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ABSTRACT

Wap€naar, C.P.A., Di l len. M.W.P. and Fokkema, J.T., 2001. Applying one-way re(iprocrly
rheoÍems in lime-lapse seismic imaging. ln: Tygel, M. (Ed.), Seismic True Aínpltrrdes. Journol oí
Seisnic Explorut ion, 10r ló5-181.

We formulate reciprocity theorems for time-lapse seismic methods, based on the full and the
onc way wave equations. The latter form allows a straighlforward physical interpretation of the
various contributing terms. Ur ike difference data taken at the acquisition surface, the boundary
integral in the one-way reciprocity theorem Íepresents the true timelapse changes of the reflectivity
of the top reflectoÍ of a reservoir below the boundary at which Ihis integral is evaluated. Evalualron
of the boundary integÍal yields therefore suited inpuÍ foÍ timelapse AVO arnlysis-

KEY WORDS: recipÍ(rciry. r ime-lapse. one-wa) wave equalion.

INTRODUCTION

A seismic difference section, obtained by subtracting the reference section
from a monitor section in a time-lapse seismic experiment, should ideally reveal
the changes that occurred in the subsurface in the elapsed time between the
different measurements. However, even when the acquisition conditions of the
seismic measurements were fully repeatable, the amplitudes in the difference
section would be deteriorated as a result of traveltime shifts due to velocity
changes in the reservoir (see Fig. 8). Hence, a seismic difference secrion is not
a good measure for quantifying timelapse changes in the subsurface.
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Fokkema et al. (1997) formulated a mathematical relation between the
seismic reference and monitor sections in a time-lapse seismic experiment, based
on acoustic reciprocity. Dillen (2000) elaborared on this and, in particular, he
analysed the interaction integral between the wave fields of the seismic reference
and monitor states at an arbitrary reference level (e.9., below a reservoir). He
showed that the aforementioned amplitude deteriorations do not occur in this
interaction integral.

Recently we derived reciprocity theorems for the one-way wave equations
(Wapenaar and Grimbergen, 1996). These theorems formulate relations between
down- and upgoing wave fields in two different acoustic states. When applied
to the time-lapse seismic method, a similar interaction integral is obtained as the
one analysed by Dillen (2000). This interaction integral now allows an
interpretation in terms of downgoing and upgoing wave fields. It appears to
formulate the difference between two virtual seismic exDeriments at the
acquisition surface. In each of these virtual experiments the downgotng wave
field propagates through the reference state whereas the upgoing wave field
pÍopagates through the monitor state. On the other hand, the reflection in one
of the virtual experiments occurs in the reference state and in the other in the
monitor state. Hence, the primary traveltimes in these virtual experiments are
the same; the main difference between these experiments is the reflection
ampliiude. As a consequence, the interaction integral represents a new
difference section, in which the amplitudes of some important reflectors are not
deteriorated by time shifts. In the following we discuss the application of the
one-way reciprocity theorem to timeJapse seismic imaging in more detail and
point out some of its advantages and limitations.

RECIPROCITY THEOREM FOR THE FULL WAVE FIELD

In this section we review the scalar form of the acoustic reciprocity
theorem. We closely follow de Hoop (1988) and Fokkema and van den Berg
(1993). The former author derives reciprocity theorems in the time domain; the
latter authors in the time domain, the Laplace domain and the frequency
domain. Here we only consider the fÍequency domain.

Basic acoustic equations

In the space-frequency (x,@) domain, the equations that govern linear
acoustic wave motion read

d1P + jcopV* :
and

ó1V1 + j<.rxP :

( t )

(2)
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where P is the acoustic pressure, Vk is the particle velocity, p is the volume
density of mass, x is the compressibility, F* is the volume source density of
volume force and Q is the volume source density of volume injection rate. The
Latin subscripts take on the values I to 3 and the summation convention applies
to repeated subscripts.

