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ABSTRACT

Codas in seismic data, due to internal multiple scat-
tering, contain relevant information about the hetero-
geneities in the subsurface. Employing the informa-
tion in the coda in seismic imaging may s1gn1ﬁcantly
improve the resolution. Codas occur in seismic reflec-
tion data as well as in transmission data. Whereas
in seismic reflection data the sources are man-made,
the sources in transmission data are usually natural
sources, e.g. as in permanent monitoring of micro-
seismic and/or earthquake events.

In this paper we derive two relations between reflec-
tion and transmission responses in 3-D inhomoge-
neous media. Based on these relations, we will show
that the coda of the transmission response can be
derived from the reflection response and, vice versa,
that the reflection response, includings its coda, can
be derived from the transmission response. The for-
mer relationship was derived by Herman (1992) and
Wapenaar and Herrmann (1993) and the latter for
horizontally layered media by Claerbout (1968). In
the current paper we employ a unified approach for
deriving both relationships, using reciprocity. Both
results are valid for 3-D inhomogeneous media.

The reflection-to-transmission transform enables us
to derive approximate inverse operators for seis-
mic imaging in complex media in which internal
multiple scattering plays a role. The transmission
coda, required for these inverse operators, follows
from the measured reflection data by employing a
3-D reflection-to-transmission transform. Hence, the
imaging process for seismic reflection data in complex
media is guided by the reflection data itself.

The transmission-to-reflection transform finds its
application in acoustic daylight imaging. Responses
from natural noise sources in the subsurface, ob-
served by receivers at the surface, are transformed
to reflection data, including the coda, that can be
used for imaging the subsurface region between the
surface and the noise sources in the subsurface. Our
3-D theory gives insight with respect to the required
properties of the distribution of uncorrelated noise
sources.
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INTRODUCTION

In this paper we present a unified approach for deriv-
ing two relationships between seismic reflection and
transmission responses in 3-D inhomogeneous media.
In both relations, the codas due to internal multi-
ple scattering are included. We consider situations
without and with a free surface on top of the config-
uration; below a specific depth level we assume that
the medium is homogeneous.

The relations between reflection and transmission
responses are the basis for deriving the coda of the
transmission response from the reflection response
and, vice versa, the reflection response from the
transmission response. The former relation is useful
for deriving seismic imaging schemes that take
internal multiple scattering into account. The latter
relation is relevant for ‘acoustic daylight imaging’,
i.e., imaging the subsurface from passive recordings
of the transmission responses of natural noise sources

in the subsurface (Rickett and Claerbout, 1999).
ONE-WAY RECIPROCITY THEOREM

We use acoustic reciprocity as a starting point to de-
rive the relations between the reflection and trans-
mission responses. Acoustic reciprocity formulates
a relation between two acoustic states in one and
the same domain [(de Hoop, 1988), (Fokkema and
van den Berg, 1993)]. The two states will be distin-
guished by subscripts A and B. Usually reciprocity
theorems apply to the full wave fields in both states.
As an alternative, Wapenaar and Grimbergen (1996)
derived reciprocity theorems for one-way (i.e. down-
going and upgoing) wave fields. For a plan-parallel
domain P embedded between surfaces 0Dy and 0D,
at depth levels z3 o+¢ and 3, —e¢, respectively (with
Z3m > 230 and € a vamshlng p051t1ve constant), the
one-way rec1pr001ty theorem of the correlation type
reads in the space-frequency (x,w) domain

{(P)"Pf -
Do

| AP Pl = PRy P,
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(Py)*Pg}d*x =

(1)

where Pt and P~ are flux-normalized downgoing
and upgoing wave fields, respectively, and * denotes
complex conjugation. In equation (1) it has been



assumed that the medium parameters in both states
are identical, lossless and 3-D inhomogeneous and
that the domain D is source-free. Furthermore,
evanescent wave modes are neglected.

THE REFLECTION-TO-TRANSMISSION
TRANSFORM

Relation between reflection and transmission
responses without free surface multiples

Fig. 1: Domain D between surfaces 9Dy and 0D,,.
The medium in D is inhomogeneous in the x1-, xo-
and x3-directions. The half-spaces above 0Dy and be-
low 8Dy, are homogeneous.

