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[1] The interaction of elastodynamic waves with imperfect interfaces is usually described
by the so-called linear slip model. In this model it is assumed that the particle displacement
of an elastic wave at an interface jumps by a finite amount, linearly proportional to the
stress at the interface. In this paper we postulate general boundary conditions at arbitrarily
shaped imperfect interfaces for acoustic waves in fluids, elastodynamic waves in solids,
electromagnetic waves in matter, poroelastic waves in porous solids, and seismoelectric
waves in porous solids in such a way that they cover the linear slip model and other
existing models for imperfect interfaces. These boundary conditions are expressed by a
single matrix-vector equation in the space-frequency domain. Using this equation, we
extend two unified reciprocity theorems (one of the convolution type and one of the
correlation type) for the various wave phenomena, with an extra integral over the
imperfect interfaces. By considering two special cases of these reciprocity theorems, we
observe that (1) source-receiver reciprocity remains valid when the source and receiver are
separated by imperfect interfaces and that (2) the extra integral in the correlation-type
reciprocity theorem quantifies the power dissipated by the imperfect interfaces. INDEX
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1. Introduction

[2] The interaction of elastodynamic waves with imper-
fect interfaces has been investigated by many authors for
various situations (throughout this paper, by ‘‘imperfect
interface’’ we mean an interface between two media that
are not in perfect contact). Schoenberg [1980] introduced
the linear slip model for an imperfect interface between two
elastic media. In this model it is assumed that the particle
displacement of an elastic wave at an interface jumps by a
finite amount, linearly proportional to the stress at the
interface. The stress itself is assumed continuous across
the interface. The ratio of the stress and the displacement
jump is the specific boundary stiffness. Schoenberg’s [1980]
linear slip model is, for example, suited for modelling the
interaction of elastodynamic waves with fractures in which
viscosity may be ignored. Pyrak-Nolte et al. [1990] give
many references to laboratory and field experiments which
show evidence of wave attenuation due to fractures. To
account for this attenuation, they proposed to extend the
linear slip model with a specific boundary viscosity, which
is the ratio of stress and a velocity jump across the interface.
Nakagawa et al. [2000] discuss laboratory experiments
which show that a fracture under shear stress may give rise

to wave conversion at normal incidence. Since this effect
cannot be explained by either of the two models discussed
above, they extended the linear slip model with coupling
stiffnesses which relate the normal stress to the tangential
displacement jump and vice versa.Gurevich and Schoenberg
[1999] discuss interface conditions for Biot’s equations at the
boundary between two poroelastic media. In their model the
fluid pressure jumps by a finite amount, linearly proportional
to the filtration velocity, which is assumed continuous across
the interface. The ratio of the filtration velocity and the
pressure jump is the hydraulic boundary permeability. Im-
perfect interfaces have also been investigated for electro-
magnetic fields. Kaufman and Keller [1983] discuss
interface conditions, in the diffusive approximation to Max-
well’s equations, for a strongly conductive interface between
two electric media. In the case of a conductive interface
charges cannot be built up and the current that is generated at
the interface gives rise to a jump in the tangential magnetic
field components, linearly proportional to the tangential
electric field components (the normal component of the
electric field is zero at a perfectly conducting interface).
The ratio of the electric field and the magnetic field jump is
the specific boundary resistivity.
[3] In this paper we analyze reciprocity theorems and

power balances for wave fields in piecewise continuous
inhomogeneous media, containing arbitrarily shaped imper-
fect interfaces. First we postulate general boundary con-
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ditions at imperfect interfaces for (1) acoustic waves in
fluids, (2) elastodynamic waves in solids, (3) electromag-
netic waves in matter, (4) poroelastic waves in porous solids
and, finally, (5) poroelastic waves coupled to electromag-
netic waves (also known as seismoelectric waves) in porous
solids. These boundary conditions are general in the sense
that none of the wave field quantities are assumed contin-
uous across an interface and the boundary parameters are
arbitrary complex-valued frequency-dependent functions.
Since in all cases we consider linear wave theory, we
assume that the boundary conditions are linear as well.
The postulated boundary conditions for each of the five
wave phenomena can be cast in a single matrix-vector
equation, according to

Mû½ � ¼ �jwŶhMûi; ð1Þ

where û is the wave field vector (quantities with a circumflex
denote temporal Fourier transforms, see equation (2)), M is
a matrix that contracts this wave vector to the components
that are involved in the boundary conditions, Ŷ is a matrix
containing the boundary parameters, j is the imaginary unit
and w the angular frequency. Brackets and angle brackets
represent the jump and the average across the interface,
respectively (see equations (5) and (6)). Next we briefly
review two unified reciprocity theorems in a similar matrix-
vector notation, that have previously been formulated for
the various wave phenomena in piecewise continuous
inhomogeneous media, containing perfect interfaces (that
is, interfaces between media that are in perfect contact).
Using the matrix-vector form of the general boundary
conditions (equation (1)) we extend these reciprocity
theorems for the situation of piecewise continuous media
with imperfect interfaces. The extended reciprocity theorems
contain an extra integral over all imperfect interfaces. Finally
we discuss some consequences of this extra integral in the
two unified reciprocity theorems.