Reciprocity theorem for the full wave field

We inÍroduce two acoustic states (i.e., wave fields, medium parameters
and sources), that will be distinguished by the subscripts A and B. For these rwo
states we consider the interaction quantity Ak{PÀVk,, - V*.oP"}. Applying the
product rule for differentiation, substituting equarions (l) and (2) for stares A
and B, integrating the result over a volume V with boundary dV and outward
pointing normal vector n : (n,,nr,n) (see Fig. 1) and applying the rheorem of
Gauss yields

- vu,np")n*dA : -:" j {paaxps - vr.oapvu.s}dv
x€Y

+ J {poe" - vk.AFk.B + F*,ov*." - eApB}dv ,
x€v

where Aí = (a - (e and Ap = pB - pA. Equation (3) is Rayleigh's reciprocity
theorem (Rayleigh, 1878).

J {tou*.,
\eAV

(3)

/1--'>
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2Yr

I3

Fig. 1. Configuration for Rayleigh's reciprocity theorem.
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We conclude this section by considering some special cases:

Unbounded media - Consider the situation in which the medium outside áV is
homogeneous, unbounded and source-free in both states. Assume that the wave
fields in both states are causally related to the sources in V. Then, if po : p,
ênd xo = xs outside d{ the boundary integral on the left-hand side of equation
(3) vanishes (Bleistein, 1984; Fokkema and van den Berg, 1993).

Physical reciprocj4r - Assume that the above mentioned conditions are fulfilled
and that pA : p" and ro = rs in Vas well. Then the first volume integral on the
right-hand side of equation (3) vanishes. Furthermore, consider point sources
in states A and B at xA € y and xB € V, respectively, according to QA(x,o) =
qo(<,r)ó(x-xo), Qr(x,r,r) : qB(o)ó(x-xB), with qo(<,r) = qs(cl) and F1^(x,c,r) :
F1.s(x,@) : 0. Equation (3) thus yields

Po(xelxo,<.r): P"(xn lx",c,r) (4)

This equation formulates the well-known fact that the acoustic pressure
observed by a receiver at xB due to a source at xA is identical to the acoustic
pressure observed by a receiver at xA due to a source at xB. Note that this is a
special case of the more general reciprocity theorem of equation (3). This
general theorem was used by Fokkema et al. (1997) and Dillen (2000) to define
a relation between the seismic reference and monitor sections in a timelapse
seismic experiment. This will be briefly reviewed in a later section.

RECIPROCITY THEOREM FOR ONE-WAY WAVE FIELDS

In this section we review the matrix-vector form of the acoustic
reciprocity theorem for one-way wave fields (Wapenaar and Grimbergen, 1996).

One-way wave equalion in matrix-vector form

We introduce a system of coupled equations for the one-way wave fields
P* and P-, propagating in the positive and negative depth direction,
respectively, originating from sources S* and S-:

arP:BP+S,

(the hat denotes a pseudo-differential operator), with

- : ( : )  

and'=(,)

(s)

(6)
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The one-way operator matrix Ê is defined as

B:

where 3f, is the square-root of the Helmholtz operator and R and f are the
reflection and transmission operators, respectively. See the Appendix for a
further explanation.

Reciprocity theorem for one-way wave fields

We introduce two different states that will be distinguished by the
subscripts A and B. For these two states we consider the interaction quantity
Ar{PiNPB}, with N = (-? à) or, wriuen alternarively, ar{PiP; - P;Pj}. The
superscript ' denotes transposition. Applying the product rule for differentiation,
substituting the one-way wave equation (5) for states A and B, integrating the
result over volume V with boundary AVo U A\ (where dV6 repÍesents the
combination of two planar surfaces perpendicular to the x3-axis and dV, a
cylindrical surface with its axis parallel to the xj-axis, 

^see 
Fig. 2), 

^applying 
the

theorem of Gauss and using the symplectic relation IB'N : -NB, yields the
following one-way reciprocity theorem

n-= (n4,n2,0)

Fig. 2. Modified configuration for the one-way reciprocity theorem. The combination of the lwo
planar surfaces is denoted by dyo; the cylindrical surface is denoted by ayr.