We employ equation (1) to derive the first relation
between the reflection and transmission responses of
the medium in domain D. To this end we consider
the configuration of Figure 1, in which both half-
spaces above 0Dy and below 9D,, are homogeneous.
For states A and B we choose sources for downgo-
ing waves at x4 and xp in the upper half-space, just
above 0Dy, that is, we define x4 = (xp,4,230) and
xp = (xm,B,¥3,0). Here we used the subscript g to
denote the horizontal coordinates, i.e., xg = (21, 22).
Hence, xp 4 denotes the horizontal coordinates of

X4, 1.e., Xxg a4 = (21,4,%2,4), etc. Hence, for x at
0Dg we have

Pi(x,xa,w) = S(xg —xma)salw), (2)

PH(x,xp,w) = d(xg —xmp)ss(w), (3)

P (X XA,W ) — R(_)F(X;XA,W)SA(W)a (4)

)

RY (x,xp,w)sp(w), (5

where s4(w) and sp(w) are the source spectra for
both states. R (x,x4,w) is the reflection response
of the inhomogeneous medium in D, including all in-
ternal multiples, for a source at x4 and a receiver at x
(Figure 1). A similar remark applies to RY (x,xp,w).
The subscript ¢ denotes that no free surface multiples
are included. For x at 9D, we have

T (%, x4,w)s4(w), (6)
T (x,xp,w)sp (W), (7)
Py (x,xp,w) =0, (8)
where Tif (x,x4,w) is the transmission response of
the inhomogeneous medium in D, including all in-

ternal multiples (Figure 1). Substitution into equa-
tion (1) and dividing both sides of the equation by

Py (x,xB,w)

Pj(x,xA,w) =
P;(X,XB,(.J) =

P, (x,x4,w) =

s%(w)sB
/ {T(;I-(xaXAJW)}*T(;I-(X,XB,M)dQX =
oD,
J(XH,B — XH,A) —

{Ra- (X, XA
Do

(w) yields

©)

w)}* R (x, xp,w)d?x.

When the reflection response R (x,x4,w) without
free surface multiples is known [for example after
applying surface multiple elimination to the mea-
sured reflection response (Verschuur et al., 1992)],
equation (9) may be seen as an implicit equation
for the transmission response Ty (x,x4,w). Similar
expresswns have been derlved before by Herman
(1992) using a two-way reciprocity theorem and by
Wapenaar and Herrmann (1993) using the one-way
reciprocity theorem (equation 1).  There is no
unique way to resolve the transmission response
T (x,x4,w) from the left-hand side of equation
(9). In the following subsection we indicate how the
transmission coda can be resolved from this equation.

Resolving the transmission coda from the
reflection response

We rewrite equation (9) in matrix form, according to

{T0+(x37m’x370’w)}TT0+(x3,ma$3,0aw) = (10)
I — {R0+(1‘370,w)}TR3_ (.’73370,(.0).

A column of matrix R0+(.1'370,w) contains the dis-
cretized version of RF (x,x4,w) for a fixed source
position x4 and a range of receiver positions x at
x3 g, etc. (Berkhout, 1982). Iis an identity matrix of
the same size as Ral'(xgp,w) and Ta’(m37m,m37g,w).
Finally, the dagger T denotes transposition and com-
plex conjugation. For the transmission response we
write

T3 (23,m, ¥3,0,w) = W (23,m, 23,0,w)C(w), (11)

where W;’ (z3,m, ¢3,0,w) is the primary propagator
for downgoing waves between depth levels z3q and
x3m and where C(w) accounts for the coda due to
multlple scattering caused by the 1nhomogene1tles be-
tween these two depth levels. The primary propaga-
tor is unitary, according to

{W;(.’E&m, :rgyo,w)}TW;(xgym, r30,w) =1 (12)
Hence, upon substitution of equation (11) into equa-
tion (10), using equation (12), we obtain

Clw)C(w) =T~ {R{ (x3,0,w)}' R (23,0, w). (13)

This equation states that the auto-correlation of
transmission coda matrix, i.e. CT(w)C(w), can be ob-
tained from the auto-correlation of the reflection ma-
trix. Next we need to resolve C(w) from CT(w)C(w).
To this end we assume that C(w) can be written as

C(w) = L(w)A(w)L! (), (14)



where

e~ Ar(w) 0 0
—Az(w)
Awy=| Ve ol
0 0 e~ AN(w)
with A1 (w), As(w), ..., An(w) being the temporal