2. General Boundary Conditions for Wave Fields
at Imperfect Interfaces

2.1. Some Definitions

[4] To represent position in space we use the vector x =
(x1, x2, x3)

T, defined in a right-handed Cartesian coordinate
system (superscript T denotes transposition). We use a
subscript notation for the components of vectorial and
tensorial quantities. Lowercase Latin subscripts take on
the values 1, 2 and 3. Einstein’s summation convention
applies for repeated subscripts, hence, piqi stands for
Si=1
3 piqi. The time coordinate will be denoted by t. We

define the temporal Fourier transform of a space- and time-
dependent real-valued function p(x, t) as

p̂ x;wð Þ ¼
Z 1

�1
exp �jwtð Þp x; tð Þdt: ð2Þ

2.2. Boundary Conditions for Acoustic Waves in Fluids

[5] An acoustic wave field in a fluid is described in
terms of the acoustic pressure p(x, t) and the particle
velocity vi(x, t), or, in the frequency domain, by p̂(x, w)
and v̂i(x, w). Consider an interface with normal vector n =
(n1, n2, n3)

T between two fluids with different space-
dependent medium parameters, see Figure 1. When the
two fluids are in perfect contact at the interface, the
boundary conditions require that the acoustic pressure ( p̂)
and the normal component of the particle velocity (v̂ini)
are continuous. The tangential components of the particle
velocity need not be continuous since at the interface the
fluids may slide along each other. It can be shown that
these conditions are consistent with the acoustic equation
of motion and the stress-strain relation [de Hoop, 1995].
When the fluids at both sides of an interface are not in
perfect contact, the wave quantities p̂ and v̂ini may exhibit
a finite jump across the interface. For example, when the
media are separated by a thin permeable membrane there
may be a pressure drop approximately proportional to the
normal velocity (here ‘‘thin’’ means that the thickness of
the membrane is very small in comparison with the wave
length). On the other hand, there will be a velocity
discontinuity when the fluids mix at the interface or
when the interface is a thin compressible layer. In the
latter case the discontinuity of the normal velocity will
be approximately proportional to the pressure rate. In
general, the boundary conditions for imperfect interfaces
cannot be derived from the equation of motion and the
stress-strain relation, hence they should be specified
independently. We postulate general boundary conditions
for an acoustic wave field at an imperfect interface as
follows:

p̂½ � ¼ �jw|̂bhv̂inii ð3Þ

v̂ini½ � ¼ �jwk̂bh p̂i: ð4Þ

The parameters |̂
b and k̂b are space- and frequency-

dependent complex-valued functions, hence |̂
b = |̂b(x, w)

and k̂b = k̂b(x, w). As mentioned in the introduction,
brackets and angle brackets represent the jump and the
average across the interface, respectively; hence

p̂ x;wð Þ½ � ¼ lim
h#0

p̂ xþ hn;wð Þ � p̂ x� hn;wð Þð Þ ð5Þ

h p̂ x;wð Þi ¼ lim
h#0

p̂ xþ hn;wð Þ þ p̂ x� hn;wð Þð Þ=2; ð6Þ

(where x is chosen at the interface) and similar relations
for [v̂ini] and hv̂inii. Of course the direction of n on a
given interface is not unique: n as well as �n are

Figure 1. Interface between two media.
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equally valid choices. Note, however, that with the
definitions above, the boundary condition equations (3)
and (4) are independent of the choice of the sign of
n (changing the sign of n implies that both sides
of equation (3) change sign, whereas both sides of
equation (4) remain unchanged).
[6] Note that equations (3) and (4) have been written in a

form that resembles the equation of motion and the stress-
strain relation for acoustic waves in a volume. The
main difference is that the left-hand sides contain jumps
instead of spatial derivatives and the right-hand sides
contain boundary parameters (|̂b and k̂b) instead of volu-
metric parameters (|̂ and k̂). The dimension of the boundary
parameters is equal to the dimension of the volumetric
parameters multiplied by meter.
[7] For vanishing |̂

b and k̂b, equations (3) and (4) reduce
to the standard boundary conditions for perfectly coupled
fluids. When |̂

b and k̂b are nonzero, 1/jw|̂b is the hydraulic
boundary permeability, k̂b the boundary compressibility and
1/k̂b = K̂b the boundary stiffness. Note that the dimension of
the boundary stiffness K̂b is that of stiffness per meter (i.e.,
Pa/m). Therefore K̂b is also called the specific boundary
stiffness.
[8] Boundary condition equations (3) and (4) can be

expressed by matrix-vector equation (1), with

û ¼

p̂

v̂1
v̂2
v̂3

0
BB@

1
CCA; M ¼ 1 0 0 0

0 n1 n2 n3

� 	
; Ŷ ¼ 0 |̂b

k̂b 0

� 	
;

ð7Þ

where û = û(x, w) is the acoustic wave field vector, M =
M(x) the acoustic contraction matrix and Ŷ = Ŷ(x, w) the
acoustic boundary matrix. Note that Ŷ obeys the symmetry
relations

ŶTN ¼ �NŶ ŶHJ ¼ JŶ*; ð8Þ

with matrices N and J defined in equation (A1) in Appendix
A (superscript * denotes complex conjugation and H denotes
complex conjugation and transposition). These symmetry
relations will be used in the derivation of the reciprocity
theorems.

