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ABSTRACT

Mercerat, E.D., Wapenaar, C.P.A., Fokkema, J.T. and Dillen, M., 2002. Scaling behaviour of the
acoustic transmission response of Rotliegend sandstone under varying ambient stress. In: Fokkema,
J.T. and Wapenaar, C.P.A. (Eds.), Integrated 4D Seismics. Journal of Seismic Exploration, 11: 137-
158.

Ultrasonic experiments carried out on Rotliegend reservoir sandstone samples have shown
a specific stress-dependent behaviour of the transmission response. Apart from the well-known
velocity increase as ambient stress increases, the amplitude and the time are scaled when the stress
is changed from one value to another. Our hypothesis is that when stress changes, some
mineralogical constituents of the rock may change their acoustic properties differently from other
constituents. As a consequence, different scattering attenuation effects take place within the rock.
The observed stress-dependent scaling behaviour can be a consequence of the latter phenomenon.

In order to quantify the scaling behaviour, two approaches are used. First, a heuristically
derived model from the experimental data is tested on numerically simulated data. Next, an
analytically derived model from a modified version of the O’Doherty-Anstey expression for the
transmission response through finely layered media is also analyzed and tested both on numerically
simulated and experimental data. Both scaling models present two scalar parameters that relate a
wavelet recorded at a high ambient stress with another recorded at a relatively low stress. Estimating
these parameters from measurements for a range of different ambient stresses gives valuable
information about the stress-dependent behaviour of the reservoir rock.

KEY WORDS: scaling behaviour, scattering attenuation, Rotliegend sandstone,
ultrasonic experiments, varying tri-axial stress.
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INTRODUCTION

Changes in production or injection rates in a reservoir cause changes in
the ambient stress state to which reservoir rocks are subjected. In order to
monitor the in-situ stress by means of a seismic method, a relation between
velocity and amplitude of the seismic response and the varying ambient stress
has to be found. As a result of varying stresses, some elastodynamic properties
of the rock may be considerably altered. Therefore the relation between ambient
stress changes and seismic attributes can be used as an effective tool for
characterization and monitoring of oil and gas reservoirs.

In practice, it is not possible to perform controlled stress-dependent
seismic experiments. Therefore ultrasonic laboratory experiments are carried out
in different sedimentary rock samples using triaxial and uniaxial pressure
machines. The question still remains whether the extrapolation from the
ultrasonic scale (hundreds of kHz) to the seismic scale (tens of Hz) is possible.

The fact that propagation of elastic waves in rocks can be sensitive to the
effective stress is already well known from numerous laboratory experiments.
A common observation from ultrasonic stress experiments is that induced
velocity changes in the stress direction become progressively smaller as stress
increases, until an asymptotic value is reached (Wyllie et al., 1956; Nur and
Simmons, 1969; Lo et al., 1986). Recent ultrasonic experiments have been
performed at the Laboratory of Rock Mechanics, Department of Applied Earth
Sciences, Delft University of Technology, in order to study elastic wave
propagation through rocks subjected to stress (Cruts et al., 1995; den Boer et
al., 1996; Swinnen, 1997; Dillen et al., 1999).

In this work, we focus on a specific behaviour of the acoustic
transmission response through a reservoir rock. The objective is to find a
possible physical explanation for that behaviour in terms of wave propagation
through a medium with stress-dependent elastodynamic parameters. From
laboratory experiments, it appeared that not only the arrival time is reduced as
a result of increasing stress, but the width of the wavelet is reduced by
approximately the same relative amount. In other words, the time-axis seems to
be scaled by a single factor when the ambient stress is changed from one value
to another. This behaviour was coined as scaling behaviour. Also an increase
in the amplitude of the transmitted signal can be clearly seen when the ambient
stress increases.

