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SUMMARY 

A full 3-D wave field extrapolation technique is presented. It can 
be used for any type of subsurface structure, both with lateral 

and vertical velocity variations. 

The extrapolation is performed recursively in the space- 

frequency (x-y-~) domain with precalculated recursive Kirch- 

hoff extrapolation operators, that have been stored in a table. 
At the basis of the operator computation is the well-known 
phase-shift operator. Although this operator is exact for homo- 

geneous layers only, it is assumed that it may be applied locally 

in case of lateral inhomogeneties. Lateral velocity variations can 

then be handled by choosing the extrapolation operator 

according to the local value of the wavenumber, w/c. 

The operators can be designed such that they act as spatially 

variant high-cut filters. This option means that the evanescent 

field can be suppressed simultaneously with the extrapolation. 

The extrapolation method can be used both in prestack and 
poststack applications. We used it in zero-offset migration. Tests 

on synthetic and real data show the high quality of the method. 

The implementation yields a code that is vectorizable, which 
makes the method very suitable for vector computers. 

ODUCI-lON 

Many current 3-D migration techniques are only approximately 

valid in case of inhomogeneous media, e.g., 3-D time

migration, two-pass depth migration and 3-D depth migration 
based on operator splitting. If strong velocity variations occur in 

the subsurface, a one-pass, true 3-0, depth migration method 
should be used, (Yilmazet al.1987). 

The quality of such a method is determined by the wave field 

extrapolation. To be able to handle the lateral velocity variations 

correctly, we perform the extrapolation in the x-y-o domain 

(Berkbout, 1982, 1984). Vertical velocity variations are taken 
into account by dividing the model into small layers and by 

performing the extrapolation recursively from one depth level to 

the next. 
Some practical problems that have to be avoided in wave field 
extrapolation are: instability, inaccuracy, poor performance if 

steep dips ate present and spatial operator aliasing. 

In this paper we discuss a 3-D table-driven extrapolation scheme 

in which these problems have been solved. We design the 

extrapolation operators via the wavenumber-frequency (k,-k,-(o) 
domain. In this way we have control over accuracy and dip- 

angle performance; optionally it is possible to use the operators 

also for space-dependent high-angle and evanescent field 

suppression. 

Full 3-D wave field extrapolation is expensive and therefore 
special attention is paid to the efficiency. We calculate the 3-D 

extrapolation operators in advance and store them in a table. 

Also, the symmetry properties of the operators are used to 

reduce the number of calculations. 
We applied this wave field extrapolation method in a 3-D zo- 
migration scheme. 

WAVE FIFLD EXTRAPOLATION ‘II-rEQBy 

3-D Downward wave field extrapolation, from depth level zt to 

depth level z,+t = Zi+AZ, can be formulated in the x-y-w domain 

as: 

P(X~Y,Zi+~,~) = F[X,ybZ>k(X,y,~,~)l * P(X,YJi*W), (1) 

P denotes the temporal Fourier transform of the upgoing 

pressure field, 

F denotes the inverse wave field extrapolation operator, 

k is the local wavenumber, 

c is the propagation velocity of the medium and 

the symbol * denotes a two-dimensional space-dependent spatial 

convolution along the x- and y-coordinates. 

The extrapolation according to equation (1) should be applied 

recursively for all depth levels of interest. This way vertical 

velocity variations can be taken into account 

Both the quality and the efficiency of the extrapolation are 
determined by recursive operator F. The expression for F in the 

kx-ky-w domain is the well known phase-shift operator: 

(2) 

The symbol - denotes a spatial Fourier transform. To get short 

operators in the space domain, fit % is modified such that both 
phase and amplitude become smooth functions (no dis- 
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2 3-D table-driven migration 

continuous first derivatives at k2 = k,*+ ky2). Optionally a 
spatial high-cut filter is applied to suppress high dip- 
angle/evanescent waves. Then it is inverse Fourier transformed 

to the x-y-o domain where it is ready to be applied. 
The operator can be further optimized by an iterative procedure 
as introduced by Holberg (1988) for the 2-D case and adapted 
by Debeye (1988) for the 3-D case. 

QPERATOR TABLE 

Calculation of the operators during the extrapolation would slow 
down the speed of the algorithm. Also, each operator is likely to 
be used many times, either within one migration process, due to 
the recursive character of the extrapolation, or in other migration 
processes. Therefore, the operators are calculated in advance and 
stored in a table for a range of wavenumber values: 

k k +Ak, . . . , k,,,,,,-Ak, k,,,. mlnr mm 

During the extrapolation, the local value of the wavenumber, 

k = W/C(X,y,Zi), is determined after which the appropriate 
operator is selected from the table and applied to the data. 
A disadvantage of an operator table is that an actually required 
operator is not likely to be present. A solution is to compute the 
required operators by interpolation. We found that in general 
linear interpolation of real and imaginary parts gives good results 

if Ak is in the order of Aol(2c,,). 

We used the wave field extrapolation method as the basis for a 
zero-offset depth migration algorithm; it consists of the 
following two steps: 

1. Downward extrapolation, according to: 

P~(X,Y,Zi+l,W) = F[x,Ybz,2k(x,y,zi,w)l * Pz~(x,Y,zi,o)* (3) 

P,, denotes the temporal Fourier transform of the upgoing 
pressure field @o-data), 

Note that equation (3) is the same as equation (1) except for the 
so-called half velocity substitution (wavenumber k replaced by 
2k, ‘exploding reflectof assumption). 