2.3. Boundary Conditions for Elastodynamic
Waves in Solids

[9] An elastodynamic wave field in a solid is described in
the frequency domain in terms of the stress t̂ij(x, w) and the
particle velocity v̂i(x, w). At an interface between two solids
that are in perfect contact, the boundary conditions require
that the traction (t̂ijnj) and the particle velocity (v̂i) are
continuous. These conditions are consistent with the elas-
todynamic equation of motion and the stress-strain relation
[de Hoop, 1995]. When the solids at both sides of an
interface are not in perfect contact, the wave quantities t̂ijnj
and v̂i may exhibit a finite jump across the interface. In
general, the boundary conditions for imperfect interfaces
cannot be derived from the equation of motion and the
stress-strain relation, hence they should be specified inde-
pendently. We postulate general boundary conditions for an

elastodynamic wave field at an imperfect interface as
follows:

t̂ijnj

 �

¼ jw|̂bikhv̂ki ð9Þ

v̂i½ � ¼ jwŜ
b

ikht̂kjnji: ð10Þ

Here |̂ik
b = |̂ik

b (x, n, w) and Ŝik
b = Ŝik

b (x, n, w) are the
anisotropic space- and frequency-dependent complex-
valued boundary density and compliance; n denotes that
these parameters are defined for an interface with normal n.
We assume that these boundary parameters are symmetric,
hence |̂ik

b = |̂ki
b and Ŝik

b = Ŝki
b .

[10] Boundary condition equations (9) and (10) can be
expressed by matrix-vector equation (1), with

û ¼

v̂

�T̂1

�T̂2

�T̂3

0
BB@

1
CCA;M ¼ I O O O

O n1I n2I n3I

� 	
; Ŷ ¼ O Ŝb

|̂b O

� 	
;

ð11Þ

where (v̂)i = v̂i, (T̂j)i = t̂ij, (=̂
b)ik = |̂ik

b , (Ŝb)ik = Ŝik
b , (I)ik = dik

and (O)ik = 0. Note that û is a 12 � 1 vector, M a 6 � 12
matrix and Ŷ a 6 � 6 matrix. Furthermore, note that Ŷ
obeys symmetry relations of the form of equation (8), with
matrices N and J defined in equation (A3) in Appendix A.
[11] We consider some special situations. When =̂

b = O
(which is usually a good approximation) and n = (0, 0, 1)T

(i.e., the interface is horizontal), then equations (1) and (11)
yield

T̂3½ � ¼ 0 ) hT̂3i ¼ T̂3 ð12Þ

and

v̂½ � ¼ jwŜbT̂3; ð13Þ

or, equivalently,

T̂3 ¼ Ŝb
� 
�1

v̂=jw½ �; ð14Þ

where v̂/jw is the displacement vector and (0)i = 0.
Equation (14) corresponds with the model of Nakagawa et
al. [2000], with (Ŝb)�1 being the specific boundary stiffness
tensor. The off-diagonal elements of this tensor are the
coupling stiffnesses. When the coupling stiffnesses are zero
and (Ŝb)�1 can be written as

Ŝb
� 
�1¼

Kb
1 þ jwhb 0 0

0 Kb
2 þ jwhb 0

0 0 Kb
3

0
@

1
A; ð15Þ

then equation (14) yields

t̂13 ¼ Kb
1 v̂1=jw½ � þ hb v̂1½ �; ð16Þ

t̂23 ¼ Kb
2 v̂2=jw½ � þ hb v̂2½ �; ð17Þ

t̂33 ¼ Kb
3 v̂3=jw½ �: ð18Þ
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These equations represent the frequency domain equivalent
of the extended linear slip model of Pyrak-Nolte et al.
[1990]. The first term on the right-hand side of each of these
equations represents the specific boundary stiffness Ki

b

multiplied with the displacement jump [v̂i/jw]; the second
term in equations (16) and (17) is the product of the specific
boundary viscosity hb and the velocity jump [v̂i]. When hb =
0 and K1

b = K2
b, equations (16)–(18) reduce to the linear slip

model of Schoenberg [1980].

2.4. Boundary Conditions for Electromagnetic
Waves in Matter

[12] An electromagnetic wave field in matter is described
in the frequency domain in terms of the electric field
strength Êl(x, w) and the magnetic field strength Ĥ j(x, w).
At an interface between two materials in perfect contact, the
boundary conditions require that the tangential components
of the electric and magnetic field vectors, i.e., eklmÊlnm and
eijkĤ jnk, are continuous. Here eijk is the alternating tensor (or
Levi-Civita tensor), with e123 = e312 = e231 = �e213 =
�e321 = �e132 = 1 and the other elements are equal to zero
(hence, eijkĤ jnk represents the i component of Ĥ � n, etc.).
These boundary conditions are consistent with Maxwell’s
field equations [de Hoop, 1995]. When the materials at both
sides of an interface are not in perfect contact, the wave
quantities eklmÊlnm and eijkĤ jnk may exhibit a finite jump
across the interface. In general, the boundary conditions for
imperfect interfaces cannot be derived from Maxwell’s field
equations, hence they should be specified independently.
We postulate general boundary conditions for an electro-
magnetic wave field at an imperfect interface as follows:

