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Abstract— The theoretical and experimental developments in
interferometry have advanced spectacularly over the last five
years and are still expanding at a rapid pace. With interferometry
we mean the retrieval of the Green’s function by cross-correlating
or cross-convolving two (wave) field recordings. Over the last
year several contributions have included interferometric repre-
sentations for media with losses, in absence of wave phenomena,
like in thermal and electromagnetic diffusion or viscous flow,
and for moving media. In this paper we use the reciprocity
theorems of the time-correlation and time-convolution types to
formulate general representations for electromagnetic fields and
waves, and give explicit expressions for different possible GPR
applications involving controlled or uncontrolled sources, which
can be transient or noise sources.

Index Terms— Interferometry, Green’s function retrieval, GPR
applications, Electromagnetism.

I. INTRODUCTION

S INCE the work of Weaver and Lobkis [1], [2], many others
have contributed to our understanding of Green’s function

retrieval from cross-correlating two recordings in a noise field.
From one-dimensional and pulse-echo experiments the subject
has evolved to arbitrary three-dimensional media, ranging from
having statistical properties to being fully deterministic. Many
successful demonstrations of the method on ultrasonic, geo-
physical and oceanographic data as well as many theoretical
developments have been published. Recent developments, in
the branch of research that is based on reciprocity, are the
extension for situations where time-reversal invariance does
not hold (e.g. for electromagnetic waves in conducting media
[3], acoustic waves in attenuating media [4], or general scalar
diffusion phenomena [5]), as well as for situations where
source-receiver reciprocity breaks down (e.g. in moving fluids
[6], [7]). Recently we developed a unified representation of
Greens functions in terms of cross-correlations that covers all
these cases [8], [9]. Another approach that has been developed
is based on Green’s functions representations in terms of
cross-convolutions [10]. In this paper we give an overview of
the general electromagnetic formulations and discuss several
possible GPR applications of these recent developments.

II. THE WAVE EQUATION IN MEDIA WITH LOSSES

The time domain Maxwell equations are most conveniently
written down in a matrix-vector equation where the electric
and magnetic medium parameters are time-convolutional op-
erators to allow for relaxation mechanisms. Mathematically
all relaxation phenomena can be captured in the operator
representing electric and magnetic conductivities, yielding

Dxu+B ? u+A∂tû = ŝ, (1)
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where it assumed that the medium is at rest, or that changes
in the medium play a role on time scales much larger than the
measurement scale. The vector u(x, t) contains the space- and
time-dependent electric and magnetic field vectors, the source
vector is denoted s(x, t), the position dependent matrix A(x)
contains the instantaneous parts of the electric permittivity
and magnetic permeability, the position dependent and time-
convolution operator B(x, t) takes all electric and magnetic
time-relaxation phenomena into account; B(x, t) ? u(x, t) =
∫

τ
B(x, τ)u(x, t − τ)dτ . The differential operator Dx con-

tains the spatial differential operators ∂1, ∂2, ∂3 and ∂t denotes
differentiation with respect to the time coordinate t. The
matrix-vector equation can be written out in full using the
field and source vectors as

u = (E1, E2, E3, H1, H2, H3)
T
, (2)

s = − (Je
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e
2 , J
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T
, (3)

where the superscript T denotes the transpose of a vector or
matrix, while the matrices are given by

Dx =

(

O DT
0

D0 O

)

,D0 =





0 −∂3 ∂2

∂3 0 −∂1

−∂2 ∂1 0



 , (4)

A =

(

ε O

O µ

)

,B =

(

σe O

O σm

)

, (5)

ε =





ε11 ε12 ε13
ε21 ε22 ε23
ε31 ε32 ε33



 , µ =





µ11 µ12 µ13

µ21 µ22 µ23

µ31 µ32 µ33



 ,

σe =





σe11 σe12 σe13
σe21 σe22 σe23
σe31 σe32 σe33



 ,σm =





σm11 σm12 σm13
σm21 σm22 σm23
σm31 σm32 σm33



 ,

where εkr, µjp denote the tensor components of the anisotropic
electric permittivity and magnetic permeability and σe

kr, σ
m
jp

denote the tensor components of the anisotropic electric and
magnetic conductivities, each component of which is a time
convolution operator to allow for relaxation mechanisms.

