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Summary

Hierarchical decomposition is the process of decomposing the ac-
tual wave field into a set of scattered wave fields which account
for an increase of the complexity of the scattering domain with
respect to the embedding. Unlike the linearization process in iter-
ative Born-type inversion methods (like the distorted-wave Born
method), hierarchical decomposition is data-driven, that is, the
decomposition process is guided by the information that is avail-
able in the data. This paper discusses the consequences for seismic
inversion and migration.

Introduction

In inverse scattering one attempts to reconstruct the material com-
position of a domain whose interior is inaccessible to direct mea-
surements by probing it from the outside. To this end the domain
is considered as a contrasting domain in a known background con-
figuration. The probing is carried out by exciting the object with
a number of sources, while the resulting wave field is detected at a
number of receiver positions. In the corresponding mathematical
description of the experiment the wave field quantities are subject
to a spatial-temporal differential operator, and to the boundary
conditions, such as, for example, source conditions and the radia-
tion conditions.

In general terms inversion can be formulated as a non-linear ex-
pression where the measurements are related to the contrast func-
tion in the medium. This representation is equivalent to a volume
integral over the contrasting domain where the contrast function,
together with the actual field, acts as weights on the kernel func-
tion.

This kernel function depends on the position of two points in the
contrasting domain and is known as the Green’s function. The
Green’s function represents the inverse of the differential oper-
ator. In the usual formulation of the inverse problem the wave-
theoretical character of the inverse operator is predetermined; only
the constitutive parameters are allowed to vary. In this sense inver-
sion is equal to inverse forward modeling. However, this approach
leads to a restriction on the inversion process. The data to be
inverted are harnessed due to this assumption. The parameters
do not have enough flexibility to compensate for the discrepancies
between the observed and calculated data when the observed data
cannot be attributed to such a wave problem. In the hierarchical
approach it is proven that any wave problem can be decomposed
into a set of subproblems. By arranging this set of subproblems
in increasing order of complexity the associated inverse process is
divided into two steps. The first step consists of determining the
contribution of the sub-set members to the whole data set. In the
second step a linear inversion is performed on each sub-set mem-
ber. In this process the influence of less complex and previously
determined members is taken into account. This procedure is not
equal to inverse forward modeling.

The hierarchical decomposition approach has been introduced by
Fokkema (1991). In this paper we review this approach and we
apply it to "two-way” as well as ”one-way” wave fields.



The wave field operator formalism

To discuss the inversion problem in general terms we introduce an
operator formalism that is representative for the system of first-
order partial differential equations that govern the pertinent wave
problem. In particular,

KP4 =54, (1)
where I:(A is the actual wave field operator in the frequency do-
main. The quantity P4 represents the actual wave field vector,
while 84 is the actual source vector.

In general the wave field operator I:{A is complicated and generally
not known. However, two constituents can be distinguished: the
spatial differential operator ];:)A and the material operator ]:3‘4:

KA =D B4, )

To make the theory developed in the next sections and the con-
nection with the existing inversion theories transparent we restrict
ourselves in the further analysis to a fixed structure of the spatial
differential operator, that is

K'=D-B" (3)
An overview of the wave field vector, the source vector and the
operators is given in Table 1, for the acoustic "two-way” as well
as for the acoustic ”one-way” approach.

Inverse scattering problem

In the inverse scattering problem the actual wave field P4 is gen-
erated by a known source distribution located in Dg outside the
scattering domain Dy, and is measured in Dp also outside Dj,
(see Figure 1). The domains Dg, D and D;. are occupying the
portion of space that is commonly known as the embedding Dr.
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Figure 1: Scattering configuration.

The structure of the embedding is characterized by the operator
K°. In order to formalize the inversion problem it is custom to
decompose equation (1) into the following two equations

K°PO = s (4)

and
KOPA,O — _ISA,OPA. (5)
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Table 1: Wave field vectors, source vectors and operator matrices
for the acoustic "two-way” as well as for the acoustic "one-way”
approach.

In equation (4) P?is the incident wave field that would be present
in the embedding in absence of the scattering domain due to the
sources in Dg. In equation (5) P4V is the scattered wave field
which follows from the difference between the actual and incident
wave field:

P =pt - P (6)

When we compare equation (5) with equation (4) we conclude that
the scattered wave field P4:¥ can be considered as originating from
the contrast source distribtion occupying Ds.. This contrast source
follows from the contrast operator

K40 = K4 - K, (7)

which operates on the actual wave field P4 in D,,. Using I:(A =
D — B# and K" =D — BY it follows that

KA0 = _BAO— (B4 _ BO). (8)

From equations (4) and (5) expressions for P® and P4 can be
obtained by applying the inverse embedding operator {K°}~1 to
the left- and right-hand sides of the respective equations:

P’ = {K’}~'s* (9)

and
PA,O — {KO}—IBA,OPA. (10)

The inverse operator {K°}~! represents a volume integral with
the Green’s function of the embedding as kernel. In general this
volume integral is operational throughout the entire embedding.
However, due to the non-overlapping confined spatial occupation
of sources and contrast, the domain of application of the volume
integral reduces to Dg and Dj, in equations (9) and (10), respec-
tively. It is the task of inversion to determine the contrast operator
BA0 from the measured scattered wave field P49 in Dg. As such
equation (10) is not suitable for this task since P# also depends
on the contrast, which makes the problem non-linear.