In a previous compilation report (Swinnen, 1997), one possible
explanation of the phenomenon was discarded assigning the scaling behaviour
to source related effects. Experiments were carried out using different sample
sizes of the same rock. The acoustic transmissions for different travel-path
lengths at the same ambient stress showed amplitude decay much higher than the
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geometrical spreading of a point source. It was concluded that the scaling
behaviour should be related with the medium through which the wave
propagates, specifically with its internal structure and acoustic characteristics.
Our research is based on the following hypothesis: as ambient stress changes,
some mineralogical constituents of the rock matrix change their acoustic
properties differently from other constituents. As a consequence, different
scattering attenuation effects take place within the rock, and scaled transmission
responses are obtained.

In the literature the transmission and reflection effect of several
multilayered media has been discussed. In the precursor article by O’Doherty
and Anstey (1971), the authors analyzed all the relevant factors that affect the
amplitude of a transmission signal. Amongst others, they gave special attention
to the effect of internal multiple reflections generated by relatively high
impedance contrasts within layered sequences. These short-path multiples have
significant effects both in attenuation and time delays relative to the expected
time of a primary wave transmitted directly through the layered structure.
Numerical calculations show that as more and more layers are considered, the
primary itself is decreased by transmission losses until the propagating wavelet
is purely multiple energy. This transformation from primary to multiples has
been conceived as a filter. Since the cause of this filtering is the abundance of
thin layers too fine for discrete resolution, or in other words, with thicknesses
much less than typical seismic wavelengths, it was known as stratigraphic
filtering. The terminology was first introduced by Spencer et al. (1977), and
presently widespread used after the book by Shapiro and Hubral (1999).

The physical reason for this stratigraphic filtering is the multiple scattering
by 1D inhomogeneities, i.e., a horizontally layered sequence. Despite 3D
heterogeneous media are more suitable for modelling rock matrix structures, we
have good reasons to start with simple layered models in order to test whether
scattering attenuation effects are responsible for the scaling of the traces.
Layers are distinguished by many possible causes, such as composition, texture,
internal structure and/or a combination of all of them. Also important are the
presence of some preferable orientations related to depositional environments
and alignment of microcracks or grain contacts, as well. It is clear that the
response of these different mineralogical and/or structural constituents of the
rock to large static stress will not be the same. Therefore the stratigraphic
filtering becomes stress-dependent and this leads to a possible explanation for
the observed scaling behaviour.

This paper is organized as follows. First, a description of the ultrasonic
experiments is presented, with special emphasis on the rock type used, the
pressure machines and the acoustic installation. The relevant results about the
stress-dependent scaling behaviour are treated including a heuristically derived
model (den Boer and Fokkema, 1996) to express the scaling relation in
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mathematical terms. After that, from some assumptions on the matrix structure
of the rock, we derive a new scaling relation using a modified version of the
O’Doherty and Anstey (1971) formalism. We perform numerical tests of wave
propagation through layered media in order to test the different scaling models.
The results with synthetic data are quite satisfactory, thus they suggest the
applicability of the scaling model to the experimental traces. We then carefully
apply the scaling model to a pair of traces recorded at two different ambient
stresses. Finally some conclusions on the stress sensitivity of effective acoustic
parameters of the rock are stated.

EXPERIMENTAL SET-UP
Rock sample

The experiments were conducted with a Flechtinger sandstone which is
an aeolian Upper Rotliegend Permian sandstone, obtained from the Sventesius
Quarry near Magdeburg in Germany. This formation consists of massive
cross-bedded aeolian dune sandstone of medium grain size (0.25-0.5 mm) and
a high level of compaction. For a complete description of the rock
characteristics, we refer the reader to den Boer et al. (1996) and Dillen (2000).
The measured porosity ranges from 5% to 10%. A permeability of 3.44 mD and
a rock density of 2.65 g/cm’® was reported. The mineralogy consists of 60%
quartz, 20% feldspar, and 20% rock fragments cemented with calcite. From
previous ultrasonic experiments, a clear velocity anisotropy related to the
layering was observed (Dillen, 2000). In our experiments, the samples have
been mounted such that its layering is perpendicular to the vertical direction.

