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On the Relation between Seismic Interferometry
and the Simultaneous-source Method
K. Wapenaar* (Delft University of Technology)

SUMMARY
In seismic interferometry the response of a virtual source is created from responses of sequential transient
or simultaneous noise sources. In the simultaneous-source method (also known as blended acquisition),
overlapping responses of sources with small time delays are recorded. Clearly seismic interferometry and
the simultaneous-source method are related. We make this relation explicit by deriving deblending as a
form of seismic interferometry by MDD. The discussed representation for the simultaneous-source method
has two interesting limiting cases. When each source group consists of a single source, then we obtain the
original expressions for interferometry with sequential transient sources. On the other hand, when there is
only one source group containing all sources and when the source wavelets are replaced by mutually
uncorrelated noise signals, then we obtain the expressions for interferometry with simultaneous noise
sources.



Introduction

In seismic interferometry the response of a virtual source is created from responses of sequential transient
or simultaneous noise sources. Most methods use crosscorrelation, but recently seismic interferometry
by multidimensional deconvolution (MDD) has been proposed as well.

In the simultaneous-source method (also known as blended acquisition), overlapping responses of
sources with small time delays are recorded (Beasley et al. , 1998). The crosstalk that occurs in imaging of
simultaneous-source data can be reduced by using phase-encoded sources (Bagaini, 2006) or simultaneous
noise sources (Howe et al. , 2007), by randomizing the time interval between the shots (Stefani et al. ,
2007), or by inverting the blending operator (Berkhout, 2008).

Clearly seismic interferometry and the simultaneous-source method are related. In this paper we
make this relation explicit by deriving deblending as a form of seismic interferometry by MDD.

Basic expression for seismic interferometry by multidimensional deconvolution

We consider an arbitrary inhomogeneous dissipative acoustic medium. In this medium we define a surface
S enclosing a volume V (Figure 1). Outside V there is a source located at xS and inside V we consider
a receiver at xB . The Green’s function between this source and receiver is defined as G(xB ,xS , t). For
this configuration we consider the following convolutional Green’s function representation (Wapenaar
and van der Neut, 2010)

G(xB ,xS , t) =

∮
S

Ḡd(xB ,x, t) ∗ Gin(x,xS , t) dx. (1)

Gin(x,xS , t) is the part of the Green’s function G(x,xS , t) that propagates inward into V. Ḡd(xB ,x, t)
is the response of a dipole source at x (indicated by the subscript ‘d’). The bar denotes that Ḡd(xB ,x, t)
is defined in a reference medium which is identical to the actual medium in V and which is homogeneous
outside S (hence, S is an absorbing boundary for Ḡd(xB ,x, t)).
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Figure 1: Configuration for the convolution-type Green’s function representation (equation 1). The
medium does not need to be lossless. The rays represent full responses, including primary and multiple
scattering due to inhomogeneities inside as well as outside S.

If we consider Ḡd(xB ,x, t) as the unknown quantity, then equation (1) is an implicit representation of
the convolution type for Ḡd(xB ,x, t). If it were a single equation, the inverse problem would be ill-posed.
However, equation (1) holds for each source position xS (outside V), which we will denote from here

onward by x
(i)
S , where i denotes the source number. Solving the ensemble of equations for Ḡd(xB ,x, t)

involves MDD.
In the following we modify the configuration to that of the virtual-source method, see Figure 2a. The

closed surface S is replaced by an open surface. This is allowed as long as the source positions x
(i)
S are

located at the appropriate side of S (i.e., outside V). We choose xB just below S and apply decomposition
at xB on both sides of equation (1), according to

Gout(xB ,x
(i)
S , t) =

∫
S

Ḡout
d (xB ,x, t) ∗ Gin(x,x

(i)
S , t) dx, (2)

where the superscript ‘out’ denotes waves propagating outward from V.
For practical applications the Green’s functions Gin and Gout in equation (2) should be replaced

by responses of real sources, i.e., Green’s functions convolved with source functions. In the following
we consider three kinds of acquisition (sequential transient sources, noise sources and the simultaneous-
source method) and discuss the inversion of equation (2) for those situations.
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Figure 2: (a) Convolutional model for the virtual-source method. (b) Convolutional model for the
simultaneous-source method.