(7)
( - : t t ,  o\  1t  -R\
I  l " l  I
\ o ir{,) \-R Í )

f " :  10,0,  - ry

in: (0,0, t )



170

f

J PjNP"ndA =
x€a%

WAPENMR, DILLEN & FOKKEMA

J r;NÀr,av + J {piNSB + siNpB}dv (8)
x€V

where the contrast operator Á is given by

À=Ê"-Êo (9)

Note that the boundary integral over áV, vanished. For bounded Ayr this
occurs- when Po and P, satisfy homogeneous Dirichlet or Neumann boundary
conditions on óV,. On the other hand, when áV, is unbounded this boundary
contribution also vanishes under the condition that pA and p, have sufficient
decay ar infinity.

We conclude this subsection by analyzing reciprocity theorem (g) for
some special cases:

Unbounded media - Consider the situation in which the medium at and outside
dVo is homogeneous, unbounded and source-free in both states. Assume that the
wave fields in both states are causally Íelated to the sources in Z Then in both
states the wave fields are outgoing at a% (i.e., pi = p; = 0 at the upper
surface and PÀ : P; : 0 at the lower surface) and it is easily seen that pÁNpB
: Pil; - P;P; : 0 ar a%, so the boundary integral on thà left_hand siáe oi
equation (8) vanishes. Apparently it is not required that the medium paramerers
at and outside óVo are identical in both states, unlike the conditions for the
vanishing of the boundary integral in reciprocity theorem (3).

Physical reciproclry - Assume that the above mentioned conditions are fulfilled
and that po = ps and xo : x, inside as well as outside Z Then the first volume
integral on the right-hand side of equation (g) vanishes. Furthermore. consider
polnt sources ln states A and B at xA € yand xB € V, respectively, according
to So(x,o) : so(<,:)ó(x-x) and Sr(x,cr) : srlo;ó1x-xr). Equation (8) ttrui
yields

Pi(xr I xo,co)Ns"(r,:) : -si(<r)NPs(x^ lxs,o) (10)

For the special case that s^ = (ï) aDd s, = Q,;), with si = sË, this reduces
to

Pn(xu xo,cr)  :  Ps(xalxs,@) , ( l l )

s_ï _Fig 3. This equation formulates rhe facr that rhe acousric upgoing wave
field observed by a receiver at xB due to a source for a downgornq wave Íleld
at x^ is identical lo the acuusric upgoing wave field observed-bv i receiver at
xA due to a source for a downgoing wave field at xB. Note that Àis is a special
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case of the more general one-way reciprocity theorem of equation (8). This
general theorem will be used in this paper to define a relation between the
seismic reference and monitor sections in a time-lapse seismic experiment.

/1--:
r ' |  " 'L

12Y

,1----------->
r ' l  Í1

tzY
.L3

l - /  \
s; (&.,, Po(xplxa,u)

xi3

Pu(xalxs,u)

Fig. 3. Physical reciprocity for one,way sources and receivers.

RECIPROCITY THEOREMS FOR THE TIME-LAPSE SEISMIC METHOD

Since in a reciprocity theorem two stares interacr, it is optimally fitted ro
fbrmulate the relation between two measurements in a timeJapse seismic
experiment. State A is associated with the reference wave field at, say, t : tr,
while state B is associated with the monitoring wave field at, say, t : tz ) rr.
It is noted that t2 - tr is much longer than the seismic experiment time. In our
analysis, IR3 is divided in three domains (Fig. 4): Vs is the domain where rhere
are no differences between the material parameters in the two states, mostly
associated with the domain above the reservoir; the domain V", for example
associated with the reservoir, where there is a difference between the material
parameters in the two states mostly due to the reservoir production history; and
y' denotes the complement of Vo U V.; the material parameters in this domain
may or may not be different; a possible difference in this domain is taken into
account in a subsequent step. The domains are specified as follows

l7
\ /\ /
\ /

\ /
\ ,.'

