Inverse Elastic Wave Field Extrapolation

Abstract

The clastic Kirchhoff-Helmholtz integral expresses the components of the
monochromatic displacement vector at any point A in terms of the elastic
wave field at any closcd surface surrounding A. The volume inside and
outside the closed surface may be arbitrarily inhomogencous and
anisotropic. By introducing Green's functions for P and S waves, it is
shown that the elastic Kirchhoff-Helmholtz integral can be split into two
separate integrals; the first one expresses the P wave potential at A and a
second one expresses the S wave potential at A, both in terms of the elastic
wave field at the closed surface surrounding A. These integrals are then
transformed into one-way elastic Rayleigh-type integrals for forward and
inverse extrapolation of downgoing and upgoing P and S waves. The
inverse one-way elastic cxtrapolation operators, derived in this paper, are
the basis for a new prestack migration scheme for elastic data (Berkhout and
Wapenaar,1988).

Introduction

Berkhout and Wapenaar (1988) propose a new approach for processing of
clastic seismic data which consists of the following steps:

1.Decomposition of the multi-component seismic data into one-way P¥-P~,
P*.§—, $*-P~and S$*-S ~ data.

2.Elimination of the surface related multiple reflections and conversions.

3 Estimation of the elastic macro subsurface model from the P*-P ~ and $*-
S data.

4 Modeling of inversc onc-way extrapolation operators for primary P and
S waves.

5.Shot record migration of the P+-P =, P+.§ =, §*.P ~ and S*.S ~ data,
yielding the subsurface reflectivity in terms of Rfn R, Ripand RS,
optionally as a function of angle c.

6.Elastic inversion for the detailed velocity and density information
(cp,cs,p).

7. Lithologic inversion for the rock and pore parameters.

It is interesting to note that the actual elastic migration (step 5) is not more
complicated than acoustic shot record migration. Of course the quality of the
migrated sections will depend largely on the accuracy of the extrapolation
operators, which are modeled in step 4. The theory of the true amplitude
inverse extrapolation operators for primary P and S waves is the subject of
this paper. .

The elastic Kirchhoff-Helmholtz integral for inhomegeneous,
anisotropic solids

We consider a sub-votume V in an inhomogeneous, anisotropic solid see
Figure 1. The elastic wave field at any point A within V (source free) can be
calculated using the full elastic Kirchhoff-Helmholiz integral which reads
{De Hoop, 1958)

Un(ra.o) =§S[J: Gm-8mUlnds. M

where Up=U,,(r,.0) for m = 1, 2, 3 represents one component of the
monochromatic displacement vector U(r,,w) in A; U=U(r,®) and
1=1(r,0) represent the elastic wave field on S, due o0 sources outside V, in
terms of displacements and stresses, respectively; Gp=Gm(r.r4,0) and
=0 m(r.ra.@) represent the Green's functions on S, due to an impulse
force in the m-direction in A, in terms of displacements and stresses,
respectively; @ represents the radial frequency. In this paper we use equation
(1) as the starting point for the derivation of forward and inverse one-way
extrapolation operators for primary P and S wavces.
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One-way elastic Rayleigh integrals for forward wave field
extrapolation

Consider now the situation depicted in Figure 2, in which sub-volume V is
shaped as a pill-box. The (secondary) sources are supposed to be bencath
surface S;. If we assume that the medium is homogeneous and isotropic in a
(infinitely) thin region around surface S, then, in this region the wave field
can be separated into upgoing and downgoing waves. In addition, for the
Green's functions we choosc a homogeneous and isotropic lower half space.
This choice is justified, because in the derivation of the Kirchhoff-Helmholtz
integral we only considered the medium inside S. With this choice, the
Green's functions at z; represent purely downgoing waves. If we choose
surfaces SO and 8, into infinity (this is allowed since the sources are
supposed to be beneath S), then, equation (1) can be rewritten as an integral
over §, only. By introducing P and S wave potentials in A we obtain two
separale integral relations stmilar to the one described above. One describes
the P wave in A due 10 a Green's P wave source in A and another one which
describes the S wave in A due to a Green's S wave source in A.
Furthermore, we define P and S wave potentials at z, for the wave field and
for the Green's functions, according to

o), = —1;[V®‘+ 3 (a)
pw

and

[qul 2 ;l—){ [ Vr‘; + er\;]ll . (Zb)

Then, by applying onc-way wave equations for the P and S wave potentials
at 7y, the two separate P and S Kirchhoff-Helmholtz integrals can be
approximated by (assuming P wave sources in the lower half-space)

- [(ar;,q,) ;
Db o, 0) = -2 B ;(;l 5 i) z]dxdy. (3a)
and (assuming S wave sources in the lower half-space)
Wp(ra,m) ~ - +°°—‘—HM) "] 3
h(ra,@) = -2 B o s R ! dxdy. @b)

Note that these expressions have the same simple form as the acoustic one-
way Rayleigh IT integrals. Furthermore, it should be emphasized that these
simple elastic expressions {3a) and (3b) hold for arbitrarily inhomogeneous,
anisotropic solids. The crrors are of the same order as the negligence of
multiply converted waves.

