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Introduction
In recent years, much progress has been made in Marchenko redatuming. Starting with the work of
Broggini et al. (2012), Wapenaar et al. (2014) extended the method to 2D and 3D, which was recently
followed by the inclusion of free-surface multiples (Singh et al. (2015)). The coupled Marchenko equa-
tions are conventionally solved by iterative substitution. However, this is not guaranteed to produce the
correct solution when free-surface multiples are included. When comparing the interferometric inter-
pretation of the Marchenko scheme without free-surface multiples to the interferometric interpretation
of the scheme including free-surface multiples, a difference in dynamics becomes evident. This intu-
itive idea is mathematically confirmed, proving that iterative substitution might not be the most logical
choice for solving these equations. We suggest sparse inversion as a more suitable method, that does not
only retrieve the correct wavefields where the iterative scheme fails, but that might also provide a more
flexible and robust algorithm.

Theory
The coupled Marchenko equations are displayed in equations 1 and 2. On the left side are the equations
without free-surface multiples, on the right side the equations that also include free-surface multiples.
Both are written in a discretized notation, as introduced by van der Neut et al. (2015). Here R0 denotes
the reflection response without free-surface multiples and R is the reflection response including free-
surface multiples, which have been obtained by sources and receivers at the acquisition level. Both
responses contain internal multiples. The star denotes complex conjugation. r denotes the reflection
coefficient of the free-surface, which we assumed to be equal to −1.

Marchenko redatuming uses one-way focusing functions to focus both primary reflections and multiples
at the desired depth level. The upgoing focusing function is represented by f−1 . The downgoing focusing
function has a direct part f+1d and a coda f+1m. The direct part f+1d is obtained by time-reversing the
transmission response from the acquisition level to the focal level, modeled in a macro velocity model.
The estimate of this direct wavefield is needed to initiate the scheme and to determine the truncation
times of the filter Θ. This filter is a time-symmetric windowing function that uses a difference in causality
properties to separate the Green’s functions from the focusing functions.

f−1 = ΘR0 f+1d +ΘR0 f+1m⇒ f−1 = ΘR f+1d +ΘR f+1m− rΘR f−1 (1)

f+1m = ΘR∗0 f−1 ⇒ f+1m = ΘR∗ f−1 − rR∗ f+1m (2)

These equations are conventionally solved by iterative substitution (Slob et al. (2014)). The iterative
scheme would ideally converge within a few iterations. At each iteration, the one-way Green’s functions
that contain primaries and all orders of multiples can be obtained from the one-way focusing functions.
Figure 1 shows the convergence of the Green’s function for 3 different models, both for solving the
Marchenko equations without free-surface multiples and including free-surface multiples. The error
in the convergence plots has been calculated by taking the l2-norm of the absolute difference between
iterations. Clearly, the scheme without free-surface multiples converges in a fast and straightforward
manner. However, a completely different behaviour is observed for the scheme without free-surface
multiples: the Green’s function is not always correctly retrieved. For the first model, convergence takes
place within a few iterations, but it occurs less fast and direct compared to the scheme without free-
surface multiples. A behaviour of converging and diverging is observed for the second model, and
complete divergence is found for the third model. This suggests that iterative substitution is perhaps not
the most straightforward method for solving for the coupled Marchenko equations including free-surface
multiples.

The underlying mechanism for iteratively solving the equations with free-surface multiples is different
from the equations without free-surface multiples (Staring et al. (2016)). When no free-surface multiples
are present, the dynamics are straightforward. Internal multiples can generate artefacts in the focusing
functions in the first iteration. A form of multiple prediction is used to immediately generate counter-
events from these artefacts in the next iteration. The following iterations contain only amplitude updates
of these counterevents, until the removal of artefacts is complete. No new artefacts are being created
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Figure 1 Three models and their convergence, for the scheme without free-surface multiples and the
scheme including free-surface multiples. The redatuming level is indicated by the dotted red line.

after the first iteration. This can be seen when looking at the convergence plots in the middle of figure 1.

However, a completely different mechanism is found when studying the scheme including free-surface
multiples. Free-surface multiples can also create artefacts in the upgoing focusing function during the
first iteration, but their removal is not straight-forward. Although all necessary counter-events are being
generated in the upgoing focusing function during the second iteration, they are being sabotaged by
reproductions of the artefacts themselves, and new artefacts are being added. These new artefacts will
not receive counter-events in next iterations, but will only be removed once the original artefacts are
being eliminated. This is delicate, since the original artefacts are boosting and reproducing themselves
while the scheme tries to remove them. Depending on the play of these dynamics, the scheme can
produce convergence behaviour as seen in the three plots on the right in figure 1.