Interferometry by MDD for sequential transient sources

For sequential transient sources we may write for the (non-overlapping) responses at x and xB

uin(x,x
(i)
S , t) = Gin(x,x

(i)
S , t) ∗ s(i)(t), (3)

uout(xB ,x
(i)
S , t) = Gout(xB ,x

(i)
S , t) ∗ s(i)(t). (4)

Hence, by convolving both sides of equation (2) with s(i)(t) we obtain

uout(xB ,x
(i)
S , t) =

∫
S

Ḡout
d (xB ,x, t) ∗ uin(x,x

(i)
S , t) dx. (5)

Solving equation (5) in a least-squares sense is equivalent to solving its normal equation (Menke, 1989).

We obtain the normal equation by crosscorrelating both sides of equation (5) with uin(xA,x
(i)
S , t) (with

xA on S) and taking the sum over all sources (van der Neut et al. , 2010). This gives

Cseq(xB ,xA, t) =

∫
S

Ḡout
d (xB ,x, t) ∗ Γseq(x,xA, t) dx, (6)

(subscript ‘seq’ standing for ‘sequential’) where

Cseq(xB ,xA, t) =
∑

i

uout(xB ,x
(i)
S , t) ∗ uin(xA,x

(i)
S ,−t) (7)

=
∑

i

Gout(xB ,x
(i)
S , t) ∗ Gin(xA,x

(i)
S ,−t) ∗ S(i)(t),

Γseq(x,xA, t) =
∑

i

uin(x,x
(i)
S , t) ∗ uin(xA,x

(i)
S ,−t) (8)

=
∑

i

Gin(x,x
(i)
S , t) ∗ Gin(xA,x

(i)
S ,−t) ∗ S(i)(t),

with
S(i)(t) = s(i)(t) ∗ s(i)(−t). (9)

Note that Cseq(xB ,xA, t) as defined in equation (7) is a correlation function with a similar form as the one
used by Mehta et al. (2007) in their virtual-source method by wave field decomposition. Γseq(xB ,xA, t) as
defined in equation (8) is what we call the point-spread function. Equation (6) shows that the sequential
transient correlation function Cseq(xB ,xA, t) is proportional to the sought Green’s function Ḡout

d (xB ,x, t)
with its source smeared in space and time by the sequential point-spread function Γseq(x,xA, t). MDD
involves inverting equation (6). Ideally, this removes the distorting effects of the point-spread function
Γseq(x,xA, t) (including the so-called spurious multiples) from the correlation function Cseq(xB ,xA, t)
and thus yields an estimate of the Green’s function Ḡout

d (xB ,x, t).

Interferometry by MDD for simultaneous noise sources

For simultaneous noise sources we write for the responses at x and xB

uin(x, t) =
∑

i

Gin(x,x
(i)
S , t) ∗ N (i)(t), (10)

uout(xB , t) =
∑

j

Gout(xB ,x
(j)
S , t) ∗ N (j)(t). (11)
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We define the noise correlation function and the noise point-spread function, respectively, as

Cnoise(xB ,xA, t) = 〈uout(xB , t) ∗ uin(xA,−t)〉, (12)

Γnoise(x,xA, t) = 〈uin(x, t) ∗ uin(xA,−t)〉. (13)

Here 〈·〉 denotes ensemble averaging. In practice the ensemble averaging is replaced by integrating over
sufficiently long time and/or averaging over different time intervals. Upon substitution of equations (10)
and (11) into equations (12) and (13), assuming the noise sources are mutually uncorrelated, according
to

〈N (j)(t) ∗ N (i)(−t)〉 = δijS
(i)(t), (14)

it follows that the noise correlation and point-spread functions as defined in equations (12) and (13)
converge to the sequential transient correlation and point-spread functions defined in equations (7) and
(8). Hence, analogous to equation (6), interferometry by MDD for simultaneous noise sources comes to
inverting

Cnoise(xB ,xA, t) =

∫
S

Ḡout
d (xB ,x, t) ∗ Γnoise(x,xA, t) dx. (15)

Interferometry by MDD for the simultaneous-source method

Consider the configuration depicted in Figure 2b, where σ
(m) denotes a group of source positions x

(i)
S .