Fourier transforms of causal functions. For horizon-
tally layered media it is indeed possible to write the
matrix C(w) in this way; for 3-D inhomogeneous me-
dia this remains to be investigated. With this as-
sumption, Ct(w)C(w) can be written as

CT(w)C(w) = L(w)AT(w)A(w)LT(w), (16)
where
ANw)A(w) = (17)
e—Z?R{A1(w)} 0 0
0 e 20{As(w)} 0
..... Ooe—zm{AN(w)}

with ${-} denoting the real part. Since the functions
A, (w) correspond to causal functions in the time do-
main, they can be reconstructed from their real part
via the Hilbert transform, according to

17 R{A (W)}

JT J =00

An(w) = R{Au ()} + d', (18)

w—w
where {4, (w')} is taken from matrices like the
one in equation (17) but at different frequencies. In
general, the eigenvalue number n’ will change with
changing frequency w'.

Hence, resolving the transmission coda C(w) from the

reflection response matrix R(')F(x370,w) comes to the
following steps:

e compute {R{(z30,w)} 'R} (23,0,w), which
yields Ct(w)C(w) according to equation (13),

e apply eigenvalue decomposition to Ct(w)C(w),
yielding AT(w)A(w) according to equation (16),

o take the logarithm of the diagonal elements of
AN (w)A(w), yielding —2R{A,(w)} according to
equation (17),

e reconstruct Ap(w) from R{A,(w)} according to
equation (18),

e insert Ap(w) into A(w) (equation (15)) and re-
construct C(w) from A(w), using equation (14).

Assuming the primary propagator W;-(l‘g’m, r30,w)
is known (for example from traveltime tomography),
the transmission matrix Ta’(m37m,m370,w) is finally
obtained from equation (11). We are currently inves-
tigating this approach for the 2-D and 3-D situation.
Here we illustrate it with a 1-D example.

Layer | Velocity | Density | Thickness

(m/s) | (kg/m?) | (m)
1 1000 1000 100
2 4000 1000 100
3 2000 1000 100
4 1000 1000 100
5 2000 1000 100
6 4000 1000 100
7 2000 1000 100

TABLE 1: Seven-layer medium

For the seven-layer medium of Table 1, Figure 2
shows the plane wave transmission response, i.e. the
inverse Fourier transform of T()‘*'(m37m,m370,w). For
the same medium, the plane wave reflection response
RY (%30,w), is shown in the time domain in Figure 3.
We will now show step by step how the transmission
response can be obtained from the reflection response
and the primary propagator Wp+(l‘3’m, x30,w). First
we obtain C*(w)C'(w) from the 1-D version of equa-
tion (13), according to

" (@)O(w) = 1 = {R} (23,0,)}" RE (230,w). (19)

The time domain version of the right-hand side is
shown in Figure 4. Since C*(w)C(w) is a scalar
function we can replace the eigenvalue decompo-
sition [equations (16) and (17)] by C*(w)C(w) =
e~ MA@} hence we obtain 2R{A(w)} from

2R {A(w)} = —In (c* (w)C’(w)). (20)
We rename the left-hand side 2Agr(w), denoting the
real part of A(w); its time domain version is shown
in Figure 5. According to equation (18), A(w) can be
reconstructed from its real part. This is equivalent to
taking the causal part of 2Ag(¢) in the time domain,
see Figure 6, where H (1) is the Heaviside function.

Now that A(w) has been found, the coda is obtained
from

: (21)

which is the 1-D equivalent of equations (14) and
(15). Tts time domain version is shown in Figure 7.
According to the 1-D equivalent of equation (11),

T0+($37m’$370’“’) = Wp+(x37ma$3,0a"")c(w)

eI 0 (w) (22)
(to denotes the primary traveltime), the transmission
response can now be reconstructed. In the time do-
main this is accomplished by a time-shift of the coda
over tg, see Figure 8. Figure 9 shows the difference be-
tween the true transmission response of Figure 2 and
the reconstructed version of Figure 8. Note the per-
fect reconstruction (the vertical scale is in the range

of 10_5).
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Fig. 2: Transmission response T(?_(.1737m,.1‘370,t) for Fig. 6: A(t) = H(t)2AR(?)
the seven-layer medium in Table 1.
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The inverse transmission coda