\ - ' - - - l

%: {x € IR3, x,  < x]}  ,

Y ={x€IR3,xj  <x:<x3} ,

V, :  {x € IRr.  x,  > x j }

In the next subsections we will discuss the matter for the two r eciprocity
theorems discussed above.

sB ((,l

(12)
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XpxS

Vo rca(x) : r3(1) Pa(x) - P'(x)
1ri
t v. nn$) f n6$) pe(x) * ps(x)

v'
Fig. 4. Configuration for the time-lapse seismic method.

Full wave equation

In order to simplifo the analysis we only consider point sources of the
volume injection type. The source of state A is taken at x = x", while the
source of state B is taken at x = xR, according to

(13)

(14)

Application of reciprocity theorern (3) ro domain V: Vo U % yields

J {on(*l*r)u,.r(xlxf - v,.n(x lx.)Pr(x lx)}dA
r ,=r j

: -:, J -.{P^rx lxs)ax(x)Ps(x lxJ - v*.n(x lxr)ap(x)v*,"(x lx*)}dv
xey.

+ q"(o)P^(x" lx) - q,n(<,r)P"(x.lx*) (15)

Using physical reciprocity (equation 4) we arrive at

qs(o)P^(x^ lxr) - q,*(co)Pr(x* | x.)

::" J {Pn(x lxr)Ax(x)Pr(x lx*) - V*.o(x lxjAp(x)Vk.B(x lxR)}dV
xeV.

+ J { Po(x I x.)vr,r(x lx*) - vr,i(x lxr)p"(x lxil)dA (16)
r ,=xj

Q6(x,ori = q"(<,r)ó(x - xr) ,

Q"(x, . r ) :q(o)ó(x-x^)
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The boundary integral on the right-hand side of equarion (16) takes into
account a possible difference of the material parameters in V', below the
reservoir; it vanishes when there is no difference between the lwo states in y'.

One-way wave equation

In the one-way analysis we consider point-sources for downgoing waves
in both states, according to

/  , i r"r  \
So{x.co):  I  ló(x -  xs)

\o I\ /

/ \

Su{x.c,,): [ "t' ' I o,* - *", .
\o/

Application of reciprocity theorem (8) ro domain Y = Vo U % yields

(17)

(18)

a

J {P;(x lxs)P;(x lxR) -  P;(x I  xs)PB(x lxR)}dA

- J Pl(x I  xs)NA(x )PB(x lxR )dV -  s;( ! r )P;(xRlxs) +
x€ {

si(co)P"(x, lx*)  (19)

Using physical reciprocity (equation 11) we arrive at

s;(o)P;(xR lxs) - si(<,r)P[(x^ lx5) : J- 
pit* | *rlNÀ(x rps(x xn)dV

+ J {P;(x lxJP;(x lx*) - Pi(x lx,)P;(x lx*)}dA (20)
xr=xj

As in the previous case, the boundary integral on the right-hand side of
equation (20) vanishes when there is no difference between the two states in y,
( i .e. ,  below x: :  x:2).

Let us analyse this boundary integral, however, for the situation in which
there are changes below the reference level x, = x]. Fig. 5 shows a
configuration with two regions in which changes occur (the grey areas). Fig. 5a
shows some primary wave-paths in the inregral J*,:", Pn(x lxr)pi(x I x")dA. If
Pfi is interpreted as a Green's function for state É [multiplied by the source
function sfi(o)], then it is understood that this integral performs an upward
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extrapolation of PÀ in state A from the reference level xl to xR at the acquisition
surfàce. This results in a virtual experiment (see Fig. 6a), in which the
downgoing waves propagate from x, through the medium in state A (before the
changes took place), reflection at the second reservoir occurs in state A, and the
upgoing waves propagate through the medium in state B (after the changes took
place) to xR. A similar interpretation is shown in Figs. 5b and 6b for the integral
I",=,1 f11x xr)Pr(xlx*)dA. It represents a virtual experiment with the same

propagation paths, except with reflection taking place at the second reservoir in
state B. Hence, since the traveltimes in these virtual experiments are the same.
the difference of these terms [as expressed by the boundary integral in equation
(20)l is proportional to the time-lapse changes of the reflectivity of the top
reflector ofthe second reservoir. From this difference reflectivity, the time-lapse
changes in the second reservoir can be estimated.