eijknjeklmÊlnm

 �

¼ �jwm̂binhenpqĤpnqi ð19Þ

eijk Ĥjnk

 �

¼ �jw�̂bilhelmnnmenpqÊpnqi: ð20Þ

Here m̂in
b = m̂in

b (x, n, w) and �̂il
b = �̂il

b(x, n, w) are the
anisotropic space- and frequency-dependent boundary
permeability and permittivity; n denotes that these para-
meters are defined for an interface with normal n. We
assume that these boundary parameters are symmetric,
hence m̂in

b = m̂ni
b and �̂il

b = �̂li
b. Note that eijknjeklmÊlnm

represents the i component of n � Ê � n, etc. Hence the
tangential field components in the left- and right-hand sides
of these equations are mutually perpendicular (alternatively
we could have formulated these boundary conditions in
terms of eijkÊjnk and eijknjeklmĤ lnm).
[13] Boundary condition equations (19) and (20) can be

expressed by matrix-vector equation (1), with

û ¼ Ê

Ĥ

� 	
; M ¼ N0N

T
0 O

O NT
0

� 	
; Ŷ ¼ O M̂b

�̂���b O

� 	
; ð21Þ

where (Ê)l = Êl, (Ĥ)j = Ĥ j, (M̂
b)in = m̂in

b , (�̂���b)il = �̂il
b and

(N0)ik = eijknj. Note that û is a 6 � 1 vector, M a 6 � 6
matrix and Ŷ also a 6 � 6 matrix. Furthermore, note that
Ŷ obeys symmetry relations of the form of equation (8),
with matrices N and J defined in equation (A5) in
Appendix A.

[14] We consider some special situations. When M̂
b = O

(which is usually a good approximation) and n = (0, 0, 1)T

(i.e., the interface is horizontal), then equations (1) and (21)
yield

Ĥ2


 �
� Ĥ1


 �
0

0
@

1
A ¼ �jw�̂���b

Ê1

Ê2

0

0
@

1
A; ð22Þ

where �̂���b can be written as

�̂���b ¼
�̂b11 �̂b12 0

�̂b21 �̂b22 0

0 0 0

0
@

1
A; ð23Þ

and hence

Ê1 ¼ � 1

jw
�̂b12 Ĥ1


 �
þ �̂b22 Ĥ2


 �
�̂b11�̂

b
22 � �̂b12�̂

b
21

ð24Þ

Ê2 ¼
1

jw
�̂b11 Ĥ1


 �
þ �̂b21 Ĥ2


 �
�̂b11�̂

b
22 � �̂b12�̂

b
21

: ð25Þ

Note that �̂il
b = �il

b + sil
b/jw, where sil

b is the boundary
conductivity. In the isotropic situation and in the diffusive
field approximation equations (23)–(25) reduce to

�̂���b ¼ 1

jw

sb 0 0

0 sb 0

0 0 0

0
@

1
A ð26Þ

and

Ê1 ¼ � 1

sb
Ĥ2


 �
ð27Þ

Ê2 ¼
1

sb
Ĥ1


 �
: ð28Þ

This corresponds to the model of Kaufman and Keller
[1983] for a conductive interface, with (sb)�1 being the
specific boundary resistivity. We refer to equations (22)–
(25) as the extended Kaufman and Keller [1983]
model.

2.5. Boundary Conditions for Poroelastic
Waves in Porous Solids

[15] A poroelastic wave field in a porous solid is
described in the frequency domain in terms of the
averaged bulk stress t̂ijb(x, w), the averaged fluid pressure
p̂(x, w), the averaged solid particle velocity v̂i

s(x, w) and
the averaged filtration velocity ŵi(x, w) [Biot, 1956;
Smeulders et al., 1992; Gurevich and Schoenberg,
1999]. All averages are volumetric averages. At an
interface between two porous solids in perfect contact
with open pores, the boundary conditions require that the
bulk traction (t̂ij

bnj), the fluid pressure ( p̂), the solid
particle velocity (v̂i

s) and the normal component of the
filtration velocity (ŵini) are continuous [Deresiewicz and
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Skalak, 1963]. These conditions are consistent with the
poroelastic equations of motion and the stress-strain
relations [Gurevich and Schoenberg, 1999]. When the
porous solids at both sides of an interface are not in
perfect contact, the wave quantities t̂ij

bnj, p̂, v̂i
s and ŵini

may exhibit a finite jump across the interface. In general,
the boundary conditions for imperfect interfaces cannot be
derived from the poroelastic equations of motion and the
stress-strain relations, hence they should be specified
independently. We postulate that the general boundary
conditions for a poroelastic wave field at an imperfect
interface can be expressed by equation (1), with

