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ABSTRACT

Mercerat, E.D., Wapenaar, C,P.A., Fokkema, J.T. and Dillen, M., 2002. Scaling behaviour of the
acoustic transmission response of Rotliegend sandstone under varying ambient stress. In: Fokkema,
J. T. and wapenaar, C. P. A. (Eds. ), Integrated 4D Seismics. Jorrna I oÍ Seismíc Exploration, lli 137'
158.

Ultrasonic experimcÍrts carried out on Rotliegend reservoir sandstone samples havc shown
a specific stress-dependent behaviour of the transmission response. Apart from the well-known
velocity increase as ambient stress iÍEreases, the amplitude and the time are scaled when the stress
is changed from onc value to another. Our hypothesis is that whcn stess changes, some
mineralogical constinlents of the rock may change dleir acoustic prop€rties differently from other
constitucnts. As a consequenc€, different scattering attenuation effects take place within the rock.
The observed stress-dependent scaling bchaviour can be a consequence of the latter phenomenon.

In order to quantiry th€ scaling behaviour, two approaches arc used. First, a heuristically
derived model from thc experimental data is tested on numerically simulated data. Next, an
analytically derived model from a modified version of the O'Doherty-Anstey expression for the
transmission response througb finely layercd media is also analyzed and tested both on numerically
simulated and experimenral data. Both scaling models prcsent two scalar pammeters that relate a
wavelet lecorded at a high ambient stress with another recorded at a relatively low stress. Estimating
these parameters from measurcmeDts for a range of different ambient stresses gives valuable
information about the sfess-dependent behaviour of tlle reservoir roek.

KEY WORDS: scaling behaviour, scattering attenuation, Rotliegcnd sandstone,
ultrasonic experiments, varyiÍlg tri-axial strcss.
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INTRODUCTION

Changes in production or injection rates in a reservoir cause changes in
the ambient stress state to which reservoir rocks are subiected. In order to
monitor the in-situ stress by means of a seismic method, a relation between
velociry and amplitude of the seismic response and tlle varying ambient stress
has to be found. As a result of varying stresses, some elastodynamic propenies
of the rock may be considerably altered. Therefore the relation between ambient
stress changes and seismic attÍibutes can be used as an effective tool for
characterization and monitoring of oil and gas reservoirs.

. .In practice, it is not possible to perform controlled stress-dependent
seismic experiments. Therefore ultrasonic laboratory experiments are carried out
in different sedimentary rock samples using triaxial and uniaxial pressure
machines. The question still remains whether the extrapolation from the
ultrasonic scale (hundreds of kHz) to rhe seismic scale (tens of Hz) is possible.

The fact that propagation of elastic waves in rocks can be sensitive to the
effective stress is already well known from numerous laboratory experiments.
A common observation from ultrasonic stress experiments is that induced
velocity changes in the stress direction become progressively smaller as stress
increases, unril an asymptotic value is reached (Wyllie et al., 1956; Nur and
Simmons, 1969; Lo et al., 1986). Recent ultrasonic experiments have been
performed at the Laboratory of Rock Mechanics, Depanment of Apptied Earth
Sciences, Delft University of Technology, in order to study elastic wave
propagation órough rock subjecrcd to srress (Crurs et al.. l9d5; den Boer er
al., 1996; Swinnen, 1997; Dillen et al., 1999).

In this work, we focus on a specific behaviour of the acoustic
transmission response through a reservoir rock. The obiective is to find a
possible physical explanation for that behaviour in rerms óf wave propagation
through a medium with stress-dependent elastodynamic parameters. From
laboratory experiments, it appeared that not oÍ y the arrival time is reduced as
a result of increasing stress, but the width of the wavelet is reduced bv
approximately the same relative amount. In other words, the time-axis seems tó
be scaled by a single factor when the ambient stress is changed from one value
to another. This behaviour was coined as scaling behaviouí. Also an increase
in the amplitude of the transmitted signal can be clearly seen when the ambient
stress increases.

