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Introduction

A couple of years ago, ultrasonic transmission measurements have been carried out on Rotliegend
reservoir sandstone samples (Den Boer, Dillen, Duijndam and Fokkema, 1996, EAGE; Swinnen,
1997, M.Sc. thesis, Leuven / Delft). The experiments were carried out for a range of different
ambient pressures. Figure 1 shows the transmission responses for pressures ranging from 2 MPa
(the latest arrival) to 20 MPa (the first arrival). It appeared that not only the arrival time reduces
when the ambient pressure increases, but that the width of the wavelet reduces by approximately
the same relative amount. In other words, the time-axis seems to be scaled by a single factor
when the ambient pressure is changed from one value to another. Also the amplitude changes
with changing pressure. It has been carefully checked that these time and amplitude changes are
not source effects, but that it is the propagation through the sandstone that changes with changing
pressure. The aim of this paper is to give a possible theoretical explanation for the observed scaling
of the time axis, and to present a numerical test of the proposed scaling model.
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Figure 1:Transmission responses of Rotliegend reservoir sandstone for varying ambient pressure.

The binary layered medium approach

We start by making a strong simplification, that is, we assume that the sandstone is horizontally
layered. Although this is not very realistic, it is a suitable starting point for studying the scaling
behaviour analytically. The second assumption is that the layered medium consists of only two
types of material (hence the name binary layered medium); the layer thicknesses are in some way
randomly distributed. The third assumption is that changes in the ambient pressure do not affect the
layer thicknesses, but only the material parameters. With these assumptions the depth-dependent
normal-incidence plane-wave reflectivityr(z) obeys the following scaling relation

rB(z) = � rA(z); (1)
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where the subscriptsA andB refer to two different ambient pressure states. When the material pa-
rameters of both layer types react similarly (in a relative sense) to changes in the ambient pressure
then� = 1; when they react differently then� 6= 1. The average slowness�s of the material obeys
the following relation

�sB = � �sA: (2)

It is beyond the scope of this paper to specify the scaling factors� and� and their mutual relation.
For our analysis it is sufficient to assume that relations (1) and (2) hold for some value of� and
�. In the following section we will evaluate the scaling behaviour of the transmission response of
binary layered media analytically.

Scaling behaviour of the transmission response

The normal-incidence plane-wave transmission response of a layered medium can be expressed in
the frequency domain in terms of a ‘generalized primary’ propagatorW(z1; z0; !), according to

W(z1; z0; !) = P(z1; z0; !)M(z1; z0; !) (3)
= expf�j!�s�zg expf�A(2!�s)�zg; �z = z1 � z0;

where the first exponential describes the (flux-normalized) primary propagation from depth level
z0 to z1 and the second exponential accounts for the internal multiples generated between those
two depth levels. The functionA is the Fourier transform of the ‘causal part’ ofS(z), according
to

A(k) =
Z
1

0

expf�jkzgS(z)dz; (4)

whereS(z) is the autocorrelation of the reflection functionr(z). Note that equation (3) is the
well-known O’Doherty-Anstey relation, except thatA(k) in equation (4) is expressed in terms of
a spatial rather than a temporal autocorrelation function. The depth-time conversion takes place in
equation (3), whereA(k) is evaluated atk = 2!�s. Assumingr(z) obeys equation (1),A(k) has
the following scaling behaviour

AB(k) = �2AA(k); (5)

where the subscriptsA andB refer again to two different ambient pressure states. For these two
pressure states the generalized primary propagators read

WA(z1; z0; !) = PA(z1; z0; !)MA(z1; z0; !) = expf�j!�sA�zg expf�AA(2!�sA)�zg (6)

WB(z1; z0; !) = PB(z1; z0; !)MB(z1; z0; !) = expf�j!�sB�zg expf�AB(2!�sB)�zg (7)

or, using equations (2) and (5),

WB(z1; z0; !) = expf�j�!�sA�zg expf��2AA(2�!�sA)�zg

= PA(z1; z0; �!)[MA(z1; z0; �!)]
�2: (8)

Numerical experiments

In order to test the previous quantification of the scaling behaviour (equation (8)), we have per-
formed numerical simulations for the transmission response through a binary layered medium. The
proposed sandstone model consists of a stack of horizontal acoustic layers with just two alternating
velocities, and the thickness of each bed is a random variable following an exponential distribution
with meand. The density is considered constant for both material types. The assumption is that
as the ambient pressure increases one of the material changes its velocity while the other remains
fixed. Thus the reflectivity and the average slowness change according to equations (1) and (2).



The total transmission response is calculated by means of forward modelling of the acoustic wave
equation in the frequency domain, considering a plane-wave incident from the top and calculating
the plane-wave transmitted to the bottom of the stack of horizontal parallel layers. After calculating
the transmission impulse response, convolution with Ricker wavelets is carried out.

In Figure 2, transmitted zero-phase Ricker wavelets through a binary layered medium are shown.
The fastest trace corresponds to the smallest impedance contrast and average slowness. The later
arrivals are calculated fixing one velocity and decreasing the other, that is increasing the impedance
contrast and the average slowness of the models. Note the similar scaling behaviour observed in
the experimental data for different ambient pressures (Figure 1).
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Figure 2:Transmission responses (convolved with Ricker wavelet) for varying impedance contrast.

The first and third arrivals in Figure 2 are used to check equation (8). The corresponding model
parameters are shown in Table 1.

Total path Mean thickness (d) No layers Velocity 1 Velocity 2
ModelA 3200 m/s

20 cm 0.3 mm 649 3500 m/s
ModelB 3000 m/s

Table 1:Model parameters

From the model velocities and using equations (1) and (2), it is possible to calculate the scaling
parameters� = 1:718 and� = 1:035. They are used to scale the transmission response from
modelA to modelB. The direct path delay is subtracted from both responses according to the
corresponding time delay for each model. Thus equation (8) simplifies to

MB(z1; z0; !) = [MA(z1; z0; �!)]
�2: (9)

The results are shown in Figures 3 and 4 both in the time and in the frequency domain.

Discussion and conclusions

Equation (8) quantifies the scaling behaviour of the transmission response. Note that in both terms
at the right-hand side the frequency is scaled with the same factor�. This agrees with our earlier
observation that the arrival time and the width of the wavelet scale by approximately the same
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Figure 3: (Left) Transmission impulse responses (shifted by direct path time delay) for ModelA,
ModelB and scaled version fromA to B with � = 1:718 and� = 1:035. (Right) First arrival
(Model A) and third arrival (Model B) of Figure 2, and scaled version from A to B.
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Figure 4:(Left) Amplitude and (Right) phase spectra of transmission impulse responses for Model
A, ModelB and scaled version fromA toB with� = 1:718 and� = 1:035

amount when the ambient pressure is changed. The exponent�2 in the second term accounts for
the amplitude change, but has an effect on the phase as well. Since this exponent is applied to a
frequency-dependent term, there is not a simple scaling relation in the time-domain.

We have tested the scaling model of equation (8) using numerical modelling techniques and the
results are favourable. The binary layered medium approach was used. Our hypothesis is that as
pressure changes, some variation in the velocity of one material occurs. The� and� parameters are
related with acoustic characteristics of the layered model (i.e. reflectivity and average slowness).

Although we have made a number of simplifying assumptions, it is worthwile to use equation (8)
as a first approximate model for observations like those in Figure 1. Estimating the parameters�

and� from that type of measurements for a range of different ambient pressures gives valuable
information about the pressure-dependent behaviour of the reservoir rock.