Most attempts to use equation (10) for inversion purposes are
based on linearization such that the medium reconstruction is it-
eratively updated, with the hope that this process converges to the
actual contrasting medium. First in the next section we discuss a
conventional approach known as the distorted-wave Born method.




Distorted-wave Born method

In the distorted-wave Born method (see for example Beylkin and
Oristaglio, 1985) the linearization is achieved by assuming the
following equivalence condition

BA,OPA — ]:31,01:)07 (11)

meaning that the actual contrast operator operating on the ac-
tual wave field can be replaced by a first estimate of the contrast
operator operating on the incident wave field. Then substituting
equation (11) in equation (10) and using equation (9) we obtain

PA’O — {KO}_IBLO{KO}_ISA- (12)

Then, in principle, the contrast operator ]31*0 can be determined
by matching the right-hand side of the integral representation of
equation (12) to the data of the scattered wave field P4V, mea-
sured at all receiver positions in Dg, for all source positions in Dg
and using all frequencies. However, this is an ill-posed problem,
because in equation (12) the equality sign applies at the receiver
locations in DPg, while the unknown contrast operator ]:31’0 has to
be determined in D;.. The next step is to update the embedding

I:(l — :E{O + KI,O — :E{O _ ]31,0’ (13)

and
K'P' =s*. (14)

The updated scattered wave field is computed according to
pAil =p4_p! (15)
and the inversion formula for the next iteration is obtained as
P4l — (K')TIB2K)IsA, (16)

This process is repeated until after N 4 1 steps P4V is minimal
for all receiver positions, meaning that KV resembles K#. The
updated embedding includes the scattering domain.

The equivalence relation of equation (11) has been crucial in the
evolution of this iterative scheme. This assumption is also known
as the first order Born approximation. However, there are no
rational arguments why this condition should hold. In practice it
only works when the embedding is close to the actual medium. In
characterizing the method we can say that this inversion procedure



is a purely mathematical affair. At no point the data are asked for
their opinion during the mathematical evolution. Consequently,
the bad performance of the procedure results from the inflexibility
of the mathematical framework to cope with the data. A similar
discussion is true for the iterative Born method (see for example
Devaney, 1982). This iterative method approximates the contrast
by keeping the embedding constant but updating the wave field in
the scattering domain.

To gain some insight in the complexity of the Born approximation
we rewrite equation (10), using the inverse of equation (1)

PAO — {I:{O}_IBA’O{I:(A}_ISA. (17)

Equation (17), like equation (10), can be also used as an integral
equation for P4 in D,,. Then using reciprocity on the left-hand
side of equation (17) between receiver and source coordinates, sim-
ilar as for the surface integral representations (Fokkema et al.,
1993) we obtain

PA0 = (KA}TIBAYKO 1S4, for x € D,.. (18)

Using the result of equation (18) in the representation of equation
(10) together with equation (6) we arrive at

PA’O — {KO}—IBA,O{KO}—ISA
+ (KO BAKATIBAKO IS, (19)

RD

which is an exact expression. The first term on the right-hand
side of equation (19) represents the first-order Born term and as
such the first term of the iterative Born method. The second term
represents the correction. As can be seen, the dominant term is
the intrinsic defined integral correction operator I:{D, which can
be considered as a reflection operator of the scattering domain,
not depending on source and receiver characteristics. This is a
complicated operator involving all scattering phenomena in the
actual medium. It is therefore not reasonable to hope that this
operator can be expressed in a series expansion of the embedding
operator, unless the embedding is close to the actual medium.

Hierarchical decomposition

In hierarchical decomposition our aim is to decompose the actual
wave field into a set of scattered wave fields P"+1? = pnt!t _ p»
which account for an increase of the complexity of the scattering
domain with respect to the embedding, hence

N
pA =P+ prtin (20)

n=0

with PNt1 = P4, In the following we derive a set of representa-
tions for the incident field P, the partial scattered fields P?*1"
and the residual wave field P4, The implications for forward
modeling and inversion/migration will be discussed below equa-
tion (30).
We start with the incident wave field definition of equation (4),
while the residual wave field, P4 satisfies equation (5). Qur first
aim is to decompose equation (5), using K40 = K0 4 K41 =
—(]:31’0 + ]:3‘4’1) and PAY = P + PA i the left-hand side and
right-hand side of equation (5), respectively. Then equation (5)
decomposes into

