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Abstract 
 
The investigation and detection of near-surface structures (cavities, caves, tunnels, mineshafts, buried 
objects, archeological ruins, water reservoir, etc.) is important to mitigate geo- and environmental 
hazards. We use a method inspired by seismic interferometry to estimate the location of a cavity in a 
scaled ultrasonic experiment, representative for geophysical field problems. We use only one source at the 
surface and retrieve ghost scattered waves by evaluating the correlation of scattered waves at different 
receiver locations. As an exploitation of the ghost arrival information, the ghost travel times are 
determined and combined to estimate the location of a cavity with good accuracy. 
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Introduction 

Near-surface structures such as cavities, caves, tunnels, etc., may pose risk during and after the 
construction of buildings, transportation ways (roads, highways, railways) or power plants (wind, 
solar, etc). Detecting and monitoring these near-surface structures is important to mitigate the 
potential hazards. We use ghost scattered waves retrieved by seismic interferometry (SI) to estimate 
the location of a near-surface scatterer. In our method, we use active-source SI and only one source at 
the surface (Harmankaya et al., 2013). Retrieving the complete Green’s function requires boundary 
sources to enclose the receivers (Wapenaar and Fokkema, 2006). In our case, the receivers are not 
fully illuminated, thus non-physical arrivals appear in the SI result (Snieder et al., 2006; Halliday and 
Curtis, 2009, Halliday et al., 2010). As it is essential to validate a new method’s effectiveness in a 
controlled environment (Kaslilar 2007; Bretaudau et al., 2011), in the following we test the proposed 
method on data from an ultrasonic laboratory experiment.  

Method 

We use a method inspired by SI, but we consider only one source and an array of receivers. As an 
isolated scattered wavefield is required, the scattered wavefield is isolated from the total wavefield at 
the receivers by filtering and muting all other arrivals (Harmankaya et al., 2013). On the isolated 
scattered wavefield a reference receiver, at which would be the virtual source (VS) position, is 
selected and all traces on this record, including the reference trace, are cross-correlated with the trace 
at the virtual-source position. In this way the common travel path from the real source to the scatterer 
is eliminated, and the estimation of the scatterers’ locations becomes dependent only on the properties 
between the receivers and the scatterer. This results in the retrieval of ghost scattered waves. To 
estimate the location of the scatterer, the following theoretical ghost travel-time relation is used: 
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The relation calculates model ghost traveltimes between the virtual source, the scatterer and the 
receivers. In Eq. (1), V is the wave velocity, i is the index for the receiver numbers, vs denote the 
virtual source and x and z are the horizontal and vertical location parameters, respectively.  
 
The traveltime relation (Eq. 1) and the traveltimes obtained for each virtual source location from the 
data are used in an inversion to find the unknown model parameters (the x and z location of the 
object). The nonlinear problem is solved iteratively. The system of equations for the forward problem 
is denoted as Δ = Δd G m . The difference between the observed obst  (retrieved), and the calculated 

calct  ghost scattered data is given by calcobs tt −=Δd , the unknown model parameters - the x and z 
location of the object - are denoted by the vector Δm , while the Jacobian matrix is represented by G . 
The inverse problem is solved by using damped singular value decomposition and the uncertainties of 
the estimations are obtained by the model covariance matrix using a coverage factor 2, which 
provides a confidence level of 95%.  

Estimation of the Location of a Cavity from Ultrasonic Data  

To confirm the validity of the proposed method, an ultrasonic experiment is designed at the 
Laboratory of Acoustics and Thermal Physics in KU Leuven. The experimental setup is shown in 
Figure 1.  
 
A 4–milimetre-wide hole was drilled into an aluminum block of size 100 mm × 100 mm × 80 mm 
(Figure 1a). This cavity extends 25 mm in the horizontal direction (Figure 1b). A Nd:YAG laser is 
used to generate ultrasonic waves with a bandwidth of about 1 MHz. The wave field is recorded with 
a laser Doppler vibrometer for 16 µs, at a sample rate of 500 MS/s, using receiver positions indicated 
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Figure 1 (a) Schematic side view of the aluminum block, with the locations of the laser spot source 
(star), receivers (triangles) and scattering cavity (circle). (b) Top view: the dashed rectangle 
represents the drilled hole. 

by triangles in Figure 1. A total of 60 receiver positions with 0.5 mm spacing were used. To increase 
the signal-to-noise ratio, the source excitation was repeated 128 times at 10 pulses per second for each 
receiver position and the recordings were averaged. The recorded wave field is shown in Figure 2a. 
High-frequency noise in the record is suppressed using a weighted average smoothing and a 2-D 
median filter, results of which are given in Figure 2b.  
 