. In. a previous compilation report (Swinnen, tggT), one possible
explanation of the phenomenon was discarded assigning the scaling behaviour
to source related effects. Experiments were carried out using different sample
sizes of the same rock. The acoustic transmissions for different travel_pàth
lengths at the same ambient stress showed amplitude decay much higher rhan the
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geometrical spreading of a point source. It was concluded that the scaling
behaviour should be related with the medium through which the wave
propagates, specifically with its internal structure and acoustic characteristics.
Our research is based on the following hypothesis: as ambient stress changes,
some mineralogical constituents of the rock matrix change their acoustic
propeÍies differently from other constituents. As a consequence, different
scattering attenuation effects take place within the rock, and scaled transmission
responses are obtained.

In the literature the transmission and reflection effect of several
multilayered media has been discussed. In the precursor article by O'Doherty
and Anstey (1971), the authors analyzed all the relevant factors that affect the
amplitude of a transmission signal. Amongst others, they gave special attention
to the effect of internal multiple reflections generated by relatively high
impedance contrasts within layered sequences. These short-path multiples have
significant effects both in attenuation and time delays relative to tle expected
time of a primary wave transmitted directly through the layered structure.
Numerical calculations show that as more and more layers are considered, the
primary itself is decreased by transmission losses until the propagating wavelet
is purely multiple energy. This transformation from primary to multiples has
been conceived as a filter. Since the cause of this filtering is the abundance of
thin layers too fine for discrete resolution, or in other words, with thicknesses
much less than typical seismic wavelengths, it was known as statigraphic

fiheríng. The terminology was first introduced by Spencer et al. (1977), and
presently widespread used after the book by Shapiro and Hubral (1999).

The physical reason for this stratigraphic filtering is the multiple scattering
by lD inhomogeneities, i.e., a horizontally layered sequence. Despite 3D
heterogeneous media are more suitable for modelling rock matrix structures, we
have good reasons to start with simple layered models in order to test whether
scattering attenuation effects are responsible for the scaling of the traces '
Layers are distinguished by many possible causes, such as composition, texture,
internal stÍuctuÍe and/or a combination of all of them. Also important are the
presence of some preferable orientations related to depositional environments
and alignment of microcracks or grain contacts, as well. It is clear that the
response of these different mineralogical and/or structural constituents of the
rock to large static stress will not be the same. Therefore the stratigraphic
Íiltering becomes stress-dependent and this leads to a possible explanation foÍ
the observed scaling behaviour.

This paper is organized as follows. First, a description of the ultrasonic
experiments is presented, with special emphasis on the rock type used, the
pressure machines and the acoustic installation. The relevant results about the
stressdependent scaling behaviour are treated including a heuristically derived
model (den Boer and Fokkema, 1996) to express the scaling relation in
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mathematical terms. After that, from some assumptions on the matrix structure
of the rock, we derive a new scaling reladon using a modified version of the
O'Doheny and Anstey (1971) formalism. We perform numerical tests of wave
propagation through layered media in order to test the different scaling models.
The results with synthetic data are quite satisfactory, thus they suggest the
applicability of the scaling model to the experimental traces. We then carefully
apply the scaling model to a pair of traces recorded at two different ambient
stresses. Finally some conclusions on the stress sensitivity of effective acoustic
parameters of the rock are stated.

EXPERIMENTAL SET-UP

Rock sample

The experiments were conducted with a Flechtinger sandstone which is
an aeolian Upper Rotliegend Permian sandstone, obtained from the Sventesius
Quarry near Magdeburg in Germany. This formation consists of massive
cross-bedded aeolian dune sandstone of medium grain size (0.25-0.5 mm) and
a high level of compaction. For a complete description of the rock
characteristics, we refer the reader to den Boer et al. (1996) and Dillen (2000).
The measured porosity ranges from 5 % Ío lO%, A permeability of 3.44 mD and
a rock density of 2.65 glcm3 was reported. The mineralogy consists of 60%
quaÍÍz, ?-0% feldspar, afi 20% rock fragments cemented with calcite. From
previous ultrasonic experiments, a clear velocity anisotropy related to the
layering was observed @illen, 2000). In our experiments, 

-tÍre 
samples have

been mounted such rhat its layering is perpendicular to the vertical direction.

