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Summary

Time-reversal acoustics, seismic interferometry, back propagation, source-receiver redatuming and imag-
ing by double focusing are all based in some way or another on Green’s theorem. An implicit assumption
for all these methods is that data are available on a closed boundary, a condition that is never met in geo-
physical practice. As a consequence, although direct and primary scattered waves are handled very
well, most methods do not properly account for multiply scattered waves. This can be significantly im-
proved by replacing the back-propagating Green’s functions in any of the aforementioned approaches by
Marchenko-based focusing functions. We show how this improves time-reversal acoustics, back propa-
gation and source-receiver redatuming and we indicate how it enables the monitoring and forecasting of
responses to induced seismic sources.
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Introduction

Imaging methods for passive- and active-source data, such as time-reversal acoustics, seismic inter-
ferometry, back propagation, source-receiver redatuming and imaging by double focusing, can all be
derived in a systematic way from Green’s theorem. We review a selection of those methods, using the
classical representation of the homogeneous Green’s function as a starting point. A limitation is that this
representation is expressed as a closed-boundary integral, which in practice can only be evaluated when
the medium is accessible from all sides. We also discuss modifications of the imaging methods, based
on a single-sided homogeneous Green’s function representation, and show that these methods perform
better than the classical methods when the medium is accessible from a single boundary (the earth’s
surface).

Representations of the homogeneous Green’s function

The classical representation of the homogeneous Green’s function reads in the space-frequency (x,ω)
domain (Porter, 1970; Oristaglio, 1989)

Gh(xB,xA,ω) =
∮
S

1
iωρ(x)

(
{∂iG(x,xB,ω)}G∗(x,xA,ω)−G(x,xB,ω)∂iG∗(x,xA,ω)

)
nidx. (1)

Here S is an arbitrarily shaped closed boundary, with outward pointing normal vector n = (n1,n2,n3),
enclosing the points xA and xB. G(x,xA,ω) is the Green’s function and Gh(xB,xA,ω) = G(xB,xA,ω)+
G∗(xB,xA,ω) is the homogeneous Green’s function. Furthermore, ρ is the mass density, i the imaginary
unit and the asterisk denotes complex conjugation. When the medium outside S is homogeneous and S
is sufficiently smooth, this representation may be approximated by

Gh(xB,xA,ω) =−2
∮
S

1
iωρ(x)

G(x,xB,ω)∂iG∗(x,xA,ω)nidx. (2)

The complex-conjugated Green’s function under the integral can be seen as a focusing function which
focuses at xA, however, this only holds when it converges to xA equally from all directions. This can
be achieved by emitting it into the medium from a closed boundary S. For practical situations we need
another type of focusing function, which, when emitted into the medium from a single boundary S0,
focuses at xA. Figure 1 illustrates the principle. In the single-sided homogeneous Green’s function
representation, the focusing function replaces the complex-conjugated Green’s function, as follows

Gh(xB,xA,ω) = 4ℜ

∫
S0

1
iωρ(x)

G(x,xB,ω)∂3
(

f+1 (x,xA,ω)−{ f−1 (x,xA,ω)}∗
)
dx (3)

(Wapenaar et al., 2016; Van der Neut et al., 2017). The focusing function can be retrieved from reflection
data at S0 using the Marchenko method. In the following we assume the focusing function is available.
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Figure 1 The focusing function for the single-sided Green’s function representation. (a) Emission of the down-
going focusing function from S0 into a truncated version of the actual medium. (b) Responses at S0 and SA.
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Figure 2 Principle of time-reversal acoustics. (a) Forward propagation from xA to the surface S0. (b) Emission
of the time-reversed recordings vn(x,xA,−t) from S0 into the medium and snapshot of the wave field at t = 0, with
focus at xA. (c) Emission of a modified field v̂n(x,xA,−t) into the medium. Note the improved focus.