Time convolutions are replaced by products through time-
Fourier transformations and time differentiation is trans-
formed to a multiplication iω, i being the imaginary unit
and ω is the radial frequency. We define the time-Fourier
transform of a space-time function f(x, t) as f̂(x, ω) =
∫

t
f(x, t) exp(−iωt)dt. Applying the time-Fourier transfor-

mation to equation (1) yields

Dxû+ B̂û+ iωAû = ŝ. (6)

III. DEFINITION OF THE GREEN’S MATRICES

To define the electromagnetic Green’s matrix Ĝ(x,xA, ω)
we replace the 6 × 1 source vector ŝ(x, ω) by the 6 × 6
frequency independent source matrix Iδ(x−xA), I being the



identity matrix. The corresponding 6× 1 field vector û(x, ω)
is replaced by the 6× 6 Green’s matrix given by

Ĝ(x,xA, ω) =

(

ĜEe ĜEm

ĜHe ĜHm

)

(x,xA, ω), (7)

where the superscripts {E,H} denote the observed field
type at x and the superscripts {e,m} denote the electric or
magnetic source type {Ĵe, Ĵm} at xA. For each particular
field and each source type the Green’s sub-matrix is a 3 × 3
matrix. Each column of Ĝ represents a field vector û at x
due one particular point source type and component operative
at xA.

IV. GENERAL GREEN’S FUNCTION RETRIEVAL

Consider an arbitrary domain D with boundary ∂D and
outward unit normal vector n = {n1, n2, n3}

T . We define
two points, located at xA and xB either inside or outside the
domain D. Application of electromagnetic reciprocity of the
time-correlation type to equation (6) results in a general repre-
sentation of the Green’s matrix retrieval by cross-correlation,
see [8] for a unified representation including other field and
wave phenomena,

Ĝ(xB ,xA, ω)χD(xA) + Ĝ†(xA,xB , ω)χD(xB)

= −

∮

∂D

Ĝ(xB ,x, ω)NxĜ
†(xA,x, ω)d2x

+

∫

D

Ĝ(xB ,x, ω)(B̂† + B̂)Ĝ†(xA,x, ω)d3x, (8)

where Ĝ† denotes the complex conjugate transpose of Ĝ and
χD(xA) = {0, 1/2, 1} for {xA ∈ D

′,xA ∈ ∂D,xA ∈ D}
denotes the characteristic set of the domain D, while D

′ is the
complement of D and ∂D. The matrix Nx is defined similar
to Dx, but with ∂i replaced by ni, i = 1, 2, 3. Equation (8) is
an exact general representation of the electromagnetic Green’s
matrix between xA and xB in terms of cross-correlations of
observed electric and magnetic fields observed at xA and xB

due to electric and magnetic sources at x on the boundary ∂D

and inside the domain D. To arrive at this representation for
the Green’s functions no assumptions have been made on the
heterogeneity and relaxation mechanisms inside and outside
the domain D.

Similarly applying electromagnetic reciprocity of the time-
convolution type to equation (6) leads to a general represen-
tation of the Green’s matrix retrieval by cross-convolution,

Ĝ(xB ,xA, ω)[χD(xA)− χD(xB)]

=

∮

∂D

Ĝ(xB ,x, ω)NxKĜT (xA,x, ω)Kd2x, (9)

where K = diag(−1,−1,−1, 1, 1, 1). Equation (9) is an exact
representation for the electromagnetic Green’s function be-
tween xA and xB in terms of cross-convolutions of impulsive
field responses observed at the observation points xA and
xB due to electric and magnetic sources on the boundary
∂D and integrating over all source locations on the closed
boundary surface ∂D. From equation (9) it can be observed
that the Green’s function is only retrieved when either xA or
xB is inside D. To arrive at this representation for the Green’s
functions no assumptions have been made on the heterogeneity
and relaxation mechanisms inside and outside the domain D.
It is worth noting that the medium parameters are not present

in equation (9). Possible GPR applications of electromagnetic
interferometry using equations (8) and (9) are investigated in
the next sections.