Pressure machines and acoustic installation

The experiments were performed in the Laboratory of Rock Mechanics,
Department of Applied Earth Sciences, Delft University of Technology. A
uni-axial and a tri-axial pressure machine were used depending on the objective
of each experiment and the sample shape. When using prismatic shaped samples
it is not possible to use the tri-axial pressure machine, designed exclusively for
cubic shaped samples.

In the tri-axial pressure machine the force is computer-controlled built up
independently in the three perpendicular directions up to 3500 kN. It is not
possible to apply a controlled pore pressure since it is an open system. Each
uni-axial part of the machine has a piston on one side and a pressure plate on
the other side. The pressure plates used have a dimension of 200 X 200 mm?2.
Therefore the maximum applicable stress was 87.5 MPa. Three ceramic
piezo-electric transducers with a central frequency of 1 MHz were mounted in
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each pressure plate. They were in direct contact with the sample and pressed,
with the aid of a spring, with a constant force of 900 N on the block.

In the uni-axial pressure machine the force is built up in the vertical
direction by an hydraulic pump controlled by the operator, thus giving less
accurate pressure measurements. However, the pressure plates, transducers and
springs used are the same as in the tri-axial case. The maximum applied force
is 800 kN. Therefore the maximum applicable stress is 20 MPa.

Piezo-electric broad-band transducers are mounted in each pressure plate.
They are compressional-wave transducers with a central frequency of 1 MHz
(Panametrics V-103). The traces are recorded at a sample frequency of 10 MHz.
The recording is computer controlled and the gain is set when the samples are
brought under maximum pressure. The traces are filtered with a band-pass filter
of 30 kHz and 2 MHz as low cut-off and high cut-off, respectively.

SCALING BEHAVIOUR

The experiments were carried out for a range of different ambient
stresses. Fig. 1 shows the transmission responses for isotropic tri-axial stresses
applied ranging from 2 MPa to 82 MPa in a cubic block of Rotliegend
sandstone.
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Fig. 1. Transmission responses (P-wave) of Rotliegend reservoir sandstone for varying tri-axial
isotropic stress.
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In order to study transmission responses at different travel-path lengths,
the uni-axial pressure machine is used. The samples are mounted with the
vertical axis (where the uni-axial stress is applied) perpendicular to the layering.
Fig. 2 shows the transmission responses of two different sample sizes used:
Rot11 (sample of 204 x 204 x 204 mm?) and Rot23 (sample of 204 x 204 X
136 mm®). The stress increases from left to right and it ranges from 2 MPa to
20 MPa, thus the difference between two adjacent traces is approximately 1
MPa. In Fig. 3 the transmission responses of Rotll sample for vertically
applied stresses ranging from 2 MPa (the latest arrival) to 20 MPa (the first
arrival) in joint display.
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Fig. 2. Transmission responses (P-wave) of Rotliegend reservoir sandstone for varying uni-axial
vertical stress. (Top) Rot23: 204 x 204 x 136 mm’. (Bottom) Rotll: 204 x 204 x 204 mm’.
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Fig. 3. Superposition on one time axis of transmission responses (P-wave) of Rot11 sample.

From both tri-axial and uni-axial experiments, it appeared that not only
the arrival time reduces when the ambient pressure increases, but that the width
of the wavelet reduces by approximately the same relative amount. In other
words, the time-axis seems to be scaled by a single factor when the ambient
pressure is changed from one value to another. Also the amplitude changes with
changing stresses. It has been carefully checked (Swinnen, 1997) that these time
and amplitude changes are not source effects, but that it is the propagation
through the sandstone that changes with changing stress.

Heuristically derived scaling model

A simple scaling relation was derived from the experimental data by den
Boer et al. (1996) and further studied by Swinnen (1997). A pair of recorded
traces are approximately related by

pe(t) = Bpalta) (1)
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where pg(t) and p,(t) denote the transmission responses at two different ambient
stresses and « and f8 are the scaling parameters. The first one stretches the time
axis with respect to t = 0, while the second one affects the wavelet amplitude.
In the frequency domain, the scaling relation becomes

Py(w) = BaP,(aw) , 2

where Py(t) and P,(t) are the Fourier transforms of py(t) and p,(t), respectively.
In order to calculate o and B, two traces are compared in the time domain, and
using a normalized least-squares criterion, both scaling parameters are found by
optimizing the match between the scaled trace with the recorded trace at a lower
stress.