û ¼

v̂s

�T̂b
1

�T̂b
2

�T̂b
3

ŵ

p̂

0
BBBBBB@

1
CCCCCCA

M ¼

I O O O O 0

O n1I n2I n3I O 0

0T 0T 0T 0T nT 0

0T 0T 0T 0T 0T 1

0
BB@

1
CCA; ð29Þ

where (v̂s)i = v̂i
s, (T̂j

b)i = t̂ij
b and (ŵ)i = ŵi. Note that û is a

16 � 1 vector, M a 8 � 16 matrix and Ŷ in equation (1) a
8 � 8 matrix with zero block matrices on the diagonal. We
assume again that the nonzero block matrices in Ŷ are
symmetric, such that Ŷ obeys symmetry relations of the
form of equation (8), with matrices N and J defined in
equation (A7) in Appendix A.
[16] For the special case that (Ŷ)8,7 = |̂

b and all other
elements of Ŷ are zero, equations (1) and (29) yield

p̂½ � ¼ �jw|̂bŵini; ð30Þ

where 1/jw|̂b is the hydraulic boundary permeability.
Equation (30) corresponds to the model of Gurevich and
Schoenberg [1999] for an imperfect interface between
porous solids.

2.6. Boundary Conditions for Seismoelectric
Waves in Porous Solids

[17] A seismoelectric wave field in a porous solid is
described in the frequency domain in terms of the
averaged electric field strength Êl(x, w), the averaged
magnetic field strength Ĥ j(x, w), the averaged bulk stress
t̂ij
b(x, w), the averaged fluid pressure p̂(x, w), the averaged

solid particle velocity v̂i
s(x, w) and the averaged filtration

velocity ŵi(x, w) [Pride, 1994; Pride and Haartsen,
1996]. All averages are volumetric averages. At an inter-
face between two porous solids in perfect contact with
open pores, the boundary conditions require that the
tangential components of the electric and magnetic field
vectors, i.e., eklmÊlnm and eijkĤ jnk, the bulk traction (t̂ij

bnj),
the fluid pressure ( p̂), the solid particle velocity (v̂i

s) and
the normal component of the filtration velocity (ŵini) are
continuous. When the porous solids at both sides of an
interface are not in perfect contact, the wave quantities
eklmÊlnm, eijkĤ jnk, t̂ij

bnj, p̂, v̂i
s and ŵini may exhibit a finite

jump across the interface. We postulate that the general
boundary conditions for a seismoelectric wave field at an

imperfect interface can be expressed by equation (1),
with

û ¼

Ê

Ĥ

v̂s

�T̂b
1

�T̂b
2

�T̂b
3

ŵ

p̂

0
BBBBBBBBBB@

1
CCCCCCCCCCA

M ¼

N0N
T
0 O O O O O O 0

O NT
0 O O O O O 0

O O I O O O O 0

O O O n1I n2I n3I O 0

0T 0T 0T 0T 0T 0T nT 0

0T 0T 0T 0T 0T 0T 0T 1

0
BBBBBB@

1
CCCCCCA
:

ð31Þ

Note that û is a 22 � 1 vector, M a 14 � 22 matrix and Ŷ in
equation (1) a 14 � 14 matrix with zero block matrices on
the diagonal. We assume again that the nonzero block
matrices in Ŷ are symmetric, such that Ŷ obeys symmetry
relations of the form of equation (8), with matrices N and J
defined in equation (A9) in Appendix A.

3. Unified Reciprocity Theorems

[18] For any of the wave vectors û defined above, we
previously formulated two unified reciprocity theorems
[Wapenaar and Fokkema, 2004], which are briefly reviewed
here. We consider two physical states in a volume V,
enclosed by surface @V with outward pointing normal
vector n. The field quantities, the material parameters, as
well as the source functions may be different in both states;
they will be distinguished with subscripts A and B (of
course the summation convention does not apply for these
subscripts). For the moment we assume that there are no
interfaces in V. In the frequency domain, the reciprocity
theorem of the convolution type reads

I
@V

ûTAKNxûB d
2x ¼

Z
V

ûTAKŝB � ŝTAKûB
� 


d3x

þ
Z
V
ûTAK jw AA � ABð Þð

þ BA � BBð ÞÞûB d3x: ð32Þ

We speak of a convolution-type theorem, because the
multiplications in the frequency domain correspond to
convolutions in the time domain. This theorem interrelates
the wave field quantities (contained in ûA and ûB), the
material parameters (contained in AA, BA, AB and BB) as
well as the source functions (contained in ŜA and ŜB) of
states A and B. The material parameter matrices and the
source vectors are given by Wapenaar and Fokkema
[2004] for the various wave phenomena discussed above.
They are not repeated here because they play no role in
the derivations in this paper. The matrices Nx and K are
given in Appendix A for the various wave phenomena.
Note that Nx contains the components of the normal
vector n in a particular way; K is a diagonal matrix with
+1s and �1s on its diagonal. The left-hand side of
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equation (32) is a boundary integral which contains a
specific combination of the field quantities of states A and
B at the boundary of the volume V. The first integral on
the right-hand side interrelates the field quantities and the
source functions in V; the second integral contains the
differences of the medium parameters in both states (in
the work of Wapenaar and Fokkema [2004] the right-hand
side contains two extra integrals that are applicable for
acoustic waves in a moving medium). Depending on the
type of application, states A and B can be both physical
states, or both mathematical states (e.g., Green’s states), or
one can be a physical state and the other a mathematical
state. The latter situation leads to representation integrals
[see Gangi, 1970]. When the medium parameters are
identical in both states and the medium outside @V is
source-free, equation (32) reduces to