Pressure machines and acoustic installation

_ The experiments were performed in the Laboratory of Rock Mechanics,
Department of Applied Earth Sciences, Delft University of Technology. A
uniaxial and a tri-axial pressure machine were used depending on the objátive
of.each experiment and the sample shape. When using prir^"ti. shaped sámples
it is not possible to use the tri-axial pressure machinè, designed exólusively for
cubic shaped samples.

In the tri-axial pressure machine the force is computer-controlled built uo
independendy in the three perpendicular directions uó to 3500 kN. It is nór
possible to apply a controlled pore pressure since it is an open svstem. Each
uni-axial pan of the machine has a piston on one side and a-pressure plate on
the other side. The pressure plates used have a dimension of )00 x 200 mmr.
Therefore the maximum applicable stress was g7.5 Mpa. Three ceramic
piezo-electric transducers with a central frequency of I MHz were mounted in
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each pressure plate. They were in direct contact with the sample and pressed,

with the aid of a spring, with a constánt force of 900 N on the block'

In the uni-axial pressure machine the force is built up in the vertical
direction by an hydraulic pump controlled by the operator, thus giving less
accurate pressure measurements. However, the pressure plates, transducers and
springs uied are the same as in the tri-axial case' The maximurn applied force

I S00 kN. Therefore the maximum applicable stress is 20 MPa

Piezo-electric broad-band transducers are mounted in each pressure plate'

They are compressional-wave transducers with a central frequency of I MHz
(Panametrics V-103). The traces are recorded at a sample frequency of 10 MHz'
The recording is computer controlled and the gain is set when the samples are
brought under maximum pressure. The traces are filtered with a band-pass filter
of 30 kHz and 2 MHz as Iow cut-off and high cut-off, respectively.

SCALING BEHAVIOUR

The experiments were carried out for a range of different ambient
stresses. Fig. 1 shows the transmission responses for isotropic tri-axial stresses
applied ranging from 2 MPa to 82 MPa in a cubic block of Rotliegend
sandstone.

E
I

Fig. 1. Transmission responses (P-wave) of Rotliegend reservoiÍ sandstone for varyiDg trlaxial
isotropic stress.
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In order to study transmission responses at different travel-path lengths,
the uni-axial pressure machine is used. The samDles are mounted with the
vertical axis (where the uni-axial stress is applied) pàrpendicular to rhe layering.
Fig. 2 shows the transmission responses of two different sample sizes useà:
Rot1l (sample of 204 x 204 x 204 mm3) and Rot23 (sample of ZO4 x 204 x
136 mm3). The stress increases from left to right and it ranges from 2 Mpa to
20 MPa, thus the difference between rwo adjacent traces is approximately 1
MPa. In Fig. 3 the transmission responses of Rotli sample for vertically
applied stresses ranging from 2 MPa (the laresr arrival) to 20 Mpa (the first
arrival) in joint display.

F
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Fig..2. Transmission responses (P-wave) of Rotliegend rese oir sandstone for varying uni_axial
venical stress. (Top) Rot23: 204 x 204 x 136 mmr. (Botrom) Rorll: 204 x ZO4 x 204 mm3.
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Fig. 3. superposition on one time axis of transmission responses (P-wave) of Rotl I sample.

From both trlaxial and uni-axial experiments, it appeared that not only
the arrival time reduces when the ambient pressure increases, but that the width
of the wavelet reduces by approximately the same relative amount. In other
woÍds, the time-axis seems to be scaled by a single factor when the ambient
pressure is changed from one value to another. Also the amplinrde changes with
changing stresses. It has been carefully checked (Swinnen, 1997) that these time
and amplitude changes are not source effects, but that it is the propagation
through the sandstone that changes with changing stress.

Heuristically derived scaling model

A simple scaling relation was derived ftom the experimental data by den
Boer et al. (1996) and further studied by Swinnen (1997). A pair of recorded
traces are approximately related by

r43

Tinre Ims]

ps(t) = Ép^(t/o) , (1)
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where pB(t) and pA(t) denote the traDsmission responses at two different ambient
stresses aDd d. and B aÍe the scaling parameters. The first one stretches the time
axis with respect to t = 0, while the second one affects the wavelet amDlitude.
In the frequency domain, the scaling relation becomes

Pg(o) = BaP^(ao) , e\

where PB(t) and Po(t) are the Fourier transforms of pr(t) and po(t), respectively.
In order to calculate d and B, two traces are compared in the time domain, and
using a normalized least-squares cÍiterion, both scaling parameters are found by
optimizing the match between the scaled trace witl the recorded trace at a lower
stress.