For example, Fig. 4 shows the transmission responses recorded at 10 MPa
and at 6.4 MPa and a scaled version of the latter trace that approximately
coincides with the former.

Rel.Amplitude
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Fig. 4. Illustration of the scaling behaviour py(t) = 8p,(t/c). Trace recorded at 10 MPa (solid line,
first arrival), trace recorded at 6.4 (solid line, second arrival) and scaled version (dashed line) from
10 MPa to 6.4 MPa.
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THE BINARY LAYERED MEDIUM APPROACH

In the next two sections, we derive a new scaling model to relate a couple
of traces recorded at two different stress states. It is based on some assumptions
on the matrix structure of the sandstone and its reaction to the applied stress.
We start by making a strong simplification, that is, we assume that the
sandstone is horizontally layered. Although this is not very realistic, it is a
suitable starting point for studying the scaling behaviour analytically. The
second assumption is that the layered medium consists of only two types of
material (hence the name binary layered medium); the layer thicknesses are in
some way randomly distributed. The third assumption is that changes in the
ambient stress do not affect the layer thicknesses, but only the material
parameters. Fig. 5 exemplifies the assumed model for two different pressure
states.

With these assumptions the depth-dependent normal-incidence plane-wave
reflectivity r(z) obeys the following scaling relation

rg(z) = Bra(z) , (3)
where the subscripts A and B refer to two different ambient stress states. When
the material parameters of both layer types react similarly (in a relative sense)

to changes in the ambient pressure then § = 1; when they react differently, then
B # 1. The average slowness § of the material obeys the following relation

Sy = 0By (4)

Fig. 5. Two different stress states in a binary layered medium. Left: state A (lower pressure). Right:
state B (higher pressure).
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It is beyond the scope of this paper to specify the scaling factors « and
B and their mutual relation”. However, it is possible to state that if the stress
state B is lower than stress state A, then o should be larger than 1. From the
ultrasonic experiments and in accordance with equation (4), the lower the
applied stress, the larger the average slowness of the rock (i.e., the smaller the
average velocity). Apart from that, if stress states A and B do not differ too
much, o and 8 should be close to 1. For our analysis it is sufficient to assume
that relations (3) and (4) hold for some value of & and 8. In the following
section we will evaluate the scaling behaviour of the transmission response of
binary layered media analytically.

SCALING BEHAVIOUR OF THE TRANSMISSION RESPONSE

The normal-incidence plane-wave transmission response of a layered
medium can be expressed in the frequency domain in terms of a ‘generalized
primary” propagator W,(z,,zy,w), according to

Wg(zlazﬂem) = WP(ZI,ZO,G))M(ZI,Zo,OJ)
= exp{—jwSAz} exp{—A4A(2ws)Az} |, 5)

where Az = z, — z,. The first exponential describes the (flux-normalized)
primary propagation from depth level z, to z, and the second exponential
accounts for the internal multiples generated at all interfaces between those two
depth levels. The function A is the Fourier transform of the ‘causal part’ of
R(z), according to

AK) = | exp{-jkz}R@) | 6)
0
where R(z) is the autocorrelation of the reflection function r(z), expressed by
R@) = [U(Az - 2)] | w(Or(t + 2)d¢ . ™)
Zy

Note that equation (5) is the well-known O’Doherty-Anstey relation
(O’Doherty and Anstey, 1971), except that A(k) in equation (6) is expressed in
terms of a spatial rather than a temporal autocorrelation function. The
depth-time conversion takes place in equation (5), where A(k) is evaluated at k
= 2wS. Assuming r(z) obeys equation (3), A(k) has the following scaling
behaviour

