $r,o) are only available at surface 
Se. The contribution of the elastic Kirchhoff-Hehhholtz integral over 
cylindrical surface Sz to the wave field in A vanishes if R goes to infinity. 
However, for this situation it is not allowed to choose S, at infinite depth, 
analogous to the forward case, because, then, sub-volume V will no longer 
be source free, hence, the Kirchhoff-Helmholtz integral will no longer be 
valid. It can be shown, however, that the integral over S, is of the order of 
multiply reflected waves. So in the following we shall neglect this integral 
and only be concerned with the integral over S,. If the Green’s functions are 
due to a Green’s P wave source at r, and if the wave field is generated by 

P wave sources below zt, then the upgoing P wave potential @- in A. is 
described by (analogous to (3a)) 

C(r.4.0) = 2 (5a) 

With similar arguments, for S wave sonrces below zl, the upgoing S wave 

pMnuial ‘Pi in A, is described by (analogous to (3b)) 

Gb) 

In conclusion, assuming weak to moderate contm%s, integrals (5a) and (5b) 
describe non-recursive ‘true amplitude’ inverse extrapolation of primary P 
and S waves. respectively. 

Examples of elastic inverse wave field extrapolation 

We discuss the application of the inverse operator to the decomposed surface 
measurements with the aid of two numerical 2-D examples. In these 
examples we assume that the data is free from surface related multiples. 
Consider the model which is displayed in Figure 3a. A plane P wave 
source is buried at the depth of z = 2ooO m. The response at ~0 is shown in 
Figure 3b and 3c. Using equation (Sa) with elastic Green’s functions and the 
decomposed P-data (Fig.Jd) results in the data set depicted in Figure 3f. 
Note that the distorting propagation effects of tbe elastic overburden bave 
ken properly removed (compare with Figure 3a). The amplitude match with 
the exact result is very good (Figure 3h). Using the same model we now 
consider a buried plane SV wave source at z = 2000 m. The response at 
level z, is shown in Figure 4b and 4c. Using equation (Sb), exaapolation of 
the decomposed SVdata (Fig&l) results in the data set displayed in Figure 
4e. The distorting propagation effects of the elastic overburden have been 
removed for the greater pan (compare with Figure 4c). The amplitude match 
(Figure 4h) is less accurate then in the P wave example (Figure 3h). 
Apparently the assumption of ‘moderate contrasts’ is violated. 

Conclusions 

We derived one-way elastic Rayleigh II integrals for inverse extrapolation 
of P and S waves (relations (5a) and (5b) respectively. Assuming P wave 
sources below zA, equation (5a) expresses the upgoing P wave at rA in 
terms of the upgoing P wave at z,, and the back-propagating Green’s 
P wave at zo. Assuming S wave sources below zA, equation (5b) expresses 
the upgoing S wave at rA in terms of the upgoing S wave at z,, and the 
back-propagating Green’s S wave at Q,. The underlying assumption is that 
the contrasts in the inhomogeneous, anisotropic sub-surface are weak to 
moderate. For the examples that we showed, this assumption appears to be 

mow severe for S wave exrrapolatlon than for P wave extmpolalion 

We expect that the inverse one-way extrapolation operators for primary P 
and S waves will play a major role in the practice of prestackmigration of 
decomposed elastic data (Berkhout and Wapcnaar. 1988). 
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FIG. 1. Subvolume V, enclosed by surface S, in an in- 
homogeneous, anisotropic solid; V assumed to be source 
free. Full elastic Kirchhoff-Helmholtz integral (1) states elastic 
wave field at A in V can be computed when elastic wave field 
is known on S. 

FIG. 2. Configuration in which closed surface integral (1) 
may be replaced by open surface integrals (3a) and (3b). 
Upper half-space assumed to be source free. 
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P and S inverse extrapolation 3 

FIG. 3. (a) Complex overburden. Plane P-wave source buried 
at z = 2000 m. (b) Recorded vertical displacement at level 
z. (pseudo Pdata). (c) Recorded horizontal displacement at 
,level z. (pseudo St/-data). (d) Decomposed upgoing 4 data 
at level z. (true Pdata). (e) Decomposed upgoing ICY data 
at level z. (true SVdata). (9 Elastically inverse extrapolated 
upgoing P-data at z,,. (g) Exact upgoing P-wave at z,+ (h) Max- 
imum amplitude per trace of (9 (dotted line) and exact result 
(g) (solid line). 

FIG. 4. (a) Complex overburden. Plane SWwave source buried 
at z = 2000 m. (b) Recorded vertical displacement at level 
z. (pseudo Pdata). (c) Recorded horizontal displacement at 
level z. (pseudo SVdata). (d) Decomposed upgoing 4 data 
at level z. (true P-data). (e) Decomposed upgoing tiY data 
at level z. (true SV-data). (9 Elastically inverse extrapolated 
upgoing SV-data at z,. (g) Exact upgoing SV-wave at z,,. (h) 
Maximum amplitude per trace of (9 (dotted line) and exact 
result (g) (solid line). 
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