Although the figure suggests that these sources are adjacent to each other, they may also be randomly

selected from the total array of sources. Assuming the source at x
(i)
S emits a delayed source wavelet

s(i)(t − ti), the blended inward and outward propagating fields at S are given by

uin(x,σ(m), t) =
∑

x
(i)
S
∈σ(m)

Gin(x,x
(i)
S , t) ∗ s(i)(t − ti), (16)

uout(xB ,σ(m), t) =
∑

x
(i)
S
∈σ(m)

Gout(xB ,x
(i)
S , t) ∗ s(i)(t − ti), (17)

where x
(i)
S ∈ σ

(m) denotes that the summation takes place over all source positions x
(i)
S in group σ

(m).
By convolving both sides of equation (2) with s(i)(t−ti) and summing over all sources in σ

(m) we obtain,
analogous to equation (5),

uout(xB ,σ(m), t) =

∫
S

Ḡout
d (xB ,x, t) ∗ uin(x,σ(m), t) dx. (18)

When the indicated receivers on S in Figure 2b are real receivers in a borehole, then uout(xB ,σ(m), t) and
uin(x,σ(m), t) are the (decomposed) measured blended wave fields in the borehole. On the other hand, in
case of surface data acquisition, uout(xB ,σ(m), t) represents the blended data after model-based receiver
redatuming to S and uin(x,σ(m), t) represents the blended sources, forward extrapolated through the
model to S.

We obtain the normal equation by crosscorrelating both sides of equation (18) with uin(xA,σ(m), t)
(with xA on S) and taking the sum over all source groups σ

(m). This gives

Csim(xB ,xA, t) =

∫
S

Ḡout
d (xB ,x, t) ∗ Γsim(x,xA, t) dx, (19)

(subscript ‘sim’ standing for ‘simultaneous’) where

Csim(xB ,xA, t) =
∑
m

uout(xB ,σ(m), t) ∗ uin(xA,σ(m),−t), (20)

Γsim(x,xA, t) =
∑
m

uin(x,σ(m), t) ∗ uin(xA,σ(m),−t). (21)

Substituting equations (16) and (17) into equations (20) and (21) gives

Csim(xB ,xA, t) = Cseq(xB ,xA, t) + crosstalk, (22)

Γsim(x,xA, t) = Γseq(x,xA, t) + crosstalk. (23)
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The contributions to the crosstalk have the form Gout(xB ,x
(j)
S , t)∗Gin(xA,x

(i)
S ,−t)∗s(j)(t−tj)∗s(i)(−t−

ti) for i 6= j, where x
(i)
S and x

(j)
S are members of the same group. Deblending involves inverting equation

(19) by MDD. Ideally this eliminates the crosstalk from the correlation function and gives the deblended
virtual-source response Ḡout

d (xB ,x, t).
In Figure 3 we show two examples of the point-spread function for the simultaneous-source method.

We consider a homogeneous overburden (propagation velocity 2000 m/s), and 256 sources at the surface
with a lateral spacing of 20 m. We form 64 source groups σ

(m), each containing four adjacent sources
which emit transient wavelets, 0.25 s after one another. The inward propagating field uin(x,σ(m), t) at
depth level x3 = 500 m is defined by equation (16). The point-spread function Γsim(x,xA, t), as defined
in equation (21), is shown in Figure 3a, with xA fixed at the center of the array and x variable along
the array. Next we add random variations (uniform between + and −50%) to the 0.25 s time interval
between the sources and evaluate again the point-spread function Γsim(x,xA, t), see Figure 3b. Note
that the band-limited delta function around x = xA and t = 0 remains intact, whereas the crosstalk
disperses in space and time. Inverting noisy point-spread functions like the one in Figure 3b may be a
more stable process than inverting nearly periodic point-spread functions like the one in Figure 3a.
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Figure 3: (a) Point-spread function for the simultaneous-source method, using 64 groups of four sources
each, with a regular time interval of 0.25 s. (b) Idem, after adding random variations to the time interval.

Conclusions

We have shown that deblending can be seen as a form of seismic interferometry by MDD. The discussed
representation for the simultaneous-source method has two interesting limiting cases. When each source
group σ

(m) consists of a single source, then we obtain the expressions for interferometry with sequential
transient sources. On the other hand, when there is only one source group containing all sources and when
the source wavelets are replaced by mutually uncorrelated noise signals, then we obtain the expressions
for interferometry with simultaneous noise sources.
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