* It is important to note that o and § in equations (3) and (4) are not the same as the scaling
parameters in equation (1). However we prefer this notation because it is shown later that they play
similar roles in both scaling models.
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Apk) = ALK (8)

where the subscripts A and B refer again to two different ambient pressure
states. For these two pressure states the generalized primary propagators read

Wg.A(Zl’zﬂ’w) = Wp.A(Zl’zﬂ’w)MA(zl':ZOaw)
= exp{—jws,Az} exp{—-A4,Quws Az} , ©)

W, 5(21,20,0) = W, p(zy +Zg,w)M3(2,,20,w)

exp{ —jwszAz} exp{—Ap(2wspAz} , (10)
or, using equations (4) and (8),
W, 5(Z1.20,00) = exp{ —jaws,Az} exp{—p?4,(2ows A)AZ}
= W, AZ1,Z0,00) [MA(2,,20,00)) (1)

It is interesting to carefully compare equations (11) and (2), having in
mind that the latter was derived from the real traces containing the source
wavelet. In contrast, equation (11) has no information on the source function
and it does represent the impulsive transmission response through the stack of
layers. The similarities are clear: both of them contain the o parameter
stretching the frequency axis, and the other parameter [ controlling the
amplitude. However, the 3 parameter in equation (2) accounts for the input
wavelet amplitude, while 8 in equation (11) is merely related to an acoustic
medium characteristic via equation (3).

NUMERICAL EXPERIMENTS

We are faced with two different scaling models for the transmission
response. The former one [equation (1)] was heuristically derived analyzing the
experimental data. The second one [equation (11)] was analytically derived from
a modified O’Doherty-Anstey relation and making some assumptions on the
pressure-dependent behaviour of the sandstone. We have performed numerical
simulations for the transmission response through a binary layered medium, in
order to check whether it is a convenient starting model for analyzing the
stress-dependent rock behaviour.

The proposed sandstone model consists of a stack of horizontal acoustic
layers with just two alternating velocities. The layer thicknesses are in some
way randomly distributed and the density is considered constant and fixed for
both material types. The assumption is that as the ambient pressure increases
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one of the materials changes its velocity while the other remains fixed. Thus the
reflectivity and the average slowness change according to equations (3) and (4).

The total transmission response is calculated by means of forward
modelling of the acoustic wave equation in the frequency domain, using the
so-called reflection method. Thus primary waves as well as internal multiple
reflected waves are taken into account. We consider a plane-wave incident from
the top and calculate the plane-wave transmitted to the bottom of the stack of
horizontal parallel layers. After calculating the transmission impulse response,
convolution with a Ricker wavelet (central frequency of 400 kHz) is carried out.
This frequency is chosen in order to resemble the frequency content of the
experimental traces (see Fig. 3).

The velocity ranges from 2500 m/s up to 3200 m/s for one material and
it is fixed at 3500 m/s for the other material. Thus the wavelengths involved lie
between 6.25 mm and 8.75 mm. We followed many authors who considered
exponentially correlated heterogeneities as a good choice (Marion et al., 1994
Rio et al., 1996; Shapiro and Hubral, 1999) to obtain effective scattering
attenuation. Thus the thickness of each bed is a random variable following an
exponential distribution with mean d = 0.6 mm. Considering the wavelengths
involved, these 1D heterogeneities can cause considerable scattering attenuation
and dispersion of energy (Marion et al., 1994). The density is considered
constant for both material types at 2.5 g/cm®.

In Fig. 6, transmitted zero-phase Ricker wavelets through binary layered
media are shown. The trace with the fastest arrival corresponds to the smallest
impedance contrast and average slowness. The later arrivals are calculated by
fixing one velocity at 3500 m/s and decreasing the other (from 3200 m/s to
2500 m/s), that is increasing the impedance contrast and the average slowness
of the models. Note the similar scaling behaviour observed in the experimental
data for different ambient pressures (Fig. 3).

The first, third and fifth arrivals in Fig. 6 are used to check both equation
(1) and equation (11). The corresponding rock model parameters for these three
cases are shown in Table 1.