For example, Fig. 4 shows the transmission responses recorded at 10 Mpa
and at 6.4 MPa and a scaled version of the lanei face thar approximatelv
coincides with the former.

Fig. 4 lllustÍation of rhe scaling b€haviour p"(t) = Bp^(t/o). Trace recorded ar r0 Mpa (solid rine,
first arrival), Íace recorded at 6.4 (solid line, secondanival) and scaled version (dashed line) from
10 MPa to 6.4 MPa.

0.06 0.064 0.068
Tirne [ms]
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THE BINARY LAYERED MEDIUM APPROACH

In the next two sections, we derive a new scaling model to relate a couple

of traces recorded at two different stress states. It is based on some assumptions

on the matrix structure of the sandstone and i$ reaction to the applied stress'
We start by making a strong simplification, that is, we assume that the

sandstone ii horizontally layered. Although this is not very realistic, it is a
suitable starting point for studying the scaling behaviour analytically' The
second assumpiion is that the layered medium consists of only two types of
material (hence the name binary layered medium); the layer thicknesses are in

some way randomly distributed. The third assumption is that changes in the
ambient stress do not affect the layer thicknesses, but only the material
parameters. Fig. 5 exemplifies the assumed model for two different pressure

states.

With these assumptions the depth-dependent normal-incidence plane-wave
reflectivity r(z) obeys the following scaling relation

r"(z)=Bro(z),  (3)

where the subscripts A and B refer to two different ambient stress states' When
the material parameters of both layer types react similarly (in a relative sense)
to changes in the ambient pressure then B = 1; when they react differently, then

P t L The average slowness S of the material obeys the following relation

SB: aSA

l' . .:, rr,'l :1r:lr rr:.1, i,,Ii:ri);r,:; i

r:,:irj.r.: ::t.::l:::,]{ :ri !}r l

' ' . .

.  : . :  !  . . "  ' .  | . . . . . : : . :

' ' .  I  L,  t r . , . r . i . l ' ,1r  r !1;r : l

-  r : . . , , i  i -  t , . t ' t i i , j1-r1aa;: :

Fig. 5. Two different stress states in a binary layered medium. [.eft: state A (lower pressure) Right:
stale B (higher pressure).

(4)
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It is beyond the scope of this paper to specify the scaiing factors a and
B and their murual relation'. However, it is possible to srare that if the stress
state B is lower than stress state A, then c should be larger than l. From the
ultrasonic experiments and in accordance with equation (4), the lower the
applied stress, the larger the average slowness of the rock (i.e., the smaller the
average velocity). Apart from that, if stress states A and B do not differ too
much, o and p should be close to l. For our analysis it is sufficient to assume
that relations (3) and (a) hold for some value of a and p. In the following
section we will evaluate the scaling behaviour of the transmission r".pon.. ol
binary layered media analy"tically.

SCALING BEHAVIOUR OF THE TRANSMISSION RESPONSE

The normal-incidence plane-wave transmission response of a layered
medium can be expressed in the frequency domain in terms of a .generàlized
primary' propagator W"(zr,zo,to), according to

W 
"(z 

r,za, a) : W r(z 1,2a, a) M (z t,zs,,i)

= exp{-josAz} expl-A(2o:s)Az\ , (5)

where Az : zt - 4.The first exponential describes the (flux-normalized)
primary propagation from depth level 4 to z, and the second exponential
accounts for the internal multiples generated at all interfaces between those two
depth levels. The function I is the Fourier transform of the .causal pan' of
R(z). according to

,4ft) = J exp{ -jkz}R(z) ,
0

where R(z) is the autocorrelation of the reflection function r(z), expressed by

R(z): [ l / (az -z) ]  J r( f ) r ( f+z)df
4

(6)

(7)