Z
V
ûTAKŝB d

3x ¼
Z
V
ŝTAKûB d

3x: ð33Þ

By choosing spatial delta functions for the source
distributions, this equation formulates source-receiver
reciprocity for each of the wave phenomena treated in
this paper. Note that this important property is just one
result of the unified reciprocity theorem of equation (32).
For further discussions on convolution type reciprocity
theorems in different fields of application we refer to de
Hoop and Stam [1988], Fokkema and van den Berg
[1993], Gangi [2000], Allard et al. [1993], Pride and
Haartsen [1996], and Belinskiy [2001].
[19] The reciprocity theorem of the correlation type reads

I
@V

ûHANxûB d
2x ¼

Z
V

ûHA ŝB þ ŝHA ûB
� 


d3xþ
Z
V
ûHA jw AA � ABð Þð

� BH
A þ BB

� 


ûB d

3x: ð34Þ

We speak of a correlation-type theorem, because the
multiplications in the frequency domain correspond to
correlations in the time domain. The term ûA

H contains
‘‘back-propagating’’ wave field quantities in state A [see
Bojarski, 1983]. When we compare this reciprocity theorem
with equation (32), we observe that, apart from the complex
conjugation, the diagonal matrix K is absent in all integrals
and that some plus and minus signs have been changed.
When the medium parameters, sources and wave fields are

identical in both states, this reciprocity theorem reduces to
(omitting subscripts A and B)

Z
V

ûH ŝþ ŝH û
� 


d3x ¼
I
@V

ûHNxû d
2xþ

Z
V
ûH BH þ B
� 


û d3x:

ð35Þ

Note that this form of the reciprocity theorem represents a
power balance for each of the wave phenomena treated in
this paper. The term on the left-hand side represents the
power, generated by the sources in V. The first term on the
right-hand side represents the power flux propagating
outward through @ V and the second term the power
dissipated by the medium in V. Note that this is just one
result of the unified reciprocity theorem of equation (34).
For a discussion on the application of correlation type
reciprocity theorems to inverse problems we refer to Fisher
and Langenberg [1984] and de Hoop and Stam [1988].

4. Reciprocity Theorem for Media With
Imperfect Interfaces

[20] We now extend the reciprocity theorems for the
situation in which V contains imperfect internal interfaces.
To this end we subdivide V into L continuous regions,
according to V = V1 [ V2� � � �[ VL, see Figure 2. Region
Vl is enclosed by surface @Vl with outward pointing normal
vector nl. The boundaries between these regions represent
the imperfect internal interfaces. Note that each internal
interface is part of two surfaces @V l, with oppositely
pointing normal vectors nl, see Figure 2.
[21] Since the medium parameters in region V l are con-

tinuous, the reciprocity theorem equations (32) and (34)
apply to each of these regions. Summing both sides of these
equations over l yields again equations (32) and (34) for the
total volume V, with in the left-hand sides extra integrals
over the internal interfaces, according to

Z
Sint

ûTAKNxûB
� 


1
þ ûTAKNxûB
� 


2

� 

d2x ð36Þ

and

Z
Sint

ûHANxûB
� 


1
þ ûHANxûB
� 


2

� 

d2x; ð37Þ

respectively, where Sint constitutes the total of all internal
interfaces; the subscripts 1 and 2 denote the two sides of
the internal interfaces. In the following we evaluate these
integrals, using the general boundary condition of
equation (1). To this end we first express KNx and Nx as

KNx ¼ MTNM ð38Þ

Nx ¼ MHJM: ð39Þ

Matrices N and J are given in Appendix A for the various
wave phenomena. Since the normal vectors contained in

Figure 2. Piecewise continuous volume V = V1 [ V2� � � � [
VL.
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Nx and M have different signs at opposite sides of an
interface (see Figure 2), we have

MT
2NM2 ¼ �MT

1NM1 ð40Þ

MH
2 JM2 ¼ �MH

1 JM1: ð41Þ

We use equations (38)–(41) to rewrite the interface
integral equations (36) and (37) as

Z
Sint

ûT1;AM
TNMû1;B � ûT2;AM

TNMû2;B

� �
d2x ð42Þ

and

Z
Sint

ûH1;AM
HJMû1;B � ûH2;AM

HJMû2;B

� �
d2x; ð43Þ

respectively, where M stands for M1. In case of perfect
interfaces, we have Mû2 = Mû1 for state A as well as state
B, hence, the internal interface integrals vanish. This means
that the reciprocity theorem equations (32) and (34) are
valid for a piecewise continuous medium (as in Figure 2)
with perfect interfaces.
[22] Of course the more interesting case is the one with

imperfect interfaces. For this situation we rewrite the
general boundary condition equation (1) as