Of course reflections from any boundary below the second reservoir,
including its bottom reflector, will cause traveltime differences in the boundary
integral [albeit smaller than in a difference section at the surface, as expressed
by the left-hand side of equation (20)1. In a subsequent step, rhe reference level
xl could be lowered to a level below the second reservoir. The two terms of the
boundary integral will cancel when no changes occur below the new reference
level xl and when Pf and Pfi ar x] are obtained correctly. This yields a
verification criterion for the estimated changes above xl (Dillen, 2000: Dillen,
et al., 2000; Scherpenhuijsen, 2000).

x.! x/t
aa a "'--a --

X
_t

X.S

.rl

( , r  ) (1,)

1t

Fig. 5. A alysrs of the two terms in the boundary integral in equation (20). Both lerms accomplish
a forwaÍd exlrapolation of upgoing waves from x] to the surface. The resulls arc shown in Fig. 6.
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Note that in the discussion above, we concentrated on some primary wave
paths. In theory, however, the boundary integral on the righrhand side of
equation (20) vanishes for the primaries as well as the multiples in Pfr and pfi
àt x., = x,2 when no timeJapse changes occur below this level. Of course thii
is no longer true when in practice Pj and Pfi at x, : x] are obtained by
one-way wave field extrapolation. In this case it should be assumed that surface
related multiples have been eliminated prior to applying equation (20) and that
internal multiples are negligible.

.rlt

wla

(n) (1,)

Fig. 6. Virtual experiments, corresponding ro Figs. 5a and b. A and B: siruations befoÍe and after
the changes took place.

EXAMPLE I

- Fig. 7 shows a subsurface model, including a reservoir layer in which
changes take place. The propagation velocity in the reservoir in state A (before
the changes took place) is given by ca : 2500 m/s; in state B (after the changes
took place) it is given by c, : 2539 m/s. Fig. 8 shows a shot record in state A
(the 'reference' shot gather) and in state B (the 'monitor' shot gather) as well
as the difference of these two shot gathers. Note that the first event in the
difference shot gather is representative for the timeJapse changes of the
reflectivity of the top of the reservoir. The other events in this difference shot
gaiher, however, are spurious events: they are caused by the traveltime
differences of the waves propagating through the reservoir and bear no relation
with the time lapse differences with the reflectors below the reservoir (as a
matter of fact there are no time-lapse differences below the reservoir, so we
would like these difference amplitudes to be zeÍo).
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1500 
-_ 1500 - 1000

Fig. 7. Subsurface model, including a Íeservoir in which changes rake place: ca = 2500 m/s, c* =
2580 m/s. The boundary integral (20) is evaluated at xr2 = 900 m.

Fig. 8. Shot gather for the model of Fig. ? in srare A (the ,reference' shot gather) and in srare B (rhe
'monitor' shot gather) and the difference of these two shot Êathers.
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Next we consider the boundary integral in equation (20). Let x, : xl :
900 m denote the dotted line in Fig. 7 below the reservoir. Following the
explanation in the previous section, the two terms in the integral in equation
(20) should cancel, because they can be seen as virtual experiments with the
same propagation paths and with the same reflectors below the dotted line in
Fig. 7. Fig. 9 shows the two contributions of this integral (anti-causal events
have been muted) as well as their difference (Scherpenhuijsen, 2000). Unlike
the difference section in Fig. 8, the difference section in Fig. 9 is indeed zero.

0

J .  
P;  ( '  

's)PS(r 
r i )dA PÍ(tlrs )Ps- (:lrR)dÁT

' .  -3

Fig. 9. Evalualion of the two terms of the integral in equation (20) (anti-causal events have bcen
muted) and their difference.