V. APPLICATION 1. CONTROLLED SOURCES ON ∂D

Assuming the loss factors are zero throughout D, the domain
integral in equation (8) vanishes and only sources on the
boundary are required to construct Green’s functions between
two points inside D or between one point inside and one
point outside D. When the loss factors are not zero but very
small, we neglect the volume integral and a discussion on the
corresponding implications can be found in [11]. For GPR
the most beneficial application with both receivers inside the
domain would be with sources at the surface and receivers
in boreholes in an (almost) lossless environment. In case the
medium is sufficiently heterogeneous the closed surface can be
replaced by an integral over the surface, ∂D, of the Earth [12]
and the Green’s function between two points in the subsurface
is then found as

Ĝ(xB ,xA, ω) + Ĝ†(xA,xB , ω)

= −

∫

∂D0

Ĝ(xB ,x, ω)NxĜ
†(xA,x, ω)d2x, (10)

from which each element of the Green’s matrix can be
obtained by selecting certain field components in the receiver
array and sources at the surface. To obtain the Green’s function
for a crosshole experiment, as if there was a horizontal electric
current source at xA and a vertical magnetic receiver at xB ,
from vertical GPR profiles we must choose GHe

31 (xB ,xA, t) in
the left-hand side of equation (10), which is element (6, 1) in
the Green’s matrix. According to equation (10) it is retrieved
by cross-correlating the measured vertical component of the
magnetic field [which is the 6th-row of G(xB ,x, t)] with the
horizontal component of the electric field at xA [which is
the first column of NxG

T (xA,x, t)], summing over electric
and magnetic sources at x (by row-column multiplication) and
integrating over all source positions at the surface ∂D0. This is
illustrated in Figure 1. We can write equation (10) in terms of
field observations by introducing the diagonal source matrix
Ŝ(x, ω) = diag[ŝ1(x, ω), ŝ2(x, ω), · · · , ŝ6(x, ω)]T . The field
observations are then stored in a field matrix,

Ûobs(xA,x, ω) = Ĝ(xA,x, ω)Ŝ(x, ω), (11)

and a similar expression for Û(xB ,x, ω). Using these choices
in equation (10) , we find

Ûobs(xB ,xA, ω) + [Ûobs(xA,xB , ω)]† =

−

∫

∂D0

Ûobs(xB ,x, ω)X̂(x, ω)[Ûobs(xA,x, ω)]†d2x, (12)

where the source compensation matrix is given by

X̂(x, ω) = [Ŝ(x, ω)]−1Nx[Ŝ
†(x, ω)]−1. (13)

The fact that the matrix X̂(x, ω) contains inverses of the
source matrix implies that the source spectra should be known
to use this method with controlled sources.

Apart from applications with field recordings, these repre-
sentations can be used advantageously for numerical model-
ing [13]. In situations where the point-to-point relations of
electromagnetic wave propagation need to be computed as
is done for single-well or cross-well tomographic studies or
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Fig. 1. From left to right panel, interferometry with controlled sources
at the surface ∂D0 as described in Application 1. In this example the
vertical magnetic field component is cross-correlated with the horizontal
electric electric field component, yielding the vertical magnetic GPR response
generated by a horizontal electric source.

for full non-linear electromagnetic inversions methods. Then
a considerable reduction in computational cost is achieved
because only a sufficient number of sources is required at the
Earth surface, while from the stored field values at all grid
points data can be created with any point in D as a source
point to any other point in D as a receiver. This means that
in a gridded domain with n3 nodes, only O(n2) sources are
needed to obtain data for O(n3) source positions.