Table 1. Binary layered model parameters.

Total path Mean thickness (d) Velocity contrast
Model A 3200 m/s - 3500 m/s
Model B 20 cm 0.6 mm 3000 m/s - 3500 m/s

Model C 2800 m/s - 3500 m/s
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Fig. 6. Transmission responses (convolved with Ricker wavelet, 400 kHz central frequency) for
varying impedance contrast: 3200 m/s -3500 m/s (leftmost arrival) to 2500 m/s -3500 m/s (rightmost
arrival).

Even though the former scaling model was derived from real data, it does
not give any explicit relation between the scaling parameters [« and § in
equation (1)] and some physical characteristics of the reservoir rock. In spite of
the latter, it is worthwhile to scale one trace from a low impedance contrast to
a higher impedance contrast, applying the same least-squares technique
previously used with the experimental data. The results can be seen in Fig. 7
and the scaling parameters in Table 2. Although the match is good, some
differences in the amplitude of the main lobes and in the coda can be seen.

Table 2. Scaling parameters to scale trace A to B and C using both scaling models.

Model A den Boer & Fokkema (1996) New Scaling Model
o B o B
Model B 1.036 0.870 1.035 1.718

Model C 1.078 0.692 1.075 2.481
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On the other hand, the analytically derived scaling model of equation (11)
presents scaling parameters somehow related to the acoustic characteristics of
the layered model via equations (3) and (4). From the model velocities and
using those equations, it is possible to calculate the scaling parameters shown
in Table 2. They are used to scale the transmission response from model A to
model B and C. It is interesting to note that the o parameters for both scaling
models have similar values.

Before applying the scaling model, the direct path delay is removed from
both responses according to the corresponding time delay for each model. This
is done straightforwardly with the numerically simulated data as long as the
primary travel time through the stack of layers is calculated exactly by our
forward modelling routine. Thus equation (11) simplifies to

MB(Z}sZOa"-’J) = [MA(ZI’Z'Gaaw)]BI . (12)

As follows from the latter formulation, the scaling model must be applied
to the transmission impulse response, that is, with no source function included.
As a first step in our forward modelling of the wave equation, the plane wave
transmission response through the stack of layers is calculated. Then the scaling
relation [equation (12)] is applied. Finally, the transmission impulse responses
are convolved with a Ricker wavelet and shifted back to the correct arrival time.

Rel. Amplitude

0.058 0.062 0.066 0.07
Time [ms]

Fig. 7. First arrival (Model A), third arrival (Model B) and fifth arrival (Model C) of Fig. 6 (solid
line), and scaled versions (dashed lines) from A to B and A to C using wg(t) = Bw,(Va).
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Fig. 8. Detail of the first, third and fifth traces (from the left) of Fig. 6 (solid lines) and scaled
versions (‘+° marked line) from the fastest arrival to the other two using equation (11).

In Fig. 8 the results are displayed. The match between the scaled version of the
transmission response of model A and the transmission responses of models B
and C are almost exact. This is another numerical confirmation of the
O’Doherty-Anstey relation, although we know it is only an approximation to the
total transmission response through a layered sequence.

STRESS-DEPENDENT SCALING BEHAVIOUR

After successfully testing the scaling model of equation (12) in the
synthetic transmission responses, its application on the real data set looks
promising. Specially because the estimation of the scaling parameters « and [
can provide good insight in some acoustic properties of the rock subjected to
stress. However, in our model we neglect in principle two facts: (a) the
radiation pattern of the source (due to the plane wave assumption), and (b) the
effect of any intrinsic losses that could have acted while the signals were
travelling through the rock sample. The experiments were carried out on
room-dry rock samples, thus reducing intrinsic absorption related to any
fluid-flow mechanism.
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The application of the previous scaling model of den Boer and Fokkema
(1996) is straightforward with the real traces. A pair of traces must be chosen
and applying the optimization technique previously described in this work, both
scaling parameters can be found.