K'P!0 = B1OPO (21)



while the new residual wave field P4 follows from
KOPA,I _ (BA,IPO + BA,OPA,O)_ (22)
Operating in this way, after n steps we arrive at
KH—IPA,H _ (BA,nPn—l 4 BA,n—lPA,n—l)' (23)

Now we increase the complexity of the medium to arrive at the
n + 1th step by rewriting equation (23) as

I‘i{n—IPA,n — (BA,n+1+Bn+1,n)Pn—1 (24)

—+

(BA,n_I_Bn,n—l)PA,n’
which leads to

I:{nPA,n _ (Bn+1,nPn+Bn,n—1Pn,n—1) (25)
+ (BA,nHPn_I_BA,nPA,n)_

Decomposing the wave field using P4" = Pt 4 PA7+1 Jeads
to the local linearization

KnPn+1,n — (Bn+1,nPn + ]?;71,71—1];)71,71—1)7 (26)
and the residual wave field
KnPA,n+1 — (BA,n+1Pn + BA,TLPA,TL>7 (27)

which has the same structure as equation (23) and is the result
after n + 1 steps.

Using a generalization of equation (8) we can deduce from equation
(26) the following identity:

Ign+1Pn+1 + Bn+1,nPn+1,n — I:{nPn + Bn,n—an,n—l. (28)

This implies that the left- and right-hand side of equation (28)
have to be independent of n. Evaluating this identity for n = 1
and using equation (21) with B0 = —K10 we conclude that the
constant is equal to S4. In other words, we have

KnPn — SA _ Bn,n—an,n—l' (29)

Note the difference in definition of the wave field P™ from the
Born approach (I:(”P” = S4): the source field in the nth step
is composed of the actual source field and a contrast source field
determined by the local contrast between the nth configuration
and its predecessor. The incident field, the set of partial scattered
fields {P"0, ..., PMV=1Y and the residual wave field P4 follow
from

P = (K°)}'s4,
PO — {KO}_IBLOPO
Pn+1,n — {Ign}—l (Bn+1,nPn ¥+ Bn,n—an,n—l) 7 (30)
n=1,--+N—1,
pPAN — {KN—I}—I(BA,NPN—I + BA,N—IPA,N—I)'

Recall that the actual wave field P4 is related to these terms via
equation (20):

N
PA =P+ priin (31)

n=0



with PN+ = P4 In the direct scattering problem (forward mod-
eling) the embedding operator I:(O, the set of contrast operators
{B" ... B4V} and the source S* are given. The members of
the wave field set {P?, ... P4} are successively computed, start-
ing from the incident field P°. The choice of members of the set
of contrast operators is not unique. In general they are ordered
in terms of increasing complexity, such that the more complex
members have a decreasing spatial support in model space.

In the inverse-scattering problem the situation is different. The
system (30) as such does not constitute a linear inversion problem.
It would only do so if the incident field PV, the set of scattered
fields {P'0, ... PMN=11 and the source S# were given. Hence
the decomposition of the actual wave field into this set prior to
inversion/migration is prerequisite.

Let us assume for the moment that a suitable data decomposi-
tion has been achieved. Then the contrast operators ]3”"‘1’” for
n = 0, N are estimated by inverting the successive terms in
the set of equations (30). When using the acoustic ”two-way” ap-
proach this means that the medium contrast parameters x?T1"
and o"t1'" are estimated for n = 0, -, N. We call this ”hierar-
chical inversion”. On the other hand, for the acoustic "one-way”
approach the contrast operator B"t1m = —juAntin 4 @ntin
is estimated for n = 0,-- -, N. Note that 1;}”"‘1’” represents an
update of the macro model and @n+1,n an update of the reflec-
tion (and transmission) operators. Hence, in this case we speak of
”hierarchical migration”.

The convergence speed of both approaches depends on how the
data decomposition is done. An example of such a decomposition
is the wavelet transformation. However, it should be noted that
the system of equations (30) allows any decomposition. The chal-
lenge is to search for data decomposition methods that optimally
guide the inversion/migration procedure.



Conclusions

In this paper we have shown that to tackle the inversion problem
the linearization of the formulation and the presentation of the
medium complexity can be treated in a wave-theoretical consis-
tent way, which we have named hierarchical decomposition. In the
presentation of the theory we have restricted ourselves to acous-
tic problems where the spatial differential operator remains fixed
throughout the hierarchical decomposition. However, from the
theory it can be easily seen that such a restriction is not nec-
essary and also the spatial operator is allowed to vary during the
decomposition. This feature makes it possible to adapt the decom-
position to the available information in the data. Our formulation
opens the way to include for example elastodynamic and Biot op-
erators if the corresponding wave field information can be isolated
from the data in terms of the partial scattered wave fields.
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