Time-reversal acoustics

The principle of time-reversal acoustics (Fink, 1992) is illustrated in Figure 2. Consider a source at xA
in the subsurface of which the response is recorded by receivers at S0 (Figure 2a). The recordings are
denoted as vn(x,xA, t), where vn stands for the normal component of the particle velocity. Using the
equation of motion, we express vn in the frequency domain as vn(x,xA,ω) = 1

iωρ(x)ni∂iG(x,xA,ω)s(ω),
where s(ω) is the spectrum of the source at xA. Using this in the homogeneous Green’s function repre-
sentation of equation (2) we obtain Gh(xB,xA,ω)s∗(ω) = 2

∮
S G(xB,x,ω)v∗n(x,xA,ω)dx, or, in the time

domain,

Gh(xB,xA, t)∗ s(−t) = 2
∮
S

G(xB,x, t)︸ ︷︷ ︸
′propagator′

∗vn(x,xA,−t)︸ ︷︷ ︸
′source′

dx, (4)

where the inline asterisk (∗) denotes temporal convolution. The right-hand side quantifies the emis-
sion of the time-reversed field vn(x,xA,−t) by sources at x on the boundary S (Figure 2b) and prop-
agation of this field by the Green’s function G(xB,x, t) through the inhomogeneous medium to any
point xB inside S; the integral is taken over all sources on S (Huygens’ principle). The left-hand
side quantifies the field at any point xB inside S. By setting xB = xA and t = 0 we obtain the field
at the focus (Figure 2b). Note that in this example significant artefacts occur outside the focal posi-
tion xA because S0 is not a closed boundary. Next, we define a new particle velocity field, according
to v̂∗n(x,xA,ω) = 1

iωρ(x)∂3
(

f+1 (x,xA,ω)−{ f−1 (x,xA,ω)}∗
)
s(ω), where for s(ω) we take a real-valued

spectrum. Using this in equation (3) we obtain Gh(xB,xA,ω)s(ω) = 4ℜ
∫
S0

G(xB,x,ω)v̂∗n(x,xA,ω)dx,
or, in the time domain,

Gh(xB,xA, t)∗ s(t) = 2
∫
S0

G(xB,x, t)∗ v̂n(x,xA,−t)dx+2
∫
S0

G(xB,x,−t)∗ v̂n(x,xA, t)dx. (5)

By setting again xB = xA and t = 0 we obtain the field at the focus (Figure 2c). Note that the artefacts
have been significantly reduced. The remaining artefacts are due to the finite aperture and negligence of
the evanescent field.

Back propagation

Given a wave field observed at the boundary of a medium, the field inside the medium can be obtained
by back propagation. Figure 3a illustrates the principle. By interchanging xA and xB in equation (2) and
multiplying both sides with a real-valued spectrum s(ω) of the source at xA, we obtain

p(xB,xA,ω)+ p∗(xB,xA,ω) =
∮
S

F(x,xB,ω)p(x,xA,ω)dx. (6)
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Figure 3 Principle of back propagation. (a) The wave field p(x,xA, t) at the boundary S0 and illustration of
its back propagation to xB inside the medium. (b) The back propagation operator Fd(x,xB, t) and a snapshot of
the back propagated wave field at t1 = 300 ms for all xB. (c) Idem, for the improved back-propagation operator
F(x,xB, t). Note the improved snapshot.

Here p(x,xA,ω) = G(x,xA,ω)s(ω) stands for the observed field at the boundary S and F(x,xB,ω) =
− 2

iωρ(x)ni∂iG∗(x,xB,ω) for the back propagation operator, both in the frequency domain. Hence, in
theory the exact field p(xB,xA,ω) can be obtained at any xB inside the medium. Because in practical
situations the field p(x,xA,ω) is observed only at a finite horizontal part S0 of the boundary, approxi-
mations arise in practise when S is replaced by S0. One of the consequences is that multiple reflections
are not handled correctly. In practice the back propagation operator is often approximated by its direct
contribution Fd(x,xB,ω) = 2

iωρ(x)∂3G∗d(x,xB,ω). Figure 3b shows this back-propagation operator in the
time domain and a snapshot of the back-propagated wave field. Note that the primary upgoing field is
retrieved well, but parts of the field are missing and significant artefacts occur. Next, we derive in a
similar way from equation (3)