- 
Note that equation (5) is ttre well-known O'Doherry-Anstey relation

(O'Doherty and Anstey, 1971), except that l(k) in equation (6) is expressea in
terms of a spatial rather than a temporal autocorrelation funciion. The
depth-time conversion rakes place in equation (5), where.{(k) is evaluated at k
:.2o.S. Assuming r(z) obeys equation (3), lft) has the following scaling
behaviour

I lr is important to note that o and p in equations (3) and (4) are not the same as tlle scaling
parameters in equation (1), However we prcfer this notation b€cause it is shown later that they ph!
similar roles in both scaling modets.
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.,48G) = É%AG) ,

where the subscripts A and B refer again to rwo different ambient pressure
stales. For these two pressure states the generalized Primary propagators read

1I r, r(4,2t, a) : W o, e(z vz<,' a) M t(4,zo,a)

: exp{ -j(,)sÁÁz} exp{- A^(Zo:s )Az} , (9)

W r,t(z rz,o, a) = W s.a(z r,a,',n) M s(z t,4' o)

: exp{ -josB^z} exp{ -,4r(2<'rst)Az} ,

or, using equations (4) and (8),

W".a(zt,zt,,.,s) = exp{ -joa,sAAz\ exp\- p2A aQeots 6)Az}

: W, o(2 r,4, o,o)fM a(z r,za, o,o.)fe' (11)

It is interesting to carefully compare equations (11) and (2)' having in
mind that the latter was derived from the real traces containing the source
wavelet. In contrast, equation (11) has no hformation on the source function
and it does represent the impulsive transmission response through the stack of
layers. The similarities are clear: both of them contain the o parameter
stretching the frequency axis, and the other parameter p controlling the
ampliode. However, the p parameter in equation (2) accounts for the input
wavelet amplitude, while É in equation (11) is merely related to an acoustic
medium characteristic via equation (3).

NUMERICAL EXPERIMENTS

We are faced with two different scaling models for the transmission
response. The former one [equation (1)] was heuristically derived analyzing the
experimental data. The second one [equation (11)] was analytically derived from
a modified O'Doherty-Anstey relation and making some assumptions on the
pressuredependent behaviour of the sandstone. We have performed numerical
simulations for the transmission response through a binary layered mediurn, in
order to check whether it is a convenient starting model for analyzing the
siressdependent rock behaviour.

The proposed sandstone model consists of a stack of horizontal acoustic
layers with just two alternating velocities. The layer thicknesses are in some
way randomly distributed and the density is considered constant and fixed for
both material types. The assumption is that as the ambient pressure increases

147

(8)

(10)
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one ofthe materials changes its velocity while the other remains fixed. Thus the
reflectivity and the average slowness change according to equations (3) and (4).

The total transmission response is calculated by means of forward
modelling of the acoustic wave equation in the frequency domain, using the
so-called reflection method. Thus primary waves as well as internal multiple
reflected waves are taken into account. We consider a plane-wave incident fróm
the top and calculate the plane-wave Íansmined to the bottom of the stack of
horizontal parallel layers. After calculating the transmission impulse response,
convolution with a Ricker wavelet (central frequency of 400 kHz) is carriéd out.
This frequency is chosen in order to resemble tlre frequency content of the
experimental traces (see Fig. 3).

The velocity ranges from 2500 m/s up to 3200 m/s for one material and
it is fixed at 3500 ÍVs for the other material. Thus the wavelengths involved lie
between 6.25 mm and 8.75 mm. We followed many authors 

-who 
considered

exponentially correlated heterogeneities .as a good choice (Marion et al., 1994;
Rio et al., 1996; Shapiro and Hubral, 1999) ro obtain effective scatrerins
attenuation. Thus the thickness of each bed is a random variable foUowins ai
exponential distribution with mean d = 0.6 mm. Considering the wavelerigths
involved, these lD heterogeneities can cause considerable scattering attenuaiion
and dispersion of energy (Marion er al., 1994). The densiry ii considered
constant for both material t]?es at 2.5 g/cm3.

