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SUMMARY

A review is given on linear trace inversion,
seismic migration and nonlinear multi-dimensional
inversion. Basic expressions are given for the
inversion operators involved. In particular, spectral
versions of those expressions are discussed. It is
argued that a spectral presentation is invaluable for
the evaluation of inversion results.

The spectral role of “initial estimates” in the
inversion process is discussed, It is shown that for
spectral components of the seismic data with a high
signal-to- noise ratio inversion results are largely
determined by the data; for spectral components of the )
seismic data with a Tow signal-to-noise ratie inversion
results are largely determined by the initial estimate.
It is concluded that in practical situations the amount
of detail that can be extracted from seismic data
depends on the maximum available wave numbers kx’ ky
and kz; the amount of trend that can be extracted from
seismic data depends on the minimum available wave
number kz. Detail and trend outside the above limits
can never be extracted from the seismic data by (multi-
dimensional) linearized inversion techniques, whether
they are carried out in a recursive or nonrecursive
way, but should be included as prior information in the
initial estimate.

During the presentation, the importance of the data
acquisition geometry will be illustrated with examples,

INTRODUCTION

Today, inversion is the most important subject in
seismic research and development. Seismic inversion
procedures have been proposed in terms of deconvolut-
ion, trace inversion, migration and inverse scattering.
The algorithms being used may be linear or nonlinear.

A very important aspect in seismic inversion is the
uniqueness of the inversion result. Particularly, in
recursive techniques the question whether we converge
to the correct solution or not formulates one of the

LT?St difficult and important problems.

In this paper the solution of Tinear and nonlinear
inversion is critically investigated. It is argued that
spectral properties of measurements are an essential
issue in the evaluation of solutions of linearized
inversion problems.

INVERSION FOR THE TEMPORAL WAVELET

Consider the discrete time model of a seismic trace

b =SF + A, {1)
where 7t = reflectivity vector,
S = seismic wavelet matrix,
# = noise vector,

§ = data vector {in terms of pressure).
Using the data vector p and an initial estimate of ¥,
indicated by ?o, we want to find a linear combination
of p and ?0 that determines ¥ in some optimum sense:

<fo= FB + CFO (2a)
or making use of (1),
<r>= [FSIF + Fn + C?o
or, defining H= F§,
> -+ > >
<r>=Hr + (;ro +Fn. (2b)

Using the least squares criterion, it can be easily
shown that

-1
F=[sTC,]1ns+c;1r] s'c;t, (3a)
and
T.-1 17
G=[S Cn,nS+Cr,r] Cl",r‘ (3b)
or, in stationary situations,
T aTla
F=[SS +€, ¢l s (3c)
c-[ss+c cl]c ¢l
[ 00 Cie| G €l (34)
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Linearized inversion problems

From (3) we may derive the important relation
G=1- FS.

Hence using Bo = S?o, the least-squares solution of
{(2) can be formulated as

<Po= 7 +F - 3) (42)
and
<4f>= G (’FO-F") + F1. (4b)
| S—— ]

bias variance
If ¥ 1s defined on a regular grid, expressions (4) can

also be formulated in the frequency domain

R (w)

n,n
15{w)] Ry, lo

= )

Flu) = ; Glu) =
IStw)ZeR) )

5
)()

where Rh,n(w)=Rn,n(“)/Rr,r(“) and Glw)=1-F(w)S{u).

In expressions (5) S(w) is the Fourier spectrum of the

seismic wavelet, Rn n(m) is the noise power spectrum
and R, r(m) is the reflectivity power spectrum.

]
Using (5) we may write

150)PR( 4R (0)R(0)45% (0 )N(w)

<Rlw)>= 7
15t P48, ()

(6a)

9 Ry ()R] #5HNC)
15w} IZ+R'n’n(w)

AR(w) = (6b}

From expressions {6) we may conclude that (fig. 1):

1. <R(6) >R(u) for R, p(w)<<|S(w) 7R, (o)
(solution is determined by the data)

2. <Rlu)> Rfu) for R ((w)>>I5(w) 2R, (o)
(solution is determined by the initial estimate).

Hence for frequencies with S(w)=o0 the data has no
influence on the solution. Note that the low frequency
part of range I defines the missing trend information
in a seismic trace {along the time axis); the high
frequency part of range I defines the missing detail

(along the time axis).

ITI. INVERSION FOR THE SPATIAL WAVELET

Consider the monochromatic discrete space model of
zero-offset seismic data (2D version):

> M > +
Plzg)= § 4%, Wiz, 29)R(z;)9M(z,), (7)

where R = zero-offset reflectivity vector,
W= zero-offset propagation matrix,
S = Fourier component of seismic wavelet,
ﬁ = noise vector,
B = zero-offset data vector.