Using the matrix notation of equation (10), osf
we introduce the inverse transmission response

+,inv .
Ty (23,0, 3,m,w), according to

T ™ (23,0, 3,m,w) TF (23,m, v3.0,w0) =L (23)
By rewriting equation (10) as follows o1l
-1 ok e ‘I‘I‘u“‘\\
I— (R (e30,0)'RE (2a0,0)]  x (29) |
+ ' T + ’ - -6 -4 -2 0 2 4 6
{T5 (23,m, 3,0,0)}'Tg (23,m, 23,0,0) = 1 Fig. 10: Approximate inverse coda for iy, = O:

and comparing this with equation (23), we find that <Cinv (t)) = C(-t).
the inverse transmission response is given by

T3 (23,0, 23,m,w) = (25)

(1= (RS (25,0,)) R (23.0,)] (T (7, 73.0,9))" i

(Wapenaar and Herrmann, 1993). Using a Neumann o8

expansion, this becomes o6

(T (3.0, 2.m 1)) = (26) i i

imax .

3[R (22.0,9)) R (20,)] (T (22, 22.0,))' 1 it

i=0

where (-) denotes an estimate. For imax = 0, b - E 6 : )‘ :

equation (26) reduces to <T0+,inv(33370J 333,m,<-«’)> _ Fig. 11: Approximate inverse coda for imax = 5.

{Ta'(mgm, '13370,(.0)}T, which is the usual matched fil-
ter approximation. In a similar way we can derive

from equation (13) for the inverse coda :
(C™(w) = (27)
> [(Ri (250,90} RS (25.0,0) | €1 (). d
=0
For imax = 0 this reduces to <Cin"(w)> = Cl(w). .
Note that in equation (27) (C™(w)) is derived ol L
from the reflection data only, whereas in equation
(26) (TF™ (230, 23.m,w)) is derived from the re- ok - - : . . )

flection data as well as from the primary prop- ) ) ] )
agator W;‘ (%3.m,¢30,w) (which is contained in Fig. 12: Approximate inverse coda for imax = 20.
T# (z3,m, z3,0,w), according to equation (11)). We

1llustrate the inversion of the coda with a 1-D exam-

ple. The 1-D version of equation (27) reads 2
<Cinv(w)> — (28) 150
i max ; |
> [{RE (w20, @)} RE (23,0,w)] €7 (w).
i=0 osp
For imax = 0 this reduces in the time domain to a o
time-reversal of C'(t) of Figure 7. The result is shown
in Figure 10. For imax = 5, 20, 100 the results are -osf
shown in the time domain in Figures 11, 12 and 13,
respectively. Note that (C'™(w)) changes from an E e E E 2 i L

anti-causal function for imax = 0 to a causal function Fig. 13: Approximate inverse coda for imay = 100.
for tmax — 0.



Application in seismic imaging

The response of a reflector at depth level 3 ,,, ob-
served at depth level x3 g, reads

Pv_n (1‘370,(.0) = (29)

T§ (23,0, 23,m, w)r($3ym)T0+ (z3,m, T3,0,w),

with Ty (23,0, 23,m,w) = {Tn (3,m,z3,0,w)}’ and
r(z3,m) being a local reflection matrix (i.e., only re-
lated to depth level z3,,). Note that P;; (1’3,0,(.0),
as defined in equation (29), contains the effects of
internal multiple scattering due to inhomogeneities
between the depth levels 23 ¢ and x3,,. By applying
the inverse transmission responses to Py, (230,w) we
obtain the reflection matrix r(zs m), according to

r(z3m) =

T(?’inv (I3,ma T30, W)P;L (m3,0’ w)T0+,inV (;‘13370, T3 m, (.d)

with Taymv (ZS,m, 1‘3,0,(.0) = {TEIJ-,IHV (‘733,0a Zg’m,w)}t.
Alternatively, when we apply the inverse codas to
P, (230,w) we obtain

W (23,0, 23 m, W) (23 m )W (23m, 230,w) =
{C™ (W)} P, (23,0,w)C™ (w), (31)

which follows by substituting equation (11) into (29)
and using the above mentioned symmetry relations.
The left-hand side of equation (31) represents the pri-
mary response of the reflector at depth level z3,,,
observed at depth level x3 9. Hence, the inverse coda
matrices in equation (31) remove the internal multi-
ples from the response P;, (23 0,w), defined in equa-
tion (29). We illustrate this with a 1-D example. The
1-D equivalent of equation (29) is given by

