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Summary

Inverse scattering, seismic interferometry, and focusing are sub-

jects usually studied as independent problems in different re-

search areas. We speculate that a physical connection exists

between them because the equations that rule these scattering

principles have a similar functional form. With a visual ex-

planation of the relationship between these principles, we de-

scribe the importance of the interaction between the causal and

acausal Green’s functions and provide physical insight to em-

phasize the connection between these principles. Finally, we

show how to reconstruct the Green’s function that radiates from

a location where there is no source or receiver, going beyond

seismic interferometry.

Introduction

Consider an incident plane wave, created by an array of sources,

that is distorted due to the variations of the velocity inside the

overburden (i.e., the portion of the subsurface that lies above

the scatterer) as illustrated in Figure 1. Since we don’t know

the characteristics of the wavefield when it interacts with the

region of the subsurface that includes the scatterer, it is difficult

to reconstruct the properties of the scatterer without knowing

the medium. We would like to create a special incident wave

that, after interacting with the overburden (which is a scatter-

ing medium), collapses to a point in the subsurface creating a

buried source, as illustrated in Figure 2. In this case, assum-

ing that the medium around the scatterer is known, we would

know the shape of the wavefield that probes the scatterer and

partially remove the effect of the overburden, which would fa-

cilitate more accurate imaging of the scatterer. With such a spe-

cial incident wave, we intend to compensate for the scattering

as well as the propagation aspects of the overburden.

The construction of this special incident wave in two and three

dimensions still needs further investigation (Wapenaar et al.,

2011). In this work we show the insights gained by comparing

several scattering principles for a one-dimensional problem.

Inverse scattering, seismic interferometry, and focusing are sub-

jects usually studied in different research areas such as seis-

mology (Aki and Richards, 2002), quantum mechanics (Rod-

berg and Thaler, 1967), optics (Born and Wolf, 1999), non-

destructive evaluation of material (Shull, 2002), and medical

diagnostics (Epstein, 2003).

Inverse scattering (Chadan and Sabatier, 1989; Gladwell, 1993;

Colton and Kress, 1998) is the problem of determining the per-

Figure 1: An incident plane wave created by an array of sources

is injected in the subsurface. This plane wave is distorted due

to the variations in the velocity inside the overburden (i.e., the

portion of the subsurface that lies above the scatterer). When

the wavefield arrives in the region that includes the scatterer,

we do not know its shape.

Figure 2: Focusing of the wavefield at depth. A special incident

wave, after interacting with the overburden, collapses to a point

in the subsurface creating a buried source.

turbation of a medium (e.g., of a constant velocity medium)

from the field scattered by this perturbation. In other words,

one wants to reconstruct the properties of the perturbation from

a set of measured data. Inverse scattering takes into account the

nonlinearity of the inverse problem, but it also presents some

drawbacks: it may be improperly posed from the point of view

of numerical computations (Dorren et al., 1994), and it requires

data recorded at locations usually not accessible due to practi-

cal limitations.

Seismic interferometry (Wapenaar et al., 2005; Curtis et al.,

2006; Schuster, 2009) is a technique that allows one to recon-

struct the response between two receivers from the cross-corre-

lation of the wavefield measured at these two receivers which

are excited by uncorrelated sources surrounding the studied

system. In the seismic community, this technique is also known
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as the virtual source method (Bakulin and Calvert, 2006); this

refers to the fact that the new response is reconstructed as if

one receiver had recorded the response due to a virtual source

located at the other receiver position.

In this paper, the term focusing (Rose, 2001, 2002b) refers to

the technique of finding an incident wave that collapses to a

spatial delta function δ (x− x0) at the location x0 and at a pre-

scribed time t0 (i.e., the wavefield is focused at x0 at t0). In

a one-dimensional medium, we deal with a one-sided problem

when observations from only one side of the perturbation are

available (e.g., due to the practical consideration that we can

only record reflected waves); otherwise, we call it a two-sided

problem when we have access to both sides of the medium and

account for both reflected and transmitted waves.

We refer to the subjects discussed above as scattering princi-

ples because they are all related, in different ways, to a scat-

tering process. These principles are usually studied as iso-

lated problems but they are related in various ways; hence,

understanding their connections offers insight into each of the

principles and eventually may lead to new applications. This

work is motivated by a simple idea: because the equations that

rule these scattering principles have a similar functional form,

there should be a physical connection that could lead to better

comprehension of these principles and to possible applications

(e.g., Figure 2).