In Fig. 6, transmitted zero-phase Ricker wavelets through binary layered
media are shown. The trace with the fastest arrival corresponás to the smallest
impedance contrast and average slowness. The later arrivals are calculated by
fixing one velocity at 3500 m/s and decreasing the other (from 3200 m/s tó
2500 m/s), that is increasing the impedance contrasÍ and the average slowness
of the models. Note the similar scaling behaviour observed in the experimental
data for different ambient pressures (Fig. 3).

The first, third and fifth arrivals in Fig. 6 are used to check both equarion
(1) and equarion (11). The corresponding rock model parameters for thesi three
cases are shown in Table l.

Table l. Binary layercd model panmeters.

Model A

Model B

Model C

Total path

20 cm

Mean thickness (d)

0.6 mm

Velocity co rast

3200 Í/s - 3500 m/s

3000 m/s - 3500 Ír/s

2800 m/s - 3500 m/s
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Fig, 6. Transmission lesponses (convolved with Ricker wavelet, 400 kHz centÍal frequency) for
varying impedance coffiast: 3200 m/s -3500 m/s (leftmost arrival) to 2500 m/s -3500 m/s (rightmost
aÍival).

Even though the former scaling model was derived from real data, it does
not give any explicit relation between the scaling parameters [o and É in
equation (1)l and some physical characteristics of the reservoir rock. in spite of
the latter, it is worthwhile to scale one lrace from a low impedance contrast to
a higher impedance contrast, applying the same least-squares technique
previously used with the experimental data. The results can be seen in Fig. 7
and the scaling parameters in Table 2. Although the match is good, some
differences in the amplitude of the main lobes and in the coda can be seen.

Table 2. Scaling parameters to scale trace A to B and C using bolh scaling models.

r49

Model A

Model B

Model C

den Bo€r & Fokkerna (1996)
eB

New Scaling Model
aB

1.035 1.718

l 075 2.481

1.036

l 078

0.870

0.692
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On the other hand, the analytically derived scaling model of equation (1 I )
presents scaling parameters somehow related to the acoustic characteristics of
the layered model via equarions (3) and (4). From the model velocities and
using those equations, it is possible to calculate the scaling parameters shown
in Table 2. They are used to scale the transmission response from model A to
model B and C. It is interesting ro note rhat lhe a paramerers for both scaling
models have similar values.

Before applying the scaling model, the direct path delay is removed from
both responses according to the corresponding time delay for each model. This
is done straightforwardly with the numerically simulated data as long as the
primary travel time through the stack of layers is calculated exactly by our
forward modelling routine. Thus equation (11) simplifies to

Ms(zr,zx,a) = lM o@r,za,au))8' (r2)

As follows from the latter formulation, the scaling model musr be applied
to the transmission impulse response, that is, with no source function inciuded.
As a first step in our forward modelling of the wave equation, the plane wave
transmission response through the stack of layers is calculated. Then the scalins
relation [equation (12)] is applied. Finally, the rransmission impulse responsei
are convolved with a Ricker wavelet and shifted back to the correct arrival time.

Time Imsl

Fig. 7. First arrival (Modet A), thid arrival (Model B) and fifth arrival (Model C) of Fig. 6 (sotid
Iine), and scaled versions (dashed lines) from A to B and A to C using wB(r) = pu,Á((/r).
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Fig. 8. Detail of the first, third and fiÍth traces (from the left) of Fig. ó (solid lines) and scaled
versions ('+' marked line) from the fastest auival to the other two using equation (ll).

In Fig. 8 the results are displayed. The match between the scaled version of the
transmission response of model A and the transmission responses of models B
and C are almost exact. This is another numerical confirmation of the
O'Doherty-Anstey relation, although we know it is only an approximation to the
total transmission response through a layered sequence.

STRESS-DEPENDENT SCALING BEHAVIOUR

After successfully testing the scaling model of equation (12) in the
synthetic transmission responses, its application on the real data set looks
promising. Specially because the estimation of the scaling parameters a and 0
can provide good insight in some acoustic properties of the rock subjected to
stress. However, in our model we neglect in principle two facts: (a) the
radiation pattern of the source (due to the plane wave assumption), and (b) the
effect of any intrinsic losses that could have acted while the signals were
travelling through the rock sample. The experiments were carried out on
room-dry rock samples, thus reducing intrinsic absorption related to any
fluid-flow mechanism.