M û2 � û1ð Þ ¼ �jwŶM û2 þ û1ð Þ=2: ð44Þ

Bringing û1 to one side of the equation and û2 to the other
yields

Iþ jwŶ=2
� 


Mû2 ¼ I� jwŶ=2
� 


Mû1 ð45Þ

or

Mû2 ¼ ẐMû1; ð46Þ

with

Ẑ ¼ Iþ jwŶ=2
� 
�1

I� jwŶ=2
� 


: ð47Þ

Using the symmetry relations of equation (8) we obtain

ẐTN ¼ NẐ�1 ẐHJ ¼ J Ẑ0� 
�1
; ð48Þ

where Ẑ0 is defined by equation (47), with Ŷ replaced by
Ŷ*, and hence

Ẑ0 ¼ Iþ jwŶ*=2
� 
�1

I� jwŶ*=2
� 


: ð49Þ

We substitute equation (46) for states A and B into the
interface integral equations (42) and (43), use the
symmetry relations of equation (48), and add the resulting
integrals to the left-hand sides of the reciprocity theorems

(32) and (34). This yields for the convolution-type
reciprocity theorem

I
@V

ûTAKNxûB d
2xþ

Z
Sint

ûTAM
TN I� Ẑ�1

A ẐB

� 

MûB d

2x

¼
Z
V

ûTAKŝB � ŝTAKûB
� 


d3xþ
Z
V
ûTAK jw AA � ABð Þð

þ BA � BBð ÞÞûB d3x ð50Þ

and for the correlation-type reciprocity theorem

I
@V

ûHANxûB d
2xþ

Z
Sint

ûHAM
HJ I� Ẑ0

A

� 
�1
ẐB

� �
MûB d

2x

¼
Z
V

ûHA ŝB þ ŝHA ûB
� 


d3xþ
Z
V
ûHA jw AA � ABð Þð

� BH
A þ BB

� 


ûB d

3x: ð51Þ

In the internal interface integrals, ûA and ûB stand for û1,A
and û1,B, respectively (similar as M stands for M1). It is
arbitrary which side of the interface is designated ‘‘side
1.’’ All that matters is that ûA, ûB and M all refer to the
same side of the interface.
[23] In general the interface matrices ẐA and ẐB need not

be the same. For example, when state A is a Green’s state in
a background medium with perfect interfaces, then ẐA = I.
In this case equations (50) and (51) can be cast as repre-
sentations for the actual wave field ûB in a medium with
imperfect interfaces, represented by ẐB. A further discus-
sion of representations is beyond the scope of this paper.
[24] Note that when the boundary parameters contained in

matrix Ŷ are small, we may approximate Ẑ by Ẑ � I � jwŶ.
For this situation the internal interface integrals in equations
(50) and (51) can be written in such a way that they contain
explicitly the contrasts of the boundary parameter matrices
in states A and B, according to

�jw
Z
Sint

ûTAM
TN ŶA � ŶB

� 

MûB d

2x ð52Þ

and

�jw
Z
Sint

ûHAM
HJ ŶA

*� ŶB

� �
MûB d

2x; ð53Þ

respectively.
[25] We conclude this section by discussing a special

situation for each of the reciprocity theorem equations (50)
and (51).

4.1. Source-Receiver Reciprocity

[26] Consider the convolution-type reciprocity theorem,
given by equation (50). It is easily seen that the internal
interface integral vanishes when the boundary parameters
of the imperfect interfaces in states A and B are identical.
Hence for this situation the reciprocity theorem of the
convolution type reduces to the original theorem, defined
in equation (32), but with V = V1 [ V2� � � �[ VL. When,
apart from the boundary parameters, the medium parame-
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ters are identical in both states and the medium outside @V
is source-free, this theorem reduces to equation (33), with
V = V1 [ V2� � � �[ VL. By choosing spatial delta functions
for the source distributions in different regions V l it follows
that, for each of the wave phenomena treated in this paper,
source-receiver reciprocity remains valid when the source
and receiver are separated by imperfect interfaces. Of course
the underlying assumption is that the boundary conditions
can be expressed by equation (1) and that the boundary
parameter matrix Ŷ obeys the first of the symmetry relations
expressed by equation (8).

4.2. Power Balance

[27] Consider the correlation-type reciprocity theorem,
given by equation (51). When the medium and boundary
parameters, sources and wave fields are identical in both
states, this reciprocity theorem reduces to the power balance
of equation (35), with in the right-hand side the extra term

Z
Sint

ûHMHJ I� Ẑ0� 
�1
Ẑ

� �
Mû d2x; ð54Þ

which represents the power dissipated by the internal
imperfect interfaces. Note that this term vanishes when
Ẑ = Ẑ0. In the linear slip model of Schoenberg [1980], the
parameters in matrix Ŷ are real valued. This implies Ẑ =
Ẑ0 (see equation (49)), hence, in this model there is no
power dissipation at the interfaces. For many other
situations, like the extended linear slip model of Pyrak-
Nolte et al. [1990], the permeable boundary model of
Gurevich and Schoenberg [1999] and the conductive
interface model of Kaufman and Keller [1983], the
parameters in matrix Ŷ are complex valued, hence, in
these cases the integral of equation (54) quantifies the
power loss at the imperfect interfaces.