Visual tour

In this section, we show the relationship between different scat-

tering principles using figures which lead the reader toward

a visual understanding of the connections between the prin-

ciples. Figure 3 illustrates a scattering experiment in a one-

dimensional acoustic medium where an impulsive source is lo-

cated at position x = 1.44 km within the scattering region, as

shown in Figure 5. The excited wavefield, a band-limited spa-

tial delta function, propagates toward the discontinuities in the

model, interacts with them, and generates outgoing scattered

waves. We use a time-space finite-difference code to simulate

the propagation of the one-dimensional waves and to produce

the numerical examples shown in this section. The computed

wavefield is shown in Figure 3 and it represents the causal

Green’s function of the system, G+. Causality ensures that the

wavefield is non zero only in the region delimited by the first

arrival (i.e., the direct waves).The slope of the lines, represent-

ing the first arrival, depends on the velocity model of Figure

4.

Due to practical limitations, we are usually not able to place

a source inside the medium we want to probe, which raises

the following question: Is it possible to create the wavefield

illustrated in Figure 3 without having a real source at the posi-

tion x = 1.44 km? An initial answer to such question is given

by seismic interferometry. This technique allows one to re-

construct the wavefield that propagates between a receiver act-

ing as a virtual source and other receivers located inside the
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Figure 3: Scattering experiment with a source located at x =
1.44 km. The traces are recorded by receivers located along the

model shown in Figure 4.

medium (Wapenaar et al., 2005). This technique yields a com-

bination of the causal wavefield and its time-reversed version

(i.e., acausal), which is due to the fact that the reconstructed

wavefield is propagating between a receiver and a virtual source.

Without a real (physical) source, one must have non-zero inci-

dent waves to create waves that emanate from a receiver. The

fundamental steps to reconstruct the Green’s function are (Cur-

tis et al., 2006)

1. measure the wavefields G+(x,xsl) and G+(x,xsr) at

a receiver located at x (x varies from −1 km to 3 km)

excited by impulsive sources located at both sides of the

perturbation xsl and xsr (a total of two sources in one

dimension) as shown in Figure 5;

2. cross-correlate G+(x,xsl) with G+(xvs,xsl), where

xvs = 1.44 km and vs stands for virtual source;

3. cross-correlate G+(x,xsr) with G+(xvs,xsr);
4. sum the results computed at the two previous points to

obtain G+(x,xvs);
5. repeat this for a receiver located at a different x.

The causal part of the wavefield estimated by seismic interfer-

ometry is shown in Figure 6. It is consistent with the result

of the scattering experiment of Figure 3 produced with a real

source located at x = 1.44 km.

We thus have two different ways to reconstruct the same wave-

field, but often we are not able to access the part of the medium

we want to study and hence we can’t place any sources or re-

ceivers inside it. In this case we only have access to reflected

waves R(t) measured on the left side of the perturbation, i.e.

the reflected impulse response measured at x = 0 km due to

an impulsive source placed at x = 0 km. This further limitation

raises another question: Can we reconstruct the same wavefield

shown in Figure 3 having knowledge only of the scattering data

R(t)? Since there are neither real sources nor receivers inside

the perturbation, we anticipate that the reconstructed wavefield

consists of a causal and an acausal part.

For this one-dimensional problem, the answer to this question

is given by Rose (2001, 2002a). He shows that we need a partic-

ular incident wave in order to collapse the wavefield to a spatial
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Figure 4: Velocity and density profiles of the one-dimensional

model. The perturbation in the velocity is located between x =
0.3 km and x = 2.5 km and c0 = 1 km/s. The perturbation in

the density is located between x = 1.0 km and x = 2.5 km and

ρ0 = 1 g/cm3.
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Figure 5: Diagram showing the locations of the real and virtual

sources for seismic interferometry. xsl and xsr indicate the two

real sources. xvs shows the virtual source location.

delta function after it interacts with the medium, and that this

incident wave consists of a spatial delta function followed by

the time-reversed solution of the Marchenko equation, as illus-

trated in Figure 7. Such a solution is obtained by transforming

the reflection data.

