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Summary

Acoustic daylight imaging (i.e., the principle of using
passive noise measurements to derive the reflection
response and, subsequently, form an image of the Earth’s
interior) is based on a relation between reflection and
transmission responses derived by Claerbout in 1968.
Although this derivation applies to horizontally layered
media, Claerbout conjectured that a slightly modified
form applies to 3-D inhomogeneous media as well. In
this paper we prove this conjecture and we analyze a
variant related to interferometric imaging (i.e., inversion
of crosscorrelated data) as discussed by Schuster (2001).

Introduction

In 1968 Claerbout showed that the reflection response of a
horizontally layered medium can be synthesized from the
autocorrelation of its transmission response (Claerbout,
1968). This implies that, when a natural noise source in
the Earth’s subsurface emits waves to the surface, pas-
sive measurements of the noise at the surface suffice to
compute the reflection response of the Earth’s subsur-
face. The seismic wavelet in this synthesized reflection
response is the autocorrelation of the noise source in the
subsurface. The principle of using passive noise measure-
ments to derive the reflection response and, subsequently,
form an image of the Earth’s interior, was coined “acous-
tic daylight imaging”.

The derivation in the 1968 paper was strictly one-
dimensional. Later Claerbout conjectured for the 3-D sit-
uation that “by crosscorrelating noise traces recorded at
two locations on the surface, we can construct the wave
field that would be recorded at one of the locations if
there was a source at the other”. Rickett and Claerbout
(1999) discuss several applications of this principle (in-
cluding helioseismology and reservoir monitoring) as well
as numerical modeling studies to confirm the conjecture.
The modeling studies showed that “longer time series, and
a white spatial distribution of random noise events would
be necessary for the conjecture to work in practice”.

Schuster (2001) verified the conjecture for laterally vary-
ing media by applying the method of stationary phase to
multifold Kirchhoff integrals. Also he analyzed variants
of the principle, involving crosscorrelations of different re-
ceiver traces in one and the same seismic shot record. He
used the term “interferometric imaging” for any algorithm
that inverts crosscorrelated data. Schuster’s paper clearly
shows how the correlation of specific events leads to new
events but it does not provide a general proof of Claer-
bout’s conjecture.

In this paper we employ a reciprocity theorem of the cor-
relation type to obtain general relations between reflec-
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tion and transmission responses, including their coda, for
arbitrary inhomogeneous 3-D media. One of these rela-
tions proves Claerbout’s conjecture for the 3-D situation
and gives insight in the requirements with respect to the
spatial distribution of random noise events. Another re-
lation validates the interferometric imaging principle for
the general 3-D situation and accounts for what Schuster
calls “other stuff”.

One-way reciprocity theorem

We use acoustic reciprocity as a starting point to de-
rive the relations between reflection and transmission re-
sponses. Acoustic reciprocity formulates a relation be-
tween two acoustic states in one and the same domain
[de Hoop (1988), Fokkema and van den Berg (1993)]. We
distinguish between two-way and one-way reciprocity the-
orems of the convolution type and of the correlation type.
In this paper we choose to work with the one-way reci-
procity theorem of the correlation type. The choice for
‘one-way’ stems from the fact that the concepts of reflec-
tion and transmission apply to downgoing and upgoing
wave fields (rather than to full wave fields). One-way
reciprocity theorems are based on a coupled system of
one-way wave equations for flux-normalized downgoing
and upgoing waves and hold for primary and multiply re-
flected waves with any propagation angle in 3-D inhomo-
geneous media (Wapenaar and Grimbergen, 1996). The
reason for choosing the correlation type is obvious: both
Claerbout’s conjecture about acoustic daylight imaging
as well as Schuster’s proposal for interferometric imaging
are based on crosscorrelated data.

We define a plan-parallel domain D embedded between
surfaces 0Dg and 8Dy, at depth levels x3 o +€ and z3 m —e,
respectively. The two acoustic states will be denoted by
subscripts A and B. We assume that in domain D the
medium parameters in both states are identical, lossless
and 3-D inhomogeneous. Furthermore, domain D is as-
sumed to be source-free. For this situation, the one-way
reciprocity theorem of the correlation type reads in the
space-frequency (x,w) domain

{(P) P} — (P7)" P5}d°x = (1)

8Dg

/ {(PE)'PE — (PT)"P5}dx,
D m

where Pt and P~ are flux-normalized downgoing and up-
going wave fields and * denotes complex conjugation. In
the derivation of this theorem evanescent waves have been
neglected; all propagating modes (including multiple re-
flections) are accounted for. Note that for the special case
in which the wave fields in states A and B are identical,
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equation (1) states that the net power-flux through sur-
face 9Dy 1s equal to the net power-flux through surface
9D,,. In the following the wave fields in states A and B
will be chosen different from each other and equation (1)
will be used to derive relations between the reflection and
transmission responses of the inhomogeneous medium in
domain D.

