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We propose an alternative parameterization of seismic reflectors in the subsurface, in terms of self-
similar singularities, which are generalizations of stepfunctions. This parameterization captures the
multi-scale behavior of real sonic P-wave velocity logs, as can be derived by performing modulus
maxima analysis on wavelet-transformed well-logs. Results on synthetic seismic reflection data,
modeled in real well-logs, show that a singularity parameter can be retrieved, that is consistent
with the parameter derived directly from the well-log.

1. Introduction

Strong reflections in seismic data can often be matched with sharp outliers in the velocity

function of the earth’s subsurface. This velocity function is generally known by means of

the sonic P-velocity log, measured in the borehole (hereafter referred to as well-log). The

usual description of layering in the earth is by means of stepfunctions, by which only an

approximated version of the outliers can be constructed. Mallat and Hwang1 have discovered

that the zooming property of the continuous wavelet transform can be used to perform

regularity analysis and singularity detection on all kinds of measurements. Herrmann2 has

shown that well-logs can be analyzed for the presence of singularities by means of this

transform, thus showing that well-logs exhibit singular behavior over a broad scale range.

This implies that a well-log cannot be parameterized effectively by stepfunctions alone. In

this paper we discuss an alternative parameterization of seismic reflectors, in terms of self-

similar singularities, which are a generalization of stepfunctions. Reflectors described by this

parameterization are singular in the same spectral range as real well-logs. Furthermore we

will show how to extract a singularity parameter which quantifies this singular behavior in a

consistent way from both the well-log as well as from seismic reflection data. It is noteworthy

to mention that in Dessing3 similar parameterizations for reflectors have been analyzed

together with the instantaneous phases of the reflection responses on these reflectors.

∗Presented at ICTCA’99, the 4th International Conference on Theoretical and Computational Acoustics,
May 1999, Trieste, Italy.
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2. Extraction of Singularity Parameters from the Well-Log

In this section, we review the procedure proposed by Herrmann2 for analyzing the scaling

properties of the wavelet transform of reflectors in well-logs and we show how to obtain a

singularity parameter α from the wavelet transformed well-log. The analysis is very much

along the lines proposed by Mallat and Hwang.1 Figure 1(a) shows a P-wave velocity log

sampled with 15 cm (0.5 ft) spacing. Note the rapid variations in the velocity field and many

sharp outliers. As an analysis tool we use the continuous wavelet transform

č(σ, z) =
1

|σ|µ
∫ ∞
−∞

c(z′)ψ

(
z′ − z
σ

)
dz′ , (2.1)

which is a convolution of the velocity function c(z) with scalable wavelets ψ(z/σ). In this

representation the scale σ introduces a contraction or a stretching of the wavelet, which

makes it possible to zoom in (or out) on irregular features of the well-log (µ is a normalization

coefficient that has been set to 1 in this example). The wavelet transform can be seen as

a localized frequency decomposition of the function c(z). Figures 1(b) and 1(c) are both

representations of the continuous wavelet transform. In Fig. 1(c) the neighboring maxima
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Fig. 1. Multi-scale analysis of a well-log.2 (a) The original well-log (courtesy Mobil); (b) The Continuous
Wavelet Transform of the well-log in (a); (c) Modulus maxima lines, obtained from the modulus of (b);
(d) Double-logarithmic plots of the amplitudes A along the depicted modulus maxima lines in (c). A positive,
a zero and a negative slope (singularity strength) can be discerned.
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are connected by so-called modulus maxima lines. Figure 1(d) shows the amplitude behavior

of the wavelet transform along the depicted modulus maxima lines.

We can see that not only a scale independent reflector is visible (slope=0) but also

reflectors which have a slope which is negative or positive. This means that these reflectors

are scale dependent and cannot be described by stepfunction interfaces. As the slope along

the modulus maxima lines is reasonably constant, we will parameterize the main reflectors

in