EXAMPLE 2

Fig. 10 shows a subsurface model, including two reservoirs in which
changes take place. In reservoir I the velocity changes from ce : 2500 m/s to
cs : 2580 m/s; in reservoir 2 from co = 3100 m/s to cB = 3000 m/s. The
same analysis is done as in the previous example. Fig. 11a shows the
straightforward difference of two shot gathers. This result is contaminated by
traveltime differences. Fig. 11b is the result of evaluating the boundary integral
(20) at the reference level xl = 900 m (after muting non causal events). The
latter result contains, around t = 0.9 s, the true timelapse changes of the
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reflectivity of the top reflector of the second reservoir. Note the significanr
difference with the same event in Fig. lla. The difference reflection arountl t
: 0.9 s in Fig. l1b is suited for AVO analysis ro estimate rhe rime-lapse
changes in the second reservoir. The reflections around t - l. I s and t : l.4s
in Fig. l1b are contaminared by traveltime differences (but less than in Fig.
I la). In a next step the boundary integral could be evaluated at a new reference
level below the second reservoir.

liii.-, 1u.íl aft) 0 5o0 T(xlo rscl

Fig. 10. Subsurface model. including two reservoirs in which changes take place. ReseÍvoir l :  c\
:  2500 m/s, cs = 2580 m/s. Reservoir 2: c^ = 3100 m/s. cu = 3000 m/S. The boundary integr.r l
(20) is evaluated at x:r = 900 m

CONCLUSIONS

We have formulated reciprocity theorems for time-lapse seismic methods,
based on the full and the one-way wave equations. The latter form allows a
straightforward physical interpretation of the various contributing terms. Its
implementation requires wave field decomposition and one-way wave field
extrapolation of down- and upgoing waves. We have illustrated the evaluation
of the boundary integral in the one-way reciprocity theorem. Unlike difference
data taken at the acquisition surface, the boundary integral represents the true
time-lapse changes of the reflectivity of the first 'time-lapse interface' below the
boundary at which the integral is evaluated (x, : xj). The advantage is
two-fold:
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0
Orís€t (m)

(a)

0
Otls€t (Ín)

(b)

Fig. ll. Resulls for the stacked reservoir model of Fig. 10. (a) Difference of two sho! gathers,
connminated by tÉveltime differences. (b) Evaluation of the boundary integ.al (20). This resulr
contains the true time-lapse changes of the Íeflectivity of the second reservoir.

1. Interfaces between x3 = x] and the first time-lapse interface below x, :
x] should vanish in the result of the boundary integral evaluation; this yields a
verification criterion for the estimated velocity changes above x, : x].

2. The first time-lapse interface below x, : x] lfor instance the top of a
reservoir) is recovered with its true timelapse AVO reflectivity and is thus
proper input for time-lapse AVO analysis.
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APPENDIX

OPERATORS IN THE ONE-WAY WAVE EQUATION

The one-way wave equation (equations 5 to 7) can be written as a coupled
system of scalar equations for the down- and upgoing one-way wave fields p-
andP,accordingto

a3P. - -jt{P. + fP* - np + s*

ArP-=jH,P-+iP -Êp*+S-

/a- t \

íA-)  r

The operator t(, is the square-root of the Helmholtz operator, according
to

tt,: [((,/c), + a"a)'r (A-3)

(Greek subscripts take on the values 1 and 2 and the summation convenlon
applies to repeated subscripts). For media with constant density (and variable
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compressibility), c is the propagation velocity, defined as g = (rp)-|'. For
variable density media, c obeys the Klein-Gordon dispersion relation known
from relativistic quantum mechanics (Messiah, 1962; Wapenaar and Berkhout,
1989; de Hoop, 1992; Anno, 1992), according to

(o:lc)z : rz* - 3(0o)(0" )/4p'z + 0"0pl2p (A-4)

The reflection and transmission operators R and i in equations (A-1) and
(A-2) are given by

fr. = 'h(i{fp-h0*h'i{r" - í{1"p"0rp-'"itl) ,

T = -vz64p-h0rp"i{r' + ítlhp%arp-h'itfy ,

(A-s)

(A-6)

which follows from the explicit expression for the one-way operator matrix B,
given in, e.g., Wapenaar and Grimbergen (1996). Note that for media in which
the medium parameters do not vary in the depth (x) direction, the reflection and
transmission operators vanish and hence equations (A-1) and (A-2) decouple.