Py (23,0,0) = (32)
T5 (23,0, 23,m, @) (23,m) To' (23,m, 23,0, 0),

The response of a reflector at x3,, = 700m (the lower

boundary of the layered medium of Table 1), with

r(23,m) = 1, is shown in the time domain in Figure

14. This is the auto-convolution of the transmission
response of Figure 2. The 1-D version of equation

(31) reads

Wp_($30,$3m; w)r ($3m)Wp+
(g ) = O™ ()

(x3,m, x3,0,w) =
o (23,0,w)C™ (w). (33)
The result for iya, = 0, for which (C™Y (w)) = C*(w),

is shown in the time domain in Figure 15. Note that
the approximate inverse codas have a zero-phasing
effect, but they do not suppress the internal multi-
ples. In Figure 16 the result is shown of applying
(C™ (w)) for imax = 100: the internal multiples are
perfectly removed and the strength of the reflector
(r(23,m) = 1) has been correctly recovered. Tt should
be noted that we have considered an idealized situ-
ation in the sense that we estimated (C'™ (w)) from

the reflection response of the medium between 3
and 3, (Figure 3), without the response of the re-
flector at x3,, = 700m (Figure 14) or any reflectors
below z3,, = 700m. In practice (C'™ (w)) should be
estimated from a carefully windowed version of the
reflection response.

The 1-D examples have shown that the reflection-to-
transmission transform has the potential to suppress
the effects of internal multiple scattering in seismic
imaging, using an inverse coda derived from the re-
flection reponse itself. For correct depth positioning
the inverse primary propagator should be estimated
from traveltime information (as usual). We are cur-
rently developing the 3-D extension of this approach.
For comparison, in the imaging scheme proposed by
Weglein et al. (2000), the full inverse operator (pri-
maries as well as internal multiples) is estimated di-

(30) rectly from the reflection measurements. The advan-

tages and disadvantages of both methods with respect

' to accuracy, stability, etc. remain to be investigated.

0.4

Fig. 14: Reflection  response
Ty (3,0, 23,m, 1) * Tgf (T3,m, 3,0, 1).
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Fig. 16: <CinV(2>*p (z3,0,t) * (C'™(t)). Note that

the internal multiples have been removed.



THE TRANSMISSION-TO-REFLECTION
TRANSFORM

Relation between reflection and transmission
responses with free surface multiples

Fig. 17: Domain D between surfaces 0Dy and 0Dy, .
The medium in D is inhomogeneous in the x1-, xo-
and z3-directions. There is a free surface just above
0Dy, the half-space below D, is again homogeneous.

We employ again equation (1) to derive the second
relation between the reflection and transmission re-
sponses of the medium in domain D. This time we
consider the configuration of Figure 17, in which we
choose a free surface at z3 g, i.e., just above 9Dg, and
a homogeneous half-space below 9D,,. The source
points x4 and xp are chosen as before. Hence, for x
at 0Dy we now have

P:(X,XA,(.J) = §(xg—xga)salw)+ (34)

rP;(x,xA,w),
d(xg —xm B)sp(w) + (35)

rP;(x,xp,w),
(36)
(37)

PE(x,xB,w) =

}?;-(Xa)(Aa‘d) }%4_(xa)(A;Ld)3A(Q))

P;(x,xp,w) = R'(x,xp,w)sp(w),
where 7 is the reflection coefficient of the free surface
(r=—1) and R*(x,x4,w) is the reflection response
of the inhomogeneous medium in D, including all in-
ternal and free surface multiples (Figure 17). For x
at 9D,,, we have

PH(x,xa,w) = TF(x,x4,w)sa(w), (38)
P (x,xp,w) = Tt(x,xp,w)sp(w), (39)
P, (x,xa,w) = Pg(x,xp,w)=0, (40)

where T (x,x4,w) is the transmission response
of the inhomogeneous medium in D, includ-
ing all internal and free surface multiples (Fig-
ure 17).  Substitution into equation (1), using
R*(xa,xp,w) = Rt (xp,xa,w) and T~ (x4, x,w) =
T*(x,x4,w), and dividing both sides of the equation
by s% (w)sp(w) yields