The Marchenko integral equation (Lamb, 1980; Chadan and

Sabatier, 1989) is a fundamental relation of one-dimensional

inverse scattering theory. It is an integral equation that relates

the reflected scattering amplitude R(t) to the incident wave-

field u(t, t f ) which creates a focus in the interior of the medium

and ultimately gives the perturbation of the medium. The one-

dimensional form of this equation is

0 = R(t + t f )+u(t, t f )+

∫ t f

−∞
R(t + t ′)u(t ′, t f )dt ′, (1)

where t f is a parameter that controls the focusing location. t f

−1 0 1 2 3
0

1

2

3

T
im

e
 (

s
)

Distance (km)

Figure 6: Causal part of the wavefield estimated by seismic

interferometry when the receiver located at x = 1.44 km acts as

a virtual source.

t

Time-reversed

solution of the

Marchenko equation

Figure 7: Incident wave that focuses at t = 0 s, built using the

iterative process discussed by Rose (2002a).

corresponds to the one-way travel time from x = 0 km to the

location where the wavefield is focused at t = 0 s. We solve

the Marchenko equation, using the iterative process described

in detail in Rose (2002a), and construct the particular incident

wave that focuses at location x = 1.44 km. After 7 steps of

the iterative process, we inject the incident wave in the model

and compute the time-space diagram shown in the top panel

of Figure 8: it shows the evolution of the wavefield when the

incident wave is the particular wave computed with the iterative

method. The bottom panel of Figure 8 shows a cross-section of

the wavefield at focusing time t = 0 s: the wavefield vanishes

except at location x = 1.44 km; hence the wavefield focuses at

this location.

We create a focusing at a location inside the perturbation with-

out having a source or a receiver at such a location and without

any knowledge of the medium properties; we only have access

to the reflected impulse response measured on the left side of

the perturbation. With an appropriate choice of sources and re-

ceivers, this experiment can be done in practice (e.g., in a lab-

oratory). Figure 8 however does not resemble the wavefields

shown in Figures 3 and 6. But if we denote the wavefield in

Figure 8 as w(x, t) and its time-reversed version as w(x,−t),
we obtain the wavefield u(x, t) = w(x, t) +w(x,−t) shown in

Figure 9. With this process, we effectively go from one-sided

to two-sided illumination using reflected waves recorded only
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Figure 8: Top: After 7 steps of the iterative process described

in Rose (2002a), we inject the particular incident wave in the

model and compute the time-space diagram. Bottom: cross-

section of the wavefield at t = 0 s. The first arrival at t = 0 s is

non zero at x = 1.44 km, and the wavefield for x < 1.44 km has

a zero crossing at t = 0 s.

from one side of the perturbation. At early times, waves are

propagating only from the left in Figure 8, while in Figure 9

there are waves propagating from both sides. Burridge (1980)

shows similar diagrams and explains how to combine such di-

agrams using causality and symmetry properties. The upper

cone in Figure 9 corresponds to the causal Green’s function

and the lower cone represents the acausal Green’s function; we

see that the relationship between the two Green’s functions is a

key element. Note that the wavefield in Figure 9, with a focus

in the interior of the medium, is based on reflected data only.

We did not use a source or receiver in the medium, and did not

know the medium. All necessary information is encoded in the

reflected waves.

Conclusions

In the Visual Tour section of this paper, we described the con-

nection between different scattering principles, showing that

there are three distinct ways to reconstruct the same wavefield.

A physical source, seismic interferometry, and inverse scatter-

ing theory allow one to create the same wavestate (see Figure 3)

originated by an impulsive source placed at a certain location xs

(x = 1.44 km in our examples). Seismic interferometry tells us

how to build an estimate of the wavefield without knowing the

medium properties, if we have a receiver at the same location xs

of the real source and sources surrounding the medium. Inverse

scattering goes beyond and allows us to focus the wavefield in-
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Figure 9: Wavefield that focuses at x = 1.44 km at t = 0 s with-

out a source or a receiver at this location. This wavefield con-

sists of a causal and an acausal part.

side the medium (at location xs) without knowing its properties,

using only reflected waves recorded at one side of the medium.

We show that the interaction between causal and acausal wave-

fields is a key element to focus the wavefield where there is no

real source.

We speculate that many of the insights gained in our one-di-

mensional framework are still valid in three dimensions. An

extension of this work in two or three dimensions would give

us the theoretical tools for many useful practical applications.

For example, if we knew how to create the three-dimensional

version of the incident wavefield shown in Figure 7, we could

focus the wavefield to a point in the subsurface to simulate a

source at depth and to record data at the surface (Figure 2);

these kind of data are of extreme importance for full wave-

form inversion techniques (Brenders and Pratt, 2007) and sub-

salt imaging (Sava and Biondi, 2004). Furthermore, we could

possibly concentrate the energy of the wavefield inside a hy-

drocarbon reservoir to fracture the rocks and improve the pro-

duction of oil and gas (Beresnev and Johnson, 1994).
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