TiDle Irns]
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The application of the previous scaling model of den Boer and Fokkema
(1996) is straightforward with the real traces. A pair of traces must be chosen
and applying the optimization rechnique previously described in this work, both
scaling parameters can be found.

On the other hand the application ofthe analytically derived scaling model
presented in this paper encompasses extra difficulties. The crucial one is the
presence of the source wavelet in the real traces. The scaling model of equation
(li) does not include the wavelet thus a wavelet deconvolution rs necessarv
before its application. Our goal is based on the relation between medium
parameters and scaling of the impulsive transmission response (i.e., Green
funcrion). Even under the assumption that one transducer emits always the same
wave shape, the coupling between transducers and rock face may differ in each
experiment. As a consequence the "input wavelet" may not be constant, even
for the same rock type. The strategy is based on manipulating the transmission
responses at the same ambient stress for different sample lengths.

The total rransmission response (including the input wavelet) can be
expressed for two different sample lengths as the product of the wavelet
spectrum S(c,:) and the generalized primary propagator of equation (5), according
to

P(zr,zo,a) : S (a) W o(z 1,2n, a) M (z 1,2s, u)

S(o)exp{ -jr,rsÁ2, } exp{ -l(2<,rs)Az, }

S ( a)W r(zr,zs, o: ) M (z2,za, a)

S(c,r)exp{ -j<,rsÁzr} exp{ -l(2r,rs)Azr}

(13)

(14)

-/L

a\
- 

/ \- ----l tn Ê"- l / l
?/-\ 

- 
|(r.Erl /,---

Y
1

------------ Fnf

Fig. 9. Scheme ofthe strategy to calculate impulsive transmission responses (wavelet deconvolulion)
from the responses of two different rock sample sizes.
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where Az1 : zr - z+ and A4 : 4 - zo. All the medium parameters are the
same because the ambient pressure is the same Dividing the response of
equation (14) by that of equation (13),

the impulsive transmission response befween zl and z2 canbe estimated (darker
zone in Fig. 9). Repeating the same procedure for another pressure sÍate, we are
faced with a pair of deconvolved traces (i.e., source free) that can be scaled one
onto the other.

SCALING EXAMPLE

In order to illustrate the previous technique, four transmission responses
recorded at two different pressures and using fwo different sample sizes of
Rotliegend sandstone are used (Rotll and Rot23). The stress states are 10 MPa
and 6.4 MPa. In Fig. 10 the four traces are visualized in joint display.

Wr(zz,zt,a\ : P(zz,zn,u)lP(zr'zo,a)

= exp{-jos(zz - z')l exp{-.1(2us)(22 - z')} ,

TiÍÍF Imsl

Fig. 10. Transmission responses for two samples of Rotliegend sandstone at two different
Rd23t 204 x 204 x 136 mmr: Rotll: 204 x 204 x 204 Írítt.

(15)

pressules.
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The scaling is performed in the frequency domain. Before submitring the
traces to the Fourier transform, the wavelet has to be carefully tapered. Wó use
a cosine tailed window of 200 samples (0.02 ms) starting 20 samples before the
first break. After estimating the four specrra, rhe rario of equation (16) is
calculated using a stabilization constant e : l0% of the highest amplitude of
P (zr,zo,a)P' (zr,zo,er) according to

W"(z2.zt,a) = P (zr,zo,u)P' (zr,zo,a) l [P(z,,zo,u)P' (zr,zo,a) * e], (1 6)

where * denotes complex conjugation. The deconvolution results for both stress
states can be seen in Fig. 11.

In order to perform the scaling, it is necessary to shift first both traces to
zero time [i.e., to cancel the firsr exponential in equation (9)]. In this manner
we correctly gpply rhe scaling model while avoiding any undesirable phase
distortion. Unfortunately, when dealing with real traces, we have no informatjon
of the exact primary time delay (i.e., the firsr exponential in equation (l l)1, and
how much of the observed time delay is caused by scattering within the rock.