On the other hand the application of the analytically derived scaling model
presented in this paper encompasses extra difficulties. The crucial one is the
presence of the source wavelet in the real traces. The scaling model of equation
(11) does not include the wavelet thus a wavelet deconvolution is necessary
before its application. Our goal is based on the relation between medium
parameters and scaling of the impulsive transmission response (i.e., Green
function). Even under the assumption that one transducer emits always the same
wave shape, the coupling between transducers and rock face may differ in each
experiment. As a consequence the "input wavelet" may not be constant, even
for the same rock type. The strategy is based on manipulating the transmission
responses at the same ambient stress for different sample lengths.

The total transmission response (including the input wavelet) can be
expressed for two different sample lengths as the product of the wavelet
spectrum S(w) and the generalized primary propagator of equation (5), according
to

P(Z],ZD,GJ) = S(OJ)WP(Z”ZQ,(J)M(ZI,ZQ,&})

S(w)exp{ —jwsAz,} exp{—A(2ws)Az,} ., (13)

P(z,,2p,0) = S(w)W,(2,,20,0)M(z;,2,)

S(w)exp{ —jwsAz,} exp{—A(2ws)Az,} , (14)

Fig. 9. Scheme of the strategy to calculate impulsive transmission responses (wavelet deconvolution)
from the responses of two different rock sample sizes.
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where Az, = z, — Z, and Az, = z, — z,. All the medium parameters are the
same because the ambient pressure is the same. Dividing the response of
equation (14) by that of equation (13),

Wy(z,,2,,0) = P(23,20,0)/P(2,20,0)
= exp{—jws(z, — z,)} exp{—AQw3)(z, — z))} (15)

the impulsive transmission response between z, and z, can be estimated (darker
zone in Fig. 9). Repeating the same procedure for another pressure state, we are
faced with a pair of deconvolved traces (i.e., source free) that can be scaled one
onto the other.

SCALING EXAMPLE

In order to illustrate the previous technique, four transmission responses
recorded at two different pressures and using two different sample sizes of
Rotliegend sandstone are used (Rotl1 and Rot23). The stress states are 10 MPa
and 6.4 MPa. In Fig. 10 the four traces are visualized in joint display.

Rot23
10 MPa
6.4 MPa

3 Rotl1
2
15-_.\-
E 10 MPa
< 6.4 MPa
o JANE N« W <
[ \) ~ SN T

1 L 1 1

0.04 0.05 0.06 0.07

Time [ms]

Fig. 10. Transmission responses for two samples of Rotliegend sandstone at two different pressures.
Rot23: 204 x 204 X 136 mm®; Rotll: 204 x 204 x 204 mm’,
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The scaling is performed in the frequency domain. Before submitting the
traces to the Fourier transform, the wavelet has to be carefully tapered. We use
a cosine tailed window of 200 samples (0.02 ms) starting 20 samples before the
first break. After estimating the four spectra, the ratio of equation (16) is
calculated using a stabilization constant ¢ = 10% of the highest amplitude of
P(z,,zy,w)P"(z,,2,,w) according to

Wg(ZE'—'Zi!w) = P(Zz,ZD,W)P'(Zl,Zo,W)/[P(ZI,ZQ,CO)P‘(Zl,Zo,@)""E] £] (16)

where * denotes complex conjugation. The deconvolution results for both stress
states can be seen in Fig. 11.

In order to perform the scaling, it is necessary to shift first both traces to
zero time [i.e., to cancel the first exponential in equation (9)]. In this manner
we correctly apply the scaling model while avoiding any undesirable phase
distortion. Unfortunately, when dealing with real traces, we have no information
of the exact primary time delay (i.e., the first exponential in equation (11)], and
how much of the observed time delay is caused by scattering within the rock.

We pick the first break of each arrival of Fig. 10 neglecting any time
delay related to scattering. The picked arrival times are shown in Table 3. The
primary time delay of one impulsive transmission response at one specific stress
is simply the difference between the two picked arrival times for that stress.

