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Summary

We propose a novel directional decomposition operator for wavefield snapshots in heterogeneous-velocity
media. The proposed operator demonstrates the link between the amplitude of pressure and particle-
velocity plane waves in the wavenumber domain. The proposed operator requires two spatial Fourier
transforms (one forward and one backward) per spatial dimension and time slice. To illustrate the op-
erator we demonstrate its applicability to heterogeneous velocity models using a simple velocity-box
model and a more heterogeneous velocity model, based on real data, from close to the Annerveen gas
field, The Netherlands.



Introduction

An important part of many seismic imaging steps is the decomposition of wavefields according to their
propagation direction; examples include noise removal, redatuming and inversion techniques. In the
industry it is common to decompose wavefields entering and exiting a surface, allowing for up-down
wavefield decomposition on receiver arrays. More recently it has become an integral part in subsur-
face imaging using Reverse Time Migration (RTM), as it can reduce artifacts introduced by the RTM
migration operator (Díaz and Sava, 2015). This led to the introduction of Poynting decomposition, by
Yoon and Marfurt (2006), as an alternative to the computationally expensive plane-wave decomposi-
tion. Holicki et al. (2016) developed a novel exact decomposition alternative for homogeneous media,
that circumvents Poynting decomposition’s inaccuracies due to wavefield interference. This work now
generalizes the previous work to arbitrarily heterogeneous velocity models, illustrating its usefulness for
wavefield decomposition.

Theory

The idea behind wavefield decomposition is to scale wavefield quantities to each other such that their
addition or subtraction perfectly removes the undesired part of the wavefield. For directional wavefield
decomposition this means scaling the pressure and particle velocity fields to each other and adding them
such that the only waves remaining propagate in the desired direction. Historically this was done in the
wavenumber-frequency or space-frequency domain. However we now wish to derive space-time and
wavenumber-time expressions, such that the decomposition can be applied on time slices.

To derive time-space domain acoustic wavefield decomposition operators for inhomogeneous velocity
but constant density acoustic models, we begin with the source-free isotropic inhomogeneous linearized
equations of continuity and motion, in the time-space domain (Aki and Richards, 2002):

∂t p =−ρc2~∇ ·~v (1a)

∂t~v =−
1
ρ

~∇p (1b)

where ∂t is the temporal differentiation operator, p is the pressure, ρ is the density, c is the heterogeneous
propagation velocity, ~∇ is the vector of spatial derivatives and~v is the particle-velocity vector.

The above expressions contain temporal derivatives ∂t . To allow us to decompose wavefields on snap-
shots we wish to remove these derivatives by expressing ∂t in terms of spatial operators. To this end
let us derive the acoustic wave equation for pressure by inserting Equation 1b into Equation 1a, while
assuming constant density: (

1
c

∂t

)2

p = ∆p (2)

where ∆ = ~∇ ·~∇ is used to denote the Laplacian. We now define the square root of the Laplacian ∆ as:

∆ =
√

∆
√

∆ (3)

where
√

∆ is a pseudo-differential operator. Inserting this definition into Equation 2 we can define an
equivalent temporal differentiation operator ∂ ′t when acting on the pressure p as:

∂
′
t = c

√
∆ (4)

We now have the necessary operator to derive decomposition operators. To derive expressions for up-
down wavefield decomposition we now wish to interrelate the pressure and vertical particle velocity. To
that end let us express p in terms of vz using Equation 1b:

p =−∂
−1
z ρ∂tvz (5)

Note that ∂−1
z takes the vertical primitive of the function it acts on, assuming the constant of integration

to be zero. Furthermore, in this work operators are assumed to operate on the entire following expression.
This is a valid assumption as equivalent assumptions were made when deriving Equation 1.
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Inserting Equation 5 into the right-hand side of Equation 2, integrating both sides with respect to time
and substituting for c2∆ via Equation 4 we find:

∂t p =−∂
′2
t ∂
−1
z ρvz (6)

Analogous to Wapenaar and Berkhout (1989) we can combine Equation 6 with Equation 1b to find the
following linear set of equations:

∂t

(
p
vz

)
=

(
0 −∂ ′2t ∂−1

z ρ

− 1
ρ

∂z 0

)(
p
vz

)
(7)

We can eigenvalue decompose the above; we choose to pressure-normalize the decomposition:

∂t

(
p
vz

)
=

(
1 1

1
ρ

∂z∂
′−1
t − 1

ρ
∂z∂
′−1
t

)(
−∂ ′t 0

0 ∂ ′t

)
1
2

(
1 ∂ ′t ∂−1

z ρ

1 −∂ ′t ∂−1
z ρ

)(
p
vz

)
(8)

It can be shown that the last matrix term, including the 1⁄2 scale factor, corresponds to matrix decompo-
sition along the vertical z. We may thus write:(

p↓

p↑

)
=

1
2

(
1 ∂ ′t ∂−1

z ρ

1 −∂ ′t ∂−1
z ρ

)(
p
vz

)
(9)