Assuming the wavelet Fourier component unity (S(wi)=1)
and looking for the moment at the response from one
depth Tevel only, expression (7) can be reformulated as
> > +>
Plzy) =Wz ,z )R(z ) +N(z). (8)
Note the complete similarity with discrete time model
(1). Hence, the least-squares solution is given by

<Rlz,P= Ro(z)+ Flzg,z,) [Pz )-Folz)]  (9)

with
F-[wiclwacl ] We! (10)
N,N R,R N,N *
In stationary situations W becomes a space-invariant

convolution operator along the x-coordinate and
expression (10} may be formulated in the wave number

domain
~ W*(kx,wi)
Fllysuq) = — WD ,
lw(kx’“’i” +RN,N(kX’mi)
Nl _ ~ "~
where RN,N = RN,N/RR,R‘
For solution (9) we may write
WIZRR, RN
NN O (12)

<‘E> T I R
Ll +RN,N

From this expression we may conclude (fig. 2):
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. <R(kx,w )>—>R(kx,w ) for

Ry k) << Ky 0 ) 12RG plky o)
(solution is determined by the data)
2. <’R\"(k )>+Ro(kx, 'I) for
N N kgowq) >>”"(kx’“’ M RR rikyous)-
(so]ut1on 1s determined by the initial estimate)

Hence for wave numbers with w
no influence on the solution.
component g

X,w1)-o the data has
Note that for frequency
wave number range I defines the missing

lateral detail in the seismic data.

IV. TRACE INVERSION AND MIGRATION

Consider again the model for zero-offset data

M
Plzg) = 5 2, Wizg,zp)R(z,) il z,). (13)

Now,
for both temporal wavelet S and spatial wavelet W for

if we want to apply broad-band linear inversion
all depth levels then figure 3 shows the three areas

that contribute differently to the solution (compare

Note that |k <k
defines the missing trend and (]kz[>k
kmaxsmamax
seismic data.

with figures 1 and 2).

ITI'H] max

max Ikx|>
defines the missing detail in the

In conclusion, any information in the inversion result

min®%*max>Kmax! 2nd
(-kmaxsmamax,kmaxsmumaX is fully determined

by the prior knowledge and not by the seismic data.

outside the area (k

V. NONLINEAR INVERSION

In its most general form, seismic measurements may
be represented by the nonlinear discrete model

3
+

= W, (13)
where X defines the parameters of nonlinear model M, N
represents the deviations from model M ("the noise")
and P equals the measured seismic data.

For a given initial estimateifo, the simulated seismic

data is given by

| parameters A

> > P

Py = M(X,). (14)
Hence, we may write for the residue

P-P, = [M(X) - M)+ K (15)

>

If we linearize around Ao,

M(R) = WX )) + Ak (162)
the res1due may be rewr1tten as

- —AM . {16b)

Note that coefficient matrix Ao contains all partial
derivatives 3P0(i)/axo(j). Note also the similarity
of {16b) with linear expressions (1) and (7).

Hence, the optimum least-squares estimate of parameter

update AA is given by
F (P P ), (17a)
where
-|aATcl A +c 'alc: (17b)
A Cy vAo oNN

Hence, we may conclude that by "piece-wise linearizat-
a recursive inverse procedure may be formulated
{n=0,1,...):

Tnep = n * F (=B
with

P, = M), (18)
where F is the least-squares inverse of A‘ the
e1ements of AA being def1ned by the first derlvatives
of SImulated measurements P with respect to
Know1ng that in practical situations
measurement vector Pis always defined in a limited
area (see fig. 3) and taking into account that Xn is a
1inear operator, we may conclude that in area [ para-
meter vector Xﬁ is not updated by the data. Taking
also into account that wave propagation is assumed to
occur in a linear and time-invariant earth, the
simulated data vector 3ﬁ is also not updated in area
1. This leads to the important result that parameter
vector }ﬁ is not updated at all in area I for any n.

ion"

(18a)

YI. CONCLUSION

Trend and detail {"area I") cannot be recovered
from seismic data and should be included as prior
information.
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Prequency range 1 1 solution detexmined largely by the initial estimate Wave number range I  : solution largely determined by the initial estimate
Prequancy range 11 1 solution determined largely by the data Wave number range II ¢ solution largely determined by the data

Wave number range 1II : solution determined by initial estimate and data

lutd by initial estimate and data

range IIX 3

FIG. 2. 3 wavenumber ranges that contribute differently to

Fia. 1. 3 frequency ranges that contribute differently to the
the inversion result.

inversion result.

prior knowledge area
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black area: solution determined by the data
grey area : solution determined by the data and tha initial estimate
white area: solution determined by the initial estimate

Fia. 3. 3 areas that contribute differently to inversion resuits.

820