Proof of Claerbout’s conjecture

We consider the configuration of Figure 1. We define a
free surface at zs, i.e., just above 8Dy, and a homoge-
neous source-free half-space below 9D,,. For states A and
B we choose sources for downgoing waves at x4 and xp at
the free surface, that is, we define x4 = (x#,4,%3,0) and
xp = (XH,B,%3,0), where xg denotes the horizontal co-
ordinate vector: xg = (z1,22). In both states, the total
downgoing wave field at 9Dy consists of the superposi-
tion of a spatial delta function directly below the source
and the downward reflected upgoing wave field due to the
presence of the free surface. For state A this is illustrated
in Figure 1. Hence, for x at 9Dy we have

PX(X,XA,LU) = 5(XH—XH7A)SA(LU)

+rP, (x,xa4,w), (2)
d(xg —xH,B)sB(W)

+rPg(x,x5,w), (3)
R(x,x4,w)sa(w), (4)
R(x,xp,w)sp(w), (5)

where sa(w) and sp(w) are the source spectra for both
states, r is the reflection coefficient of the free surface
(r = —1) and R(x,x4,w) is the reflection response of the
inhomogeneous medium in D, including all internal and
free surface multiples, for a source at x 4 and a receiver at
x. A similar remark applies to R(x,x5,w). At 3D, there
are only downgoing waves since we assumed that the half-
space below 9D, is homogeneous and source-free. Hence,
for x at 9D,, we have

Ph(x,xp,w) =

P, (x,xa,w) =

Pg(x,xp,w) =

PX(X,XA,w)

I
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Pg(x,xB,w)

P, (x,xa,w) =

Fig. 1: Domain D between surfaces 9Dy and 0Dy,. The
medium in D is inhomogeneous in the x1-, T2- and x3-
directions. There is a free surface just above 8Dy; the half-
space below 9Dy, is homogeneous and source-free.

where T(x,x4,w) is the transmission response of the in-
homogeneous medium in D, including all internal and
free surface multiples. A similar remark applies to
T(x,xp,w). Substitution of equations (2) through (8)
into equation (1), using r = —1 and R(xa,xp,w) =
R(xB,xa4,w), and dividing both sides of the equation by
s%(w)sp(w) yields

5(XH,B — XHyA) — 2§R[R(XA,XB7Q))]

=/ T* (%, x4, 0)T(x, x5,0)d’x,  (9)
8D

where R denotes the real part. Using reciprocity for the
transmission responses [T(xa,x,w) = T(x,x4,w) etc.]
and reorganizing the order of the terms we obtain

2§R[R(XA,XB,Q))] = 5(XH,B — XHyA)

_/ T* (x4, %, 0)T(x5, %, 0)dx.  (10)
D

Equation (10) shows that the real part of the reflection
response can be obtained from the transmission response.
Since the reflection response is causal, the imaginary part
can be obtained via the Hilbert transform of the real part.
Alternatively, 2%[R(XA,XB,w)] can be transformed to
the time domain and subsequently be multiplied by the
Heaviside step-function, yielding R(xa,x5,t). The valid-
ity of equation (10) is confirmed with a numerical exper-
iment in Figures 2 and 3.
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Fig. 2: Syncline model

Note that we have nearly achieved the proof of Claer-
bout’s conjecture. The term T™* (x4, x, w)T(x5,X, w) rep-
resents the crosscorrelation of traces recorded at two lo-
cations (XA and XB) on the surface for a source at x in
the subsurface; the term R(xa,xp,w) is the wave field
that would be recorded at one of the locations (xa4) if
there was a source at the other (XB). The main discrep-
ancy with the conjecture is the integral in equation (10)
over all possible source positions x at surface 9D,,. It
can not be evaluated in practice because the transmission
responses are not available for all individual source po-
sitions X. To remedy this, we will assume uncorrelated
noise sources in the subsurface. The procedure is as fol-
lows. We apply an inverse Fourier transform to all terms
in equation (10) and discretize the integral, according to
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Fig. 3: Verification of equation (10) for the 2-D inhomo-
geneous medium in Figure 2. (a) Transmission response
T(xa,x,w) (displayed in the time domain) for a fized
(0,800) and a range of receiver positions X a
at the acquisition surface. (b) Correlation of T(xa,x,w)
of figure (a) with ‘master trace’ T(xp,x,w), with xg =
(0,0). (c¢) As in (b), but now for fired x4 = xp = (0,0)

and all source positions x along the lower boundary. The

source alt X =

sum of these traces represents the integral in the right-
hand side of equation (10) for xa = x5 = (0,0) and is
shown as the central trace in figure (d).
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R(XA,XB,t) —+ R(XA,XB7 —t) = 5(XH,B — xHVA)é(t)