2. Imaging by integrating over all frequency components of the 
frequency band of interest. This yields an estimate of the zo- 
reflectivity (t = 0), according to: 

1 
~RJx,y,z~+~)> = - Re G(z~+~,w) P,,(x,~,z~+~,o) dw. (4) 

A 0 

+,,> denotes the band-limited estimate of the zo-reflectivity, 
G is an optional weighting function. It can be used for depth 
variant spectral shaping, e.g., to compensate for absorption or to 
suppress coherent noise. 

These two steps should be applied recursively for all depth 
levels of interest. The procedure is visualized in Figure 1. 

COMPUTATIONAL ASPECTS 

In 3-D zo-migration large amounts of data are involved. 
Therefore it is important to pay attention to the computational 
aspects. The discretized version of equation (3) is: 

P,(qAX,rAy,zi+~,O) = 

M N 

xc c F[mAx,nAy,Az, 2k (qAx,rAy,zi,o)l > 
m-M W-N 

(5) 

P,[(q-m)Ax,(r-n)Ay,z,w] AxAy. 

q=l,numx, 
r=l,numy, 
numx denotes the number of traces in the x-direction, 
numy denotes the number of traces in the y-direction. 
the operator size is (2M+1)(2N+l). 

One complex addition is equivalent to two real additions, and 
one complex multiplication is equivalent to four real multi- 
plications and two real additions. 
Using this we can express the total number of floating point 
operations per monochromatic extrapolation step as: 

8(numx)(numy)(2M+1)(2N+l) fp-operations. (6) 

For the total migration scheme, we must multiply this result by 
the number of frequency components and by the number of 
extrapolation steps (we neglect the operator interpolation and the 
imaging step): 

8(numf)(numz)(numx)(numy)(2M+l)(2N+l) &operations. (7) 
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numf denotes the number of frequency components, 
numz denotes the number of extrapolation steps. 

A result like this must be interpreted with care. Only together 
with information about the computer power and its architecture 

(scalar e vector, parallel processing, add multiply overlap etc.) 

a good estimate of the performance is possible. 

A reduction of the number of fp-operations of about 70% (!) can 

be reached by using the fact that F is symmetric: 

WLY) = W-w) = WC-Y). (8) 

Our method is very well suited for implementation on a vector 

computer. Working per frequency component offers a natural 

way of dividing the problem into independent parts for parallel 

processing. These properties may contribute to an increased 
efficiency. This is very important because the extrapolation 

almost completely determines the speed of the migration 
algorithm. 

EXAMPLE / RESULTS 

To test the migration algorithm, synthetic exploding reflector 

data were generated. The subsurface model, shown in Figure 2, 

consists of a horizontal square part of a reflector below a dipping 
interface. In this model both lateral and vertical velocity 

variations are present. A time slice and a vertical cross section of 

the zo-response (only modeled for the reflector) are shown in 
Figure 3 and 4. A depth slice and a vertical cross section of the 
migrated result can be seen in Figure 5 and 6 respectively. 

Notice the good positioning of the horizontal reflector. Also the 

diffraction energy is focused well, 

Some parameters: temporal sampling interval At = 4 ms, 

frequency contents f,,,i,=20Hz., f,,,,,=bOHz., number of 
frequency components numf=32, velocity C,i,=2400 m/s and 

c,, = 3200 m/s , grid size 128x128~100 (numx,numy,numz), 

horizontal grid spacing Ax=75m and Ay=7.5 m, vertical grid 

spacing Az=5 m, number of operator points 25 x 25 (M = 12, 

N = 12), maximum angles of propagation used in the operator 

design c~~,,,~=45~ and ay,max =45O, number of operators 137 

(in the range from k,nin=0.077m-1 to k,,=0,424m-I). 
For this configuration the program required 3 hours user timeat 

a rate of 8.2 Mflop on a Convex Cl-XP. 

Mom examples will be discussed during the presentation. 

CONCLUSIONS 

3-D Table-driven wave field extrapolation can be a powerful 
tool in many seismic applications. We discussed the recursive 
use of the extrapolation in zo-migration. 

The example shows that the method can handle both lateral and 
vertical velocity variations: the reflectivity is positioned well and 

diffraction energy is focussed correctly. 

A good efficiency has been reached by using precalculated 

(optimized) operators in a table and by using the symmetry 
properties of the operators. 

The method is very well suited for vector computers. A parallel 

implementation can be realized in a natural way, because the 

frequency components are treated independently. These 
properties may also contribute to an increased efficiency. 
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IG. 1. Flow chart of 3-D zero-offset FIG. 2. Subsurface model used in qenera- FIG. 3. Zero-offset response of square 

migration scheme. tion of zero-offset data. Only response of reflector, time slice, t = 0.36 s. 
square reflector was modeled. 

-Y 

IG. 4. Zero-offset response of square FIG. 5. Table-driven migrated result, depth FIG. 6. Table-driven migrated result, x, I+ 

dlector, x, t-panel, y = 480 m. slice, z = 350 m. panel, y = 480 m. 
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