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SUMMARY 

A review is given on linear trace inversion, 

seismic migration and nonlinear multi-dimensional 

inversion. Basic expressions are given for the 

inversion operators involved. In particular, spectral 

versions of those expressions are discussed. It is 

argued that aTctra1 presentation is invaluable for -- 

the evaluation of inversion results. 

The spectral role of "initial estimates" in the 

inversion process is discussed. It is shown that for 

spectral components of the seismic data with a high 

signal-to- noise ratio inversion results are largely 

determined by the data; for spectral components of the 

seismic data with a low signal-to-noise ratio inversior 

results are largely determined by the initial estimate. 

It is concluded that in practical situations the amount _-- 
of detail that can be extracted from seismic data -- 

depends on the maximum available wave numbers k,, ky 

and kz, * the amount of trend that can be extracted from 

seismic data depends on the minimum available wave 

number kz. Detail and trend outside the above limits 

can never be extracted from the seismic data by (multi- 

dimensional) linearized inversion techniques, whether 

they are carried out in a recursive or nonrecursive 

way, but should be included as prior information in the 

initial estimate. 

During the presentation, the importance of the data 

acquisition geometry will be illustrated with examples. 

LNTRODUCTION 

Today, inversion is the most important subject in 

seismic research and development. Seismic inversion 

procedures have been proposed in terms of deconvolut- 

ion, trace inversion, migration and inverse scattering. 

The algorithms being used may be linear or nonlinear. 

4 very important aspect in seismic inversion is the 

Jniqueness of the inversion result. Particularly, in 

"ecursive techniques the question whether we converge 

to the correct solution or not formulates one of the 

lost difficult and important problems. 

I 

S 18.4 

In this paper the solution of linear and nonlinear 

inversion is critically investigated. It is argued th 

spectral properties of measurements are an essential 

issue in the evaluation of solutions of linearized 

inversion problems. 

INVERSION FOR THE TEMPORAL WAVELET l____--l___~ 

Consider the discrete time model of a seismic tral 

6 = SF t Ii, 
where T = reflectivity vector, 

S = seismic wavelet matrix, 

it = noise vector, 

(11 

$ = data vector (in terms of pressure). 

Using the data vector $ and an initial estimate of ?, 

indicated by ?o, we want to find a linear combination 

of $ and To that determines 3 in some optimum sense: 

< ;>= F; t G; 0 (Za) 

or making use of (11, 

<h= [FS]r++ F$ + C;, 

or, defining H= FS, 

<&=H; t do t F;. (2b) 

Using the least squares criterion, it can be easily 

shown that 

1 -I sTC-l 
n,n 

and 

STC,lnS + c;lr 1 
-1 

G= , , Gtr 

)r, in stationary situations, 

(3a) 

(3b I 

(3c) 

(3d) 
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2 Linearized inversion problems 

From (31 we may derive the important relation 

G= I - FS. 

Hence using to = STo, the least-squares solution of 

(21 can be formulated as 

<?>= q. t Ffi - so) I4al 

and 

<At>= G (“r,-9 + Fii. [4b) 
I II, 

bias variance 

If? is defined on a regular grid, expressions (41 can 

also be formulated in the frequency domain 

F(w) = s*(w) ; G(w) = 
R; ,(wl 

ISl&R;,,(w) IS&R; ,+I (5 , 

where R~,n(ol=Rn,n(wl/Rr ,.(wl and G(ol=l-F(~lS(wl. 

In expressions (51 S(w) is the Fourier spectrum of the 

seismic wavelet, R, ,(w) is the noise power spectrum 

and R, r(w) is the ieflectivity power spectrum. 

Using i5) we may write 

<R(w),_IS(w)12Rlo)tR~,n(~)Ro(WitS*(o)N(~) 

IS(w)12+R;I ,.+I 
, 

(6a) 

AR(w) = 
Rn,+l[Ro(w)-R(w)] +S*(w)N(w) 

lS(ol12+R; ,(wl , 

(6bl 

From expressions (61 we may conclude that (fig. 1): 

1. <R(w) >+R(w 

(solution i 

) for Rn ,(o)<<lS(wll 
2 

Rr $1 

s determined by the data; 

2. <R(w)> 'Rdw 
_ 

1 for R, ,,(wl>>lS(wlI 
2 
R, +@1 

[solution is determined by the init;al estimate). 

Hence for frequencies with S(w)=0 the data has no 

influence on the solution. Note that the low frequency 

part of range I defines the missing trend information 

in a seismic trace (along the time axis); the high 

frequency part of range I defines the missing detail 

(along the time axis). 