VI. APPLICATION 2. UNCORRELATED SOURCES IN D

When the loss factors are not negligible, the boundary inte-
gral, when D is taken as infinite domain, has a vanishing con-
tribution, see [4] for an acoustic analogue. Then we consider
a volume distribution of noise sources ŝ throughout D, see
Figure 2, where ŝ(x, ω) is a vector with components ŝk(x, ω).
We further assume that any two sources ŝk(x, ω), ŝl(x

′, ω)
are mutually uncorrelated for any x 6= x′, i.e. they satisfy
the relationship 〈ŝ(x, ω)ŝ†(x′, ω)〉 = λ̂(x, ω)Ŝ(ω)δ(x− x′),
where 〈·〉 denotes a spatial ensemble, Ŝ(ω) denotes the power
spectrum of the noise sources and λ̂(x, ω) is a matrix con-
taining the source excitation functions. We can then define the
field observation vectors at xA;B as,

ûobs(xA;B , ω) =

∫

x∈D

Ĝ(xA;B ,x, ω)ŝ(x, ω)d3x. (14)

We can evaluate the cross-correlation of the observed fields as

〈ûobs(xB , ω){ûobs(xA, ω)}†〉

= Ŝ(ω)

∫

x∈D

Ĝ(xB ,x, ω)λ̂(x, ω)Ĝ†(xA,x, ω)d3x. (15)

Comparing this with the right-hand side of equation (8) with
vanishing boundary integral we can obtain

[Ĝ(xB ,xA, ω) + Ĝ†(xA,xB , ω)]Ŝ(ω)

= 〈ûobs(xB , ω){ûobs(xA, ω)}†〉, (16)

when λ̂(x, ω) = B̂(x, ω) + B̂†(x, ω). Hence when at least
one element of B̂(x, ω)+ B̂†(x, ω) is non-zero, which is the
case in most GPR applications, the Green’s matrix between the
points xA and xB can be retrieved from cross-correlations of
field observations at those points, assuming that a distribution
of spatially uncorrelated noise sources are present in D, such
that their excitation functions are proportional to the local
loss factors. This form of continuous injection of energy is
necessary to compensate for the dissipation in D [9].
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Fig. 2. From left to right panel, interferometry with noise sources distributed
throughout D as described in Application 2. In this example the vertical
magnetic field component is cross-correlated with the horizontal electric field
component, yielding the vertical magnetic GPR response generated by a
horizontal electric source.

VII. APPLICATION 3. UNCORRELATED SOURCES ON ∂D

When D is taken to be entirely located in the air, and hence
the medium in D is lossless, the volume integral in equation (8)
vanishes, see Figure 3. In [10] it was shown that also here we
don’t need sources on the closed boundary but only in the top
part. This is convenient because most natural and man-made
electromagnetic noise comes from sources up in the air or
from outside our atmosphere. The Earth is a heterogeneous,
anisotropic medium with losses and is now completely outside
the domain D. Since xA ∈ D, while xB 6∈ D we find,

Ĝ(xB ,xA, ω) = −

∫

∂D0

Ĝ(xB ,x, ω)NxĜ
†(xA,x, ω)d2x.

(17)
In this configuration the Green’s matrix between two points
can be obtained only with independent impulsive sources
on the boundary ∂D0. To make equation (17) suitable for
uncorrelated noise sources, the matrix Nx must be diagonal-
ized. In general, this diagonalization involves decomposition
of the sources on ∂D0 into sources for inward and outward
traveling waves. Since in this particular configuration we can
assume that the waves that leave the boundary ∂D0 in the
upward direction never return, and are not recorded, and
hence we can diagonalize by changing the tangential magnetic
dipole sources, present in equation (17) to equivalent normal
component of electric quadrupole sources. Then it is most
convenient to write the magnetic field in terms of the electric
field using using Maxwell’s second equation, and to make a
far-field approximation to replace the quadrupole response by
a dipole response. We end up with an approximate equation
for the electric field Green’s matrix due to an electric dipole
source [11],