_Z/ T(xa,x:, YT (x5, xi, t +t")dt’, (11)

where the sum is applied over all x; at 9D,,. We now
introduce the transmission responses of noise sources at
x; and x;, denoted by T (x4, xi,t) = T'(xa, X, t) * Ni(t)
and Tn(xB,x;,t) = T(xB,X;,t) * Nj(t). Assuming that
N;(t) and N;(t) are uncorrelated white noise sources, we
have

/ TN(XA,X,‘,tI)TN(XB,X],t—I—t,:)dt/ =

— o0

i / T(xa,xi, YT (x5, x;,t + t)dt'.  (12)

We may thus rewrite equation (11) as
R(XA,XB7 t) + R(XA,XB7 —t:) = J(XH,B — XHVA)(S(t)
—ZZ/ TN(XA,XZ‘,lf,)TN(XB,X],t—l—lfl)dt/7 (13)
: J -0

or
R(XA,XB,t) + R(XA,XB7 —t) = 5(XH,B — XHVA)(s(t)

- / Tobs (XA7 t,)Tobs (XB7 t + t/)dt/7

— 00

(14)
with

Tovs(xa,t) = Y Tn(xa,xi,t), (15)

Tove(xm,t) = Y Tn(xs,%i,t). (16)

Note that Tobs(xa,t) and Tons(x5,t) may be seen as
transmission responses, observed at x4 and xp on 9Dy,
due to a distribution of uncorrelated noise sources at a
number of positions x; on 9D,,. The integral in the right-
hand side of equation (14) describes the crosscorrelation
of these observations. This finalizes the proof of Claer-
bout’s conjecture.

Of course in reality the noise sources will not be evenly
distributed along a single surface 3D,,. The actual depth
of the sources is almost immaterial, since the extra trav-
eltime between the actual source depth and 9D,, drops
out in the correlation process. Of course the accuracy
degrades in case of an irregular source distribution. For
other practical limitations, like crosstalk, non-whiteness
etc., the accuracy of equation (14) depends on how well
equation (12) is fulfilled. Finally, note that we assumed
that the half-space below 9D, is homogeneous. When
this assumption is not fulfilled, extra events will appear
in the transmission responses which will not be correctly
mapped to the reflection response.

Analysis of interferometric imaging

We consider again the configuration of Figure 1, but we
remove the free surface and choose both half-spaces above
0Dy and below 9D, homogeneous and source-free. We
replace state A in equations (2) and (4) for x at 8Dy by

Pl(x,xa,w) = 6(xm—xma)sa(w), (17)
P,(x,xa,w) = Ro(x,xa,w)sa(w), (18)

and in equation (6) for x at 3D,, by
Pl(x,xa,w) = To(x,x4,w)sa(w), (19)

where Ro(x,x4,w) and To(x, x4, w) are the reflection and
transmission responses of the inhomogeneous medium in
D, including all internal multiples, but without the free
surface multiples. For state B we choose again the wave
fields in equations (3), (5) and (7). Substitution in equa-
tion (1), using r = —1, yields

R(xa,xB,w) =6(XH,B — XH,A)

— Ry (x4,%,w)R(x5,x,w)d’x
8D

_/ Ty (x4, %, w)T(x5, X, w)d’x. (20)
D,

"other stuff’/

This equation corresponds with one of the interferomet-
ric imaging relations of Schuster (2001). It shows that
the reflection response R(x4,Xp5,w) is obtained by corre-
lating reflections recorded at x4 and xp. The last term
quantifies what Schuster calls “other stuff”. A further
discussion is beyond the scope of this paper.

Conclusions

We have used the reciprocity theorem of the correlation
type for one-way wave fields to derive different relations
between the transmission and reflection responses of an
arbitrary 3-D inhomogeneous medium. One of these re-
lations proves Claerbout’s conjecture about acoustic day-
light imaging and gives insight in the requirements with
respect to the spatial distribution of random noise events.
Another relation validates the interferometric imaging
principle for the arbitrary 3-D situation.
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