We pick the first break of each arrival of Fig. 10 neglecting any rime
delay related lo scattering. The picked arrival times are shown in Table 3. The
primary time delay of one impulsive transmission response at one specific stress
is simply the difference between the two picked arrival times for that stress.

0.02
Time lmsl

Fig. 11. Impulsive transmission responses at two different pressures estimated using equarion (16)
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Table 3. FiÉt bleak arrival times. Rotliegend sandstone.

Sample label Stress [MPal First break [ms]

Roo3

Rotl l

0.0385
0.0412

0.0570
0.0616

10.0
6.4

10.0
6.4

Both impulsive transmission responses are then shifted to zero time. To
be consistent with our choice of the primary time delays, equation (4) must be
satisfied, thus the c par:rmeter is somehow constrained. Therefore a is chosen
equal to 1.103. After that, the 10 MPa response is scaled using equation (12)
and the corresponding B is found to best fit the scaled trace with the 6.4 MPa
response. In this case, p is found by inspectibn equal to 1.05. Finally' the traces
are shifted back to their original times. In Fig. 12 a closer look of Fig. 11 and
the scaled trace from the higher to the lower stress are shown.

Fig. 12. Impulsive transmission responses at two different pressures and scaled version from 10 MPa
ro 6.4 MPa.

TiÍne [ms]
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From the values a : 1.103 and É : 1.05 and using equations (4) and
(5), it can be inferred that the increase in vertical stress from 6.4 Mpa to 10
MPa produces an increase in average velocity of l0% and a relatively small
decrease in average impedance contrast of 5% in this specific Rotliegend
sandstone.

coNcLUstoNs

In this paper, the relation between in-situ varying stress and acoustic
parameters ofa reservoir rock was analysed. Based on the experimental fact that
the_acoustic transmission responses are scaled as a function of the applied stress
and on numerical simulations of wave propagation through iocks with
stress-dependent elastodynamic parameters, we propose a possible physical
explanation of the phenomenon. The dispersion of acoustic waves due to
superposition of internal multiples may well be the cause of the scaline of the
transmitted wavelets through a rock sample under varying ambienr stre-ss. The
wavelet scaling produced by changes in the impedance contrast between layers
corresponds to the pressuredependent scaling behaviour observed in the
experimental data. This correspondence suggests that as the ambient sress
increases, the average slowness and the impedance contrast within the reservoir
rock decrease.

Two different scaling models were analyzed. Both of them contain two
scaling parameters to relate traces recorded at different ambient stresses. One
of these parameters (a) stretches the time axis, and the other (6) controls the
amplitude. The heuristically derived scaling model of equation (1) has been
tested with numerically simulated data, giving reasonably good results.
However, the relation befween the scaling párameters and the acoustic
characteristics of the rock is not explicit.

., The analytically derived scaling model of equation (i1) has been tested
with nlmerical data, giving even better results than the previous one (compare
Figs. 7 and 8). This result was expecred since the scaling relation was derived
from a modified version of the well-known O'Doherjy-4m1gy relation. Our
hypothesis is that as stress changes, some variation in the velocity of one
constituent material occurs. The o and É parameters are directly reláted with
acoustic characteristics of the layered model (i.e., reflectiviry and average
slowness).

Equation (11) quantifies the scaling behaviour of the transmission
response. Note that in both terms at the righr-hand side the frequency is scaled
with the same factor a. This agrees witr our earlier observation that the arrival
time and the width of the wavelet scale by approximately the same amount when
the ambient pressure is changed. The exponent p2 in the second Érm accounts
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for the amplitude change, but has an effect on the phase as well. Since this
exponent is applied to a frequency-dependent term, there is not a simple scaling
relation in the timedomain.

The application of the analytically derived scaling model to real data is
not straightforwaÍd. A source wavelet deconvolution should be done in order to
apply the model of equation (11). Therefore we have tested a strategy that
consists of spectral ratios of traces recorded at different travel-path lengths but
similar applied stresses. Although we have made a number of simplifuing
assumptions, it is worthwhile to use equation (11) as a first approximate model
for observations like those in Fig. 3. Estimating the parameters a and B from
that type of measurements for a range of different ambient stresses gives
valuable information about the stressdependent behaviour of the reservoir rock'
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