ĜEe(xB ,xA, ω) = −
2

c0µ0

×

∫

∂D0

ĜEe(xB ,x, ω){ĜEe(xA,x, ω)}†d2x+ ”ghost”, (18)

where the ”ghost”-term refers to non-physical events due to
the open boundary ∂D0 and because of the far-field approx-
imation. Both approximations lead to incomplete destructive
interference of these non-physical events, which then remain
in the data after integrating over all sources on the open
boundary ∂D0. When far-field conditions apply, e.g. when
we use sources from outside our atmosphere, and the Earth
is sufficiently heterogeneous the ”ghost” vanishes. Since in
equation (18) we have a direct matrix-matrix product the
uncorrelated electric dipole noise sources on the boundary ∂D0
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Fig. 3. From left to right panel, interferometry with noise sources in the air
on an irregular surface ∂D0 as described in Application 3. In this example
the vertical electric field component is cross-correlated with the horizontal
electric electric field component, yielding the vertical electric GPR response
generated by a horizontal electric source.

must obey the following relationship 〈ŝ(x, ω)ŝ†(x′, ω)〉 =
2Ŝ(ω)Iδ(x − x′)/(µc), I being the identity matrix, and
defining the observed electric field vector as Ê(xA, ω) =
∫

x∈∂D0

ĜEe(xA,x, ω)ŝ(x, ω)d2x, and a similar expression

for Ê(xB , ω) results in an equation similar to equation (16),
but now we retain only the causal Green’s matrix and the
medium is allowed to be dissipative, while still only sources
on the boundary are necessary

ĜEe(xB ,xA, ω)Ŝ(ω) = −〈ûobs(xB , ω){ûobs(xA, ω)}†〉.
(19)

In the situation that the earth is almost lossless the configura-
tion as explained in Application 1, with D containing the Earth,
can be used with uncorrelated noise sources above the Earth
surface as well, under the same assumption of a sufficiently
heterogeneous Earth. In that situation the volume integral in
equation (8) can be neglected and the same definitions as
used for equation (19) lead to the same relation as given in
equation (16).

VIII. APPLICATION 4. TRANSIENT SOURCES ON ∂D

In situations where the boundary of D can be taken in
between two receiver locations both correlation and convo-
lution types of interferometry can be used. The example
sketched in Figure 4 yields an approximation to the exact
result because sources on a plane are required and not only
in a single borehole. This approximate application can still be
quite accurate in the kinematics of the cross-hole survey. In
situations where the distance between the outer two boreholes
is too large for a standard GPR to acquire data, because of
too high losses, but the other two combinations can be used,
then numerically the data of the configuration indicated in
the right panel of Figure 4 can be retrieved. If the subsurface
heterogeneities occur mostly in the plane of the three boreholes
and far field conditions apply, the result is quite accurate. We
define transient sources in a source matrix as introduced in
Application 1 and use the same definition for the observed
field matrix as in equation (11) to obtain,

Ûobs(xB ,xA, ω) =
∫

∂D0

Ûobs(xB ,x, ω)Ŷ (x, ω)[Ûobs(xA,x, ω)]TKd2x, (20)

where the source compensation matrix is now given by

Ŷ (x, ω) = [Ŝ(x, ω)]−1NxK[Ŝ(x, ω)]−1. (21)
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Fig. 4. From left to right panel, interferometry with transient sources
in a borehole as described in Application 4. In this example the vertical
electric field component is cross-convolved with the horizontal electric electric
field component, yielding the vertical electric GPR response generated by a
horizontal electric source.

The configuration of Application 1 can also be used in this
way when one receiver is in the air above the boundary ∂D

containing the sources.

IX. CONCLUSION

We have derived general electromagnetic interferomet-
ric representations of Green’s function in terms of cross-
correlations and cross-convolutions of observed radar wave
fields. These representations have applications with controlled
transient sources, as in cross-borehole GPR tomographic stud-
ies, or noise sources for passive surface GPR or vertical GPR
profiling.
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