5. Conclusions

[28] We have postulated general boundary conditions at
imperfect interfaces for acoustic waves in fluids, elastody-
namic waves in solids, electromagnetic waves in matter,
poroelastic waves in porous solids and seismoelectric
waves in porous solids, in such a way that they cover
the linear slip model of Schoenberg [1980], the extended
linear slip models of Pyrak-Nolte et al. [1990] and
Nakagawa et al. [2000], the permeable boundary model
of Gurevich and Schoenberg [1999], and the conductive
interface model of Kaufman and Keller [1983]. These
boundary conditions are expressed by the general matrix-
vector equation [Mû] = �jwŶhMûi, where matrix Ŷ
contains the boundary parameters. Using this equation,
we have extended two unified reciprocity theorems (one
of the convolution type and one of the correlation type)
with an extra integral over the imperfect interfaces (equa-
tions (50) and (51)). It appears that the extra integral in
the convolution-type reciprocity theorem vanishes when
the boundary parameters in both states are identical. This
implies that source-receiver reciprocity remains valid
when the source and receiver are separated by imperfect
interfaces. When the medium and boundary parameters,
sources and wave fields are identical in both states then
the extra integral in the correlation-type reciprocity theo-

rem quantifies the power dissipation at the imperfect
interfaces. This integral vanishes when the boundary
parameters contained in matrix Ŷ are real valued.

Appendix A: Matrices in the Symmetry Relations
and Reciprocity Theorems

A1. Acoustic Waves

[29] For acoustic waves, the matrices involved in the
symmetry relations of equation (8) and in the reciprocity
theorem equations (32) and (34) are given by

N ¼ 0 1

�1 0

� 	
; J ¼ 0 1

1 0

� 	
; ðA1Þ

Nx ¼

0 n1 n2 n3
n1 0 0 0

n2 0 0 0

n3 0 0 0

0
BB@

1
CCA; K ¼ diag 1;�1;�1;�1ð Þ: ðA2Þ

Note that equations (38) and (39) are obeyed, with M
defined in equation (7).

A2. Elastodynamic Waves

[30] For elastodynamic waves, the matrices involved in
the symmetry relations of equation (8) and in the reciprocity
theorem equations (32) and (34) are given by

N ¼ O I

�I O

� 	
; J ¼ O I

I O

� 	
; ðA3Þ

Nx ¼

O n1I n2I n3I

n1I O O O

n2I O O O

n3I O O O

0
BB@

1
CCA; K ¼ diag 1;�1;�1;�1ð Þ;

ðA4Þ

with 1 = (1, 1, 1). Note that equations (38) and (39) are
obeyed, with M defined in equation (11).

A3. Electromagnetic Waves

[31] For electromagnetic waves, the matrices involved in
the symmetry relations of equation (8) and in the reciprocity
theorem equations (32) and (34) are given by

N ¼ O �I

I O

� 	
; J ¼ O I

I O

� 	
; ðA5Þ

Nx ¼
O NT

0

N0 O

 !
; N0 ¼

0 �n3 n2

n3 0 �n1

�n2 n1 0

0
B@

1
CA;

K ¼ diag �1; 1ð Þ: ðA6Þ
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Note that equations (38) and (39) are obeyed, with M
defined in equation (21).

A4. Poroelastic Waves

[32] For poroelastic waves, the matrices involved in the
symmetry relations of equation (8) and in the reciprocity
theorem equations (32) and (34) are given by

N ¼

O I 0 0

�I O 0 0

0T 0T 0 1

0T 0T �1 0

0
BB@

1
CCA; J ¼

O I 0 0

I O 0 0

0T 0T 0 1

0T 0T 1 0

0
BB@

1
CCA; ðA7Þ

Nx ¼

O n1I n2I n3I O 0

n1I O O O O 0

n2I O O O O 0

n3I O O O O 0

O O O O O n

0T 0T 0T 0T nT 0

0
BBBBBB@

1
CCCCCCA
;

K ¼ diag 1;�1;�1;�1; 1;�1ð Þ:

ðA8Þ

Note that equations (38) and (39) are obeyed, with M
defined in equation (29).

A5. Seismoelectric Waves

[33] For seismoelectric waves, the matrices involved in
the symmetry relations of equation (8) and in the reciprocity
theorem equations (32) and (34) are given by

N ¼

O �I O O 0 0

I O O O 0 0

O O O I 0 0

O O �I O 0 0

0T 0T 0T 0T 0 1

0T 0T 0T 0T �1 0

0
BBBBBB@

1
CCCCCCA
;

J ¼

O I O O 0 0

I O O O 0 0

O O O I 0 0

O O I O 0 0

0T 0T 0T 0T 0 1

0T 0T 0T 0T 1 0

0
BBBBBB@

1
CCCCCCA
;

ðA9Þ

Nx ¼

O NT
0 O O O O O 0

N0 O O O O O O 0

O O O n1I n2I n3I O 0

O O n1I O O O O 0

O O n2I O O O O 0

O O n3I O O O O 0

O O O O O O O n

0T 0T 0T 0T 0T 0T nT 0

0
BBBBBBBBBB@

1
CCCCCCCCCCA
;

K ¼ diag �1; 1; 1;�1;�1;�1; 1;�1ð Þ:

ðA10Þ

Note that equations (38) and (39) are obeyed, with M
defined in equation (31).
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