10 MPa

6.4 MPa

Rel. Amplitude

0 0.01 0.02 0.03 0.04
Time [ms]

Fig. 11. Impulsive transmission responses at two different pressures estimated using equation (16).
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Table 3. First break arrival times. Rotliegend sandstone.

Sample Label Stress [MPa] First break [ms]

Rot23 10.0 0.0385
6.4 0.0412

Rotl1 10.0 0.0570
6.4 0.0616

Both impulsive transmission responses are then shifted to zero time. To
be consistent with our choice of the primary time delays, equation (4) must be
satisfied, thus the o parameter is somehow constrained. Therefore o is chosen
equal to 1.103. After that, the 10 MPa response is scaled using equation (12)
and the corresponding 3 is found to best fit the scaled trace with the 6.4 MPa
response. In this case, § is found by inspection equal to 1.05. Finally, the traces
are shifted back to their original times. In Fig. 12 a closer look of Fig. 11 and
the scaled trace from the higher to the lower stress are shown.

10 MPa

Rel. Amplitude

rd
<& Scaled

0.015 0.02 0.025 0.03
Time [ms]

Fig. 12. Impulsive transmission responses at two different pressures and scaled version from 10 MPa
to 6.4 MPa.
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From the values @ = 1.103 and 8 = 1.05 and using equations (4) and
(5), it can be inferred that the increase in vertical stress from 6.4 MPa to 10
MPa produces an increase in average velocity of 10% and a relatively small
decrease in average impedance contrast of 5% in this specific Rotliegend
sandstone.

CONCLUSIONS

In this paper, the relation between in-situ varying stress and acoustic
parameters of a reservoir rock was analysed. Based on the experimental fact that
the acoustic transmission responses are scaled as a function of the applied stress
and on numerical simulations of wave propagation through rocks with
stress-dependent elastodynamic parameters, we propose a possible physical
explanation of the phenomenon. The dispersion of acoustic waves due to
superposition of internal multiples may well be the cause of the scaling of the
transmitted wavelets through a rock sample under varying ambient stress. The
wavelet scaling produced by changes in the impedance contrast between layers
corresponds to the pressure-dependent scaling behaviour observed in the
experimental data. This correspondence suggests that as the ambient stress
increases, the average slowness and the impedance contrast within the reservoir
tock decrease.

Two different scaling models were analyzed. Both of them contain two
scaling parameters to relate traces recorded at different ambient stresses. One
of these parameters («) stretches the time axis, and the other (8) controls the
amplitude. The heuristically derived scaling model of equation (1) has been
tested with numerically simulated data, giving reasonably good results.
However, the relation between the scaling parameters and the acoustic
characteristics of the rock is not explicit.

The analytically derived scaling model of equation (11) has been tested
with numerical data, giving even better results than the previous one (compare
Figs. 7 and 8). This result was expected since the scaling relation was derived
from a modified version of the well-known O’Doherty-Anstey relation. Our
hypothesis is that as stress changes, some variation in the velocity of one
constituent material occurs. The « and 8 parameters are directly related with

acoustic characteristics of the layered model (i.e., reflectivity and average
slowness).

Equation (11) quantifies the scaling behaviour of the transmission
response. Note that in both terms at the right-hand side the frequency is scaled
with the same factor «. This agrees with our earlier observation that the arrival
time and the width of the wavelet scale by approximately the same amount when
the ambient pressure is changed. The exponent 82 in the second term accounts
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for the amplitude change, but has an effect on the phase as well. Since this
exponent is applied to a frequency-dependent term, there is not a simple scaling
relation in the time-domain.

The application of the analytically derived scaling model to real data is
not straightforward. A source wavelet deconvolution should be done in order to
apply the model of equation (11). Therefore we have tested a strategy that
consists of spectral ratios of traces recorded at different travel-path lengths but
similar applied stresses. Although we have made a number of simplifying
assumptions, it is worthwhile to use equation (11) as a first approximate model
for observations like those in Fig. 3. Estimating the parameters o and 8 from
that type of measurements for a range of different ambient stresses gives
valuable information about the stress-dependent behaviour of the reservoir rock.
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