The elastic Kirchhoff-Helmholtz integral with back-propagating
Green's functions

The one-way elastic Rayleigh integrals discussed sofar describe forward
wave field extrapolation: assuming the sources are in the lower half space z
> z,, the upgoing part of the elastic wave ficld at z; is extrapolated away
from the sources towards a point r, in the subsurface, z < z;. In the
following we derive expressions for elastic inverse wave field
extrapolalion, towards the sources. Thercfore we introduce the back-
propagating Green's functions G:n(r,r/\,(x)) and g;,.(r,rA.m), where *
denotes complex conjugation. Using the back-propagating Green's functions
we may derive the following Kirchhoff-Helmholtz integral

Unn(ra.0) =§ P Gm-8nUlnds. e
N

This elastic Kirchhoff-Hetmholtz integral is exact and is equivalent to elastic
Kirchhoff-Helmholtz integral (1). However, the back-propagating Green's
functions in cquation (4) appear to be a convenient choice when deriving
inverse wave field cxtrapolation operators.
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P and S inverse extrapolation

One-way elastic Rayleigh integrals for inverse wave field more severe for S wave extrapolation than for P wave extrapolation.
extrapolation

We expect that the inversc onc-way cxtrapolation operators for primary P
The seismic measurements U(r,) and 1(r,w) are only available at surface and S waves will play a major role in the practice of prestack migration of
So- The contribution of the elastic Kirchhoff-Helmholtz integral over decomposed elastic data (Berkhout and Wapenaar, 1988).
cylindrical surface S, to the wave field in A vanishes if R goes to infinity.
However, for this situation it is not allowed to choose S; at infinite depth, REFERENCES
analogous to the forward case, because, then, sub-volume V will no longer .
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valid. It can be shown, however, that the integral over S, is of the order of ; >
meeting, Anaheim.

multiply reflecied waves. So in the following we shall neglect this integral
and only be concerned with the integral over S, If the Green's functions are
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described by (analogous to (3a))
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D (ram =2 L ER @7 dxdy. (58)
pmz oz z,
With similar arguments, for S wave sources below z,, the upgoing S wave v ‘:I ! .
potential W}, in A, is described by (analogous to (3b)) z
+00
Ty 5
Fulram) =2 - ﬂ) ¥ dxdy. (5b)
pazl\ oz .
-00

In conclusion, assumning weak to moderate contrasts, integrals (5a) and (5b)
describe non-recursive 'true amplitude’ inverse extrapolation of primary P FiG. 1. Subvolume V, enclosed by surface S, in an in-
and § waves, respectively. homogeneous, anisotropic solid; V assumed to be source
free. Full elastic Kirchhoff-Helmholtz integral (1) states elastic
wave field at A in V can be computed when elastic wave field

We discuss the application of the inverse operator to the decomposed surface is known on S.
measurements with the aid of two numerical 2-D examples. In these
examples we assume that the data is free from surface related multiples.
Consider the model which is displayed in Figure 3a. A plane P wave
source is buried at the depth of z = 2000 m. The response at z, is shown in
Figure 3b and 3c. Using equation (5a) with clastic Green's functions and the
decomposed P-data (Fig.3d) results in the data set depicted in Figure 3f.
Note that the distorting propagation effects of the elastic overburden have
been properly removed (compare with Figure 3a). The amplitude match with
the exact result is very good (Figure 3h). Using the same model we now
consider a buried plane SV wave source at z = 2000 m. The response at
level z, is shown in Figure 4b and 4c¢. Using equation (5b), extrapolation of
the decomposed SV-data (Fig.4d) results in the data st displayed in Figure
4e. The distorting propagation effects of the elastic overburden have been
removed for the greater part (compare with Figure 4¢). The amplitude match
(Figure 4h) is less accurate then in the P wave example (Figure 3h).
Apparently the assumption of 'moderate contrasts’ is violated.

Examples of elastic inverse wave field extrapolation

Conclusions

We derived one-way elastic Rayleigh I integrals for inverse extrapolation
of P and S waves (relations (5a) and (5b) respectively. Assuming P wave
sources below z,, equation (5a) expresses the upgoing P wave at r, in
terms of the upgoing P wave at z; and the back-propagating Green's

P wave at z;, Assuming S wave sources below z,, cquation (5b) expresses secondary sources

the upgoing S wave at r, in terms of the upgoing S wave at z, and the

back-propagating Green's S wave at zy. The underlying assumption is that Fig. 2. Configuration in wh ich closed surface integral (1)
the contrasts in the inhomogeneous, anisotropic sub-surface are weak to may be replaced by open surface integrals (3a) and (3b).

moderate. For the examples that we showed, this assumption appears to be Upper half-space assume d to be source free.
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P and S inverse extrapolation
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FiG. 3. (a) Complex overburden. Plane P-wave source buried
atz = 2000 m. (b) Recorded vertical displacement at level
2, (pseudo P-data). (c) Recorded horizontal displacement at
level zy (pseudo SV-data). (d) Decomposed upgoing ¢ data
at level z, (true P-data). (e) Decomposed upgoing ¢, data
at level z, (true SV-data). (f) Elastically inverse extrapolated
upgoing P-data at z,. (g) Exact upgoing P-wave at z,. (h) Max-
imum amplitude per trace of (f) (dotted line) and exact resuit
(9) (solid line).

FIG. 4. (a) Complex overburden. Plane SV-wave source buried
atz = 2000 m. (b) Recorded vertical displacement at level
2z, (pseudo P-data). (c) Recorded horizontal displacement at
level z, (pseudo SV-data). (d) Decomposed upgoing ¢ data
at level z, (true P-data). () Decomposed upgoing ¥, data
at level zy (true SV-data). (f) Elastically inverse extrapolated
upgoing SV-data at z,. (g) Exact upgoing SV-wave at z,. (h)
Maximum amplitude per trace of (f) (dotted line) and exact
result (g) (solid line).
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