2R[RT (xa,x5,w)] = d(Xm.p — Xm,4)

_/ (T~ (x4, %,0) T (x5, %, w)d2x. (41)
aD,,

When the transmission responses T~ (x4,%,w) and
T~ (xB,x,w) with free surface multiples are known
for a sufficient range of x-values (for example from
passive measurements of natural noise sources in the
subsurface, see the discussion below), equation (41) is
an explicit expression for the real part of the reflection
response RT(x4,xp,w). Since the reflection response
in the time domain is causal, the imaginary part of
R*(x4,xp,w) is obtained via the Hilbert transform
of the real part. Alternatively, 2R{R*(x4,xp,w)}
can be transformed to the time domain and subse-
quently be multiplied by the Heaviside step-function
(i.e., taking the causal part), yielding the time do-
main version of Rt (x4,xp,w).

Equation (41) is illustrated with a 2-D numerical
experiment. The transmission response T~ (x4, X, w)
of the double-syncline model in Figure 18 is shown
in the time domain in Figure 19a for a fixed source
at x = (0,800) and a range of receiver positions x4
at the acquisition surface. Figure 19b shows the
result (again in the time domain) of the integral in
the right-hand side of equation (41) (times -1), for
xp = (0,0) and all x4 at the acquisition surface. The
cross in the centre is a band-limited representation
of a delta function (bear in mind that evanescent
waves are neglected), which is compensated by the
delta function in the right-hand side of equation
(41). Figure 19c shows the causal part of the data in
Figure 19b, after muting the bandlimited delta func-
tion. This is the reflection response R*(x4,xp,w)
for a source at xg = (0,0) and receivers at all
x4 at the acquisition surface. This result matches
quite accurately the directly modeled reflection
response of the syncline model (not shown). Note
that the coda due to internal multiple scattering
between the two synclines in Figure 18 is clearly
visible in Figure 19c. The 1-D version of quation
(41), i.e., 2?]?[R+(w)] =1 -{T"(w)}*T" (w), was
previously derived (in the z-transform domain) by
Claerbout (1968). Assuming the 1-D assumption is
justified this equation implies that, when a natural
noise source in the Earth’s subsurface emits plane
waves to the surface, passive measurements of the
noise at the surface suffice to compute the reflec-
tion response of the Earth’s subsurface (‘acoustic
daylight imaging’). Claerbout conjectured for the

lateral position [m]
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-3000
0+

1500

3000

400

depth [m]

800

Fig. 18: Double syncline model



3-D situation that ‘by cross-correlating noise traces
recorded at two locations on the surface, we can
construct the wave field that would be recorded at
one of the locations if there was a source at the
other’. Note that with equation (41) we nearly
achieved a proof of Claerbout’s conjecture. The
term {7 (xa4,x,w)}*T~ (xB,X,w) represents the
cross-correlation of traces recorded at two locations
(x4 and xp) on the surface for a source at x in the
subsurface; the term R*(x4,xp,w) is the wave field
that would be recorded at one of the locations (x4)
if there was a source at the other (xp). The main
discrepancy with the conjecture is the integral in
equation (41) over all possible source positions x at
surface dD,,. It can not be evaluated in practice
because the transmission responses are not available
for all individual source positions x. However, if
we assume uncorrelated noise sources at 9D,,, the
integral of the product {7~ (x4,x,w)}*T~ (xB, x,w)
can be rewritten as a product of integrals, each of
these integrals describing the transmission response
of the total distribution of noise sources. This
completes the proof of Claerbout’s conjecture.

CONCLUSIONS

We have used the reciprocity theorem of the corre-
lation type for one-way wave fields to derive two re-
lations between the transmission and reflection re-
sponses of an arbitrary 3-D inhomogeneous medium.
One of these relations leads to the ‘reflection-to-
transmission’ transform with applications in seis-
mic imaging schemes that account for internal mul-
tiple reflections. The other relation leads to the
‘transmission-to-reflection’ transform with applica-
tions in acoustic daylight imaging.
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Fig. 19: Tllustration of equation (41) for the 2-D
medium in Figure 18. (a) Transmission response. (b)
Result of the integral in the right-hand side of equa-
tion (41). (c) Causal part of the data in (b), after
muting the bandlimited delta function. This is the
reflection response Rt (x4,xp,w