p(xB,xA,ω)+ p∗(xB,xA,ω) = 2ℜ

∫
S0

F(x,xB,ω)p(x,xA,ω)dx, (7)

with F(x,xB,ω) = 2
iωρ(x)∂3( f+1 (x,xB,ω)− { f−1 (x,xB,ω)}∗), see Figure 3c. Note that the snapshot

shows the correctly retrieved wave field. This back propagation method has an interesting application in
monitoring of induced seismicity. Assuming p(x,xA,ω) stands for the response to an induced seismic
source at xA, this method creates, in a data-driven way, omnidirectional virtual receivers at any xB to
monitor the emitted field from the source to the surface. This application is discussed in a companion
paper (Brackenhoff et al., 2019).

Source-receiver redatuming

In the previous section we discussed back propagation of data p(x,xA,ω), which is the response to a
source at xA inside the medium. Here we extend this process for the situation in which both the sources
and receivers are located at the surface. First, in equation (7), we replace S0 by S′0 (just above S0), x
by x′ ∈ S′0, xA by x ∈ S0 and xB by xA. Next, we apply source-receiver reciprocity on both sides of the
equation. This yields

p(x,xA,ω)+ p∗(x,xA,ω) = 2ℜ

∫
S′0

p(x,x′,ω)F(x′,xA,ω)dx′, (8)

with F(x′,xA,ω) defined similar as above. The field p(x,x′,ω) = G(x,x′,ω)s(ω) represents the data at
the surface. Equation (8) back propagates the sources from x′ on S′0 to xA. Source-receiver redatuming
is now defined as the following two-step process. In step one, apply equation (8) to create an omnidi-
rectional virtual source at any desired position xA in the subsurface. According to the left-hand side,
the response to this virtual source is observed by actual receivers at x at the surface. Isolate p(x,xA,ω)
from the left-hand side by applying a time window (a simple Heaviside function) in the time domain. In
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Figure 4 (a) Principle of source-receiver redatuming. (b) Snapshot of the wave field p(xB,xA, t) at t2 = 500 ms.

step two, substitute the retrieved response p(x,xA,ω) into equation (7) to create virtual receivers at any
position xB in the subsurface. Figure 4(a) illustrates the principle. Note the analogy with classical reda-
tuming (Berryhill, 1984; Berkhout and Wapenaar, 1993) and source-receiver interferometry (Curtis and
Halliday, 2010), except that their complex-conjugated Green’s functions have been replaced by focusing
operators. These operators can be obtained with the Marchenko method. Figure 4b shows a snapshot of
p(xB,xA, t). This method has an interesting application in forecasting the effects of induced seismicity.
Assuming xA is the position where induced seismicity is likely to take place, this method forecasts the
response by creating, in a data-driven way, a virtual source at xA and virtual receivers at any xB that ob-
serve the propagation and scattering of its emitted field from the source to the surface. Also this method
is further discussed in the companion paper (Brackenhoff et al., 2019). Another interesting application
is imaging by double focusing (Staring et al., 2018).

Conclusions

The classical homogeneous Green’s function representation, originally developed for optical image for-
mation by holograms, expresses the Green’s function plus its time-reversal between two arbitrary points
in terms of an integral along a closed boundary enclosing these points. It forms a unified basis for a
variety of seismic imaging methods, such as time-reversal acoustics, seismic interferometry, back prop-
agation, source-receiver redatuming and imaging by double focusing. We have derived several of these
methods by applying some simple manipulations to the classical homogeneous Green’s function rep-
resentation. However, in most cases multiple scattering is not correctly handled because in practical
situations data are not available on a closed boundary. We also discussed a single-sided homogeneous
Green’s function representation, which requires access to the medium from one side only (the earth’s sur-
face). We used this single-sided representation as the basis for deriving modifications of time-reversal
acoustics, back propagation and source-receiver redatuming. These methods do account for multiple
scattering and can be used to obtain accurate images of the source or the subsurface, without artefacts
related to multiple scattering. Another interesting application is the monitoring and forecasting of re-
sponses to induced seismic sources, which is discussed in a companion paper.
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