 
Figure 2 (a) Recorded ultrasonic wave field. (b) Smoothed wave field after applying a moving 
average filter and 2-D median filter. Symbols PD, SD ,RD, PWS, SWS, RWS, and SR denote the direct 
P-waves, direct S-waves, direct Rayleigh waves, P-wave scattering, S-wave scattering, Rayleigh-wave 
scattering and side reflections, respectively. (c) Direct wave field obtained after frequency-
wavenumber filtering. (d) Scattered wave field, obtained by subtracting the direct wave field in (c) 
from the full wave field in (b). 

 
The proposed method for estimating the scatterer’s location requires an isolated scattered wave field, 
so the elimination of the direct waves is needed. For this purpose, an f-k (frequency-wavenumber) 
filter is used. Using this filter, the direct wave field (Figure 2c) can be separated, and the scattered 
wave field (Figure 2d) can be obtained by subtracting the direct wave field (Figure 2c) from the total 
wave field (Figure 2b). After muting out the early arrivals in the scattered wave field (Figure 3a), SI is 
applied to the remaining scattered waves by cross-correlating the selected trace at the VS location 
with all traces on the isolated scattered wavefield. Figure 3b-d shows the retrieved interferometric 
ghost scattered waves for three separate VS locations: 13, 23 and 31 (16, 21 and 25 mm). The ghost 
traveltimes are picked from the maximum amplitude of the retrieved ghost scattered waves (grey 
curves on Figure 3b-d). After f-k filtering, it is observed that direct arrivals and forward-scattered 
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wave field are eliminated together, as they have similar slope and frequency content. For this reason, 
travel times on the right branch are extrapolated by taking the symmetry of the back-scattered (left) 
branch. It is also important to note that, in case of disturbed wavefields as seen in Figure 3b-d, the 
apex of the scattered arrivals can be used to determine the apex in the interferometric panels. In 
Figure 2b, the apex of the scattered arrivals can be visually observed from PWS or RWS arrivals. The 
remnants of the S-wave scattering are indicated with arrows in Figure 3b-d. 

 
Figure 3 (a) The scattered wave field after muting out arrivals other than the scattered waves in 
Figure 2d. (b), (c) and (d) show the retrieved ghost scattered waves obtained by applying seismic 
interferometry to (a) for virtual source locations 13, 23 and 31 (16, 21 and 25 mm), respectively. The 
grey lines show the picked travel times. The arrows represent the remnants of S-wave scattering. 

To find the location of the scatterer, the traveltime relation and the traveltimes obtained for each 
virtual-source location are used in the inversion. The best fit between the observed and calculated 
traveltimes of the ghost scattered waves for virtual sources 13, 23 and 31 (16 mm, 21 mm and 31 mm) 
are given in Figure 4a. The initial model parameters and the updated parameters are given in Figure 
4b. After six iterations, the model parameters - the horizontal and vertical location of the scatterer - 
converge to the actual values. In Figure 4c, the estimated parameters and their 95% confidence 
intervals, obtained by Eq. (4), are shown for each virtual-source location. The error bars for the 
average values are calculated by error propagation and the blue lines are the lateral and vertical 
bounds of the scatterer. The estimated locations are within the boundaries of the real location of the 
cavity, thus confirming the validity of the method. 

Conclusion 

A method proposed for obtaining the location of a near-surface scatterer by using traveltimes of ghost 
(non-physical) scattered waves is applied to data from an ultrasonic experiment. Using only one 
surface source, the traveltimes of ghost scattered waves are used in an inversion to find the location of 
a buried cavity. It is observed that the location of the cavity is correctly estimated.  
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Figure 4 (a) Observed (dot) and calculated (solid line) traveltimes; (b) Estimated horizontal and 
vertical locations of the cavity scatterer for virtual sources 13 (blue, 16 mm), 23 (brown, 21 m) and 
31 (red, 25 m). The values for the zeroth iteration correspond to the initial parameters for the 
inversion. (c) Estimated model parameters and their 95% confidence limits, blue lines illustrate the 
lateral (left) and vertical (right) bounds and the midpoint of the scatterer. 
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