Since this is only an intuitive explanation found by studying the different updates of the one-way wave-
fields, a more exact and mathematical explanation is needed to confirm these findings. We start by
writing equations 1 and 2 in matrix form:
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This is a Fredholm equation of the second kind, which can be expanded as a Neumann series:
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Thus, our iterative solution can be interpreted as a Neumann series, where k indicates the iteration

number. This series is guaranteed to converge if

∥∥∥∥∥
(
−rΘR ΘR
ΘR∗ −rΘR∗

)k( 0
f+1d
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2

→ 0 as k→∞ (Fokkema

and van den Berg (2013)), where the 2 indicates the l2-norm. In order for this to hold, ‖M‖2 < 1 has to be

79th EAGE Conference & Exhibition 2017
Paris, France, 12 – 15 June 2017



Table 1 l2 norms of the matrix M
Model 1 Model 2 Model 3

Without free-surface multiples 0.58 0.82 0.98
With free-surface multiples 1.25 3.74 4.55

satisfied, such that ‖MP‖2 ≤ ‖P‖2 for any wavefield P. Note that when the norm is above 1, convergence
is no longer guaranteed, but may still occur. This fits with our intuitive explanation and the observations
from figure 1. The value of this norm can only be found by numerical testing. Table 1 displays the
norms of matrix M of the three models displayed in figure 1. Without exception, the norms for the
scheme without free-surface multiples are below 1 and the iterative scheme is guaranteed to converge.
However, norms are above 1 when including free-surface multiples, meaning that convergence is no
longer guaranteed. From these observations, we can conclude that the iterative scheme might not be
the most suitable method for solving the coupled Marchenko equations including free-surface multiples.
Therefore, we decided to look at an alternative approach.

Sparse inversion: an alternative approach
In order to find a more suitable method, we need to specifically look for something that is capable of
tackling the convergence issue. We propose a sparse inversion for solving the linear system of equations
Ax = b, as given in equation 3. Here the vector x, containing the coda of the one-way focusing functions,
is the unknown that we wish to solve for. However, we have to be careful not to encounter the exact
same problem, since the Neumann lemma states that if ‖M‖2 < 1 then the matrix A = I−M is invertible.
Therefore, we propose to solve this system of equations by sparse inversion. Such an inversion is aimed
at solving under-determined systems of equations by minimizing a norm, thereby making the matrix A
invertible. In addition, it allows us to enforce sparsity on the focusing functions, these should be free
of artefacts and should thus satisfy a minimum energy criterion. Based on these requirements, we have
chosen the SPGl1 solver (Van Den Berg and Friedlander (2008)). This solver seems to be particularly
suitable for this type of problem, since it attempts to minimize ‖x‖1, where the subscript 1 indicates
the l1-norm. In addition, solving the coupled Marchenko equations by inversion gives us the possibility
to add additional constraints, for example in the form of smoothing and damping. When the data is
incomplete or contaminated with noise, an inversion with these extra constraints might still lead to an
acceptable result. Also, simultaneous inversion for the source wavelet, that is usually not accurately
known, might be possible.

In order to satisfy the causality requirements that form the base of the Marchenko scheme, a restriction
matrix containing the filter Θ on its diagonal should be applied to the matrix x to ensure that we obtain
a solution inside the domain of the focusing functions:(

−rΘR ΘR
ΘR∗ −rΘR∗

)(
0
f+1d

)
︸ ︷︷ ︸

b

=

[(
I 0
0 I

)
−
(
−rΘR ΘR
ΘR∗ −rΘR∗

)]
︸ ︷︷ ︸

A

(
Θ 0
0 Θ

)(
f−1
f+1m

)
︸ ︷︷ ︸

x

. (5)

Results

In this section, we will compare the downgoing Green’s functions retrieved by iterative substitution
and sparse inversion with SPGl1. Data including free-surface multiples is used, such that we can see
whether the inversion is capable of overcoming the convergence issue from which the iterative scheme
suffers. Figure 2 shows the results, where the red line represents the correct downgoing Green’s function
that was obtained by modeling and the blue line represents the results obtained by solving the coupled
Marchenko equations including free-surface multiples. The top windows show the results of the iterative
substitution and the bottom windows contain the results of the sparse inversion.

To test whether the sparse inversion is indeed capable of solving the coupled Marchenko equations, we
started by looking at model 1 for which the iterative scheme finds the correct solution. Both methods
retrieve the correct downgoing focusing function, proving us that the sparse inversion is indeed capable
of solving the coupled Marchenko equations. Next, we perform the sparse inversion for models 2 and
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3, where iterative substitution does not find the correct result. The sparse inversion does find the correct
solution and therefore performs better.

Figure 2 Comparison of two methods: the iterative substitution in the upper figures, the sparse inverison
with SPGl1 in the lower figures. The red line indicates the modeled Green’s functions and the blue line
represents the retrieved Green’s functions.

Conclusions
While iterative substitution provides a straightforward and natural way to solve the coupled Marchenko
equations without free-surface multiples, it does not for the coupled Marchenko equations with free-
surface multiples. Convergence of the iterative scheme is not guaranteed and incorrect Green’s functions
are often retrieved. The interferometric interpretation of both schemes has taught us that this difference
can be attributed to the underlying mechanisms. A sparse inversion was suggested as an alternative
method. While this method is computationally more expensive, we have demonstrated that it is ca-
pable of solving the coupled Marchenko equations including free-surface multiples where the iterative
scheme fails. In addition, sparse inversion allows for more flexibility and is more robust. Using sparsity
promotion and additional constraints, it might be able to deal better with noise and incomplete data.
Simultaneous estimation of the source wavelet also belongs to the potential possibilities.
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