[II. INVERSION FOR THE SPATIAL WAVELET -p-e 

Consider the monochromatic discrete space model of 

!ero-offset seismic data (20 versionl: 

acz,,= s ~~~w(Zo,*l)~~Z~)t~(Zo), (71 

vhere i = 

W= 

s= 
i= 

J= 

zero-offset reflectivity vector, 

zero-offset propagation matrix, 

Fourier component of seismic wavelet, 

noise vector, 

zero-offset data vector. 

4ssuming the wavelet Fourier component unity (S(wi)=l) 

ind looking for the moment at the response from one 

iepth level only, expression (7) can be reformulated a! 

hz,) q  w(z0,g)i(z,)4(z01. (81 

late the complete similarity with discrete time model 

11). Hence, the least-squares solution is given by 

<i(z,P= $o(zml+ F(zm,zo)[hzo)-~o(~o~~ (9) 

tiith 

F= 
I 

-li+-~$N . (101 

In stationary situationswbecomes a space-invariant 

convolution operator along the x-coordinate and 

expression (10) may be formulated in the wave number 

domain 

8 k x’“+ = 
ok,,,,) 

Iitk XdJi) 12'Ki,N(kx,y) ’ 
(11) 

where $ N = %R N/KR R' 
, , * 

For solution (9) we may write 

N ‘i12GN NiotiTii 
<R> = , 

N 4 

lR12,RN,N 
. (12) 

From this expression we may conclude (fig. 21: 
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Linearized inversion problems 3 

zN,N(kx,ui) <'I~(kx,wi)12~R R(kx,wi) 9 
(solution is determined by the data) 

2. <ii(kx,wi),'iib(kx,Wi) for 

'N N(kx,wil>> l~(kx,~i)12iiR R(kx,wi I. 
(Sol&ion is determined by th; initia 1 estimate 

Hence for wave numbers with $kx,Wi)=o the data has 

I* <'(kx,wi) >'iiikx'wi) for 

no influence on the solution. Note that for frequency 

component wi wave number range I defines the missing 

lateral detail in the seismic data. 

IV. TRACE INVERSION AND MIGRATION ----_-_-______- 

Consider again the model for zero-offset data 

Now, if we want to apply broad-band linear inversion --- 
for both temporal wavelet S and spatial wavelet W for 

all depth levels then figure 3 shows the three areas 

that contribute differently to the solution (compare 

with figures 1 and 2). Note that Ik,l<kminco~max 

defines the missing trend and (lkzl>kmax, lkxl> 

kmaxsinamax 
defines the missing detail in the 

seismic data. 

In conclusion, any information in the inversion result 

outside the area (k minCoWmax*kmax) and 
(-kmaxsilla max,kmaxsingnax) is fully determined 

by the prior knowledge and not by the seismic data. - 

V. NONLINEAR INVERSION --__ 

In its most general form, seismic measurements may 

be represented by the nonlinear discrete model 

f = w,+ii, (13) 

where d defines the parameters of nonlinear model M, t 

represents the deviations from model M ("the noise") 

and P equals the measured seismic data. 

For a given initial estimateTo, the simulated seismic 

data is given by 

p’, = i(~,l. (14) 

ence, we may write for the residue 

IGo = [i(T) - k;,ll + ij. (15) 

f we linearize around lo, 

i( i) = i(a) t AoATo, 

he residue may be rewritten as 

p'-To = AoAxo t i. 

(16a) 

(16b) 

ote that coefficient matrix A, contains all partial 

erivatives aPo(i)/aho(j). Note also the similarity 

f (16b) with linear expressions (1) and (7). 

ence, the optimum least-squares estimate of parameter 

pdate A:,, is given by 

here 

’ ATC-l 
o N,N’ 

(17a) 

(17b) 

ence, we may conclude that by "piece-wise linearizat- 

on" a recursive inverse procedure may be formulated 

n=o,l 1: , . . . 

J+1 = I,, + F,,@-$) 

in = iq,, 
here F, is the least-squares inverse of A, I’ 

18b) 

the 

lements of A, being defined by the first derivatives 

f simulated measurements $r, with respect to 

arameters In. Knowing that in practical SitUatiOnS 

easurement vector P'is always defined in a limited 

red (see fig. 3) and taking into account that I,., is a 

inear operator, we may conclude that in area I para- 

eter vector I,, is not updated by the data. Taking - 

lso into account that wave propagation is assumed to 

ccur in a linear and time-invariant earth, the 

imulated data vector i',, is also not updated in area 

. This leads to the important result that parameter 

ector i is not updated at all in area I for any n. 

18a) 

I. CONCLUSION ---- 

Trend and detail ("area I") cannot be recovered 

rom seismic data and should be included as prior 

nformation. 
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4 Llneariad inversion problems 

FIG. 1. 3 frequency ranges that contribute differently to the 
inversion result. 

FIG. 2. 3 wavenumber ranges that contribute differently to 
the inversion result. 

FIG. 3.3 areas that contribute differently to inversion results. 

- 
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