To better understand the decomposition we consider the operator term in the time-wavenumber (t,~k)-
domain governed by the wavenumber vector~k. We may then write:

F

{
1
c

∂
′
t ∂
−1
z vzz

}
=

√
~k ·~k
k2

z
ṽz =

√
1+

~kH ·~kH

k2
z

ṽz (10)

Note that tildes above symbols are used to indicate the wavenumber domain, F is the spatial Fourier
transform and ~kH is the horizontal wavenumber vector. Both wavenumber domain expressions have
instabilities as kz→ 0. To derive a stable operator we interrelate wavenumbers and particle velocities via
Equation 1b. We can solve Equation 1b in the (t,~k) domain for the pressure p̃ in terms of any component
i or j of ~̃v, which allows us to relate ratios of components of ~̃v to corresponding wavenumber ratios:

ki

k j
=

ṽi

ṽ j
(11)

Before inserting the above into Equation 10, we express kiki as kik∗i , using the fact that k is real, allowing
us to write: √

~k ·~k
k2

z
ṽz =

√
~k ·~k∗
kzk∗z

ṽz =

√
~̃v ·~̃v∗
ṽzṽ∗z

ṽz =
|~̃v|
|ṽz|
|ṽz|ei arg(ṽz) = |~̃v|ei arg(ṽz) (12)

This expression is unconditionally stable.

Equation 12 can easily be generalized to decomposition along any direction, via a rotation of the co-
ordinate system, e.g. in two dimensions rotation of the coordinate system counterclockwise by φ with
respect to the horizontal axis: ∣∣~̃v∣∣ei arg{cos(φ)ṽx−sin(φ)ṽz} (13)
Now the decomposition operator decomposes in the direction prescribed by φ , e.g. for φ = 0 the oper-
ator decomposes into left-right-going pressure normalized wavefields. Now that we understand how to
interpret the decomposition operators let us write the up-down pressure- and vertical-particle-velocity-
normalized decomposed wavefields as:

p↓ =
1
2

[
p+ρcF−1

{∣∣~̃v∣∣ei arg(ṽz)
}]

(14a)

p↑ =
1
2

[
p−ρcF−1

{∣∣~̃v∣∣ei arg(ṽz)
}]

(14b)

v↓z =
1
2

[
vz +

1
ρc

F−1

{
|ṽz|∣∣~̃v∣∣ p̃

}]
(15a)

v↑z =
1
2

[
vz−

1
ρc

F−1

{
|ṽz|∣∣~̃v∣∣ p̃

}]
(15b)

Note that the particle-velocity-normalized decomposition is also unconditionally stable, assuming real-
istic densities and medium velocities, as the particle-velocity fraction varies between zero and one.
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Figure 1 Decomposed pressure wavefields due to a source at the center of a 2 km/s box (black box)
embedded in a 1 km/s constant-density background medium with free-surface boundaries at model edges.
a) Total wavefield. b) Right-going wavefield amplified 20 times inside dashed square to illustrate errors.
c) Down-going wavefield. d) Down-right-going wavefield computed using Equation 13 for φ = 45◦.

Synthetic Examples

To illustrate the advantages and limitations of our snapshot decomposition operators we will consider
a simple constant-density model with a centered high-velocity box and a heterogeneous velocity model
based on seismic and well data near the Annerveen gas field (Vidal et al., 2014). The data were decom-
posed using Equation 9 and Equation 13.

Figure 1 shows a pressure wavefield due to a pressure source excited at the center of a 2 km/s box
(indicated by a black square), surrounded by a 1 km/s background constant-density medium. We see
some numerical wavefield leakage Figure 1b, because we did not correct for the fact that the finite
difference grid was staggered in time. We also see low-vertical wavenumber errors that are attributable
to operating and tapering in the wavenumber domain. Tapering has however proved to be valuable
for removing strong horizontal or vertical artefacts due to low-wavenumbers from the decomposition
operator.

Figure 2 shows a decomposed snapshot of an acoustic wavefield excited by a pressure source at the
center of the constant-density Annerveen model. We see how nicely the operator decomposes the wave-
field. Again we did not account for the time shift between the pressure and particle velocity fields. This
demonstrates that the decomposition operators remain applicable when there is a small time shift be-
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Figure 2 Decomposed pressure wavefields due to a source at the center of the constant-density An-
nerveen velocity model (d). a) Total wavefield. b) Right-going wavefield. c) Down-going wavefield.

tween the pressure and particle-velocity wavefields. This is an important result as it greatly improves
performance in RTM schemes because one does not have to correct for the time shift before decom-
posing wavefields. Correcting for the spatial staggered grid however remains imperative for acceptable
results.

Conclusions

In this work, we generalized our previously presented decomposition operators (Holicki et al., 2016),
laying the mathematical foundation for the previously introduced homogeneous-velocity-model decom-
position operator. We also generalized the operator to decompositions into arbitrary directions via Equa-
tion 13. This new omni-directional operator is an invaluable tool for snapshot wavefield decomposition
and complements the likes of Poynting decomposition in RTM when decomposing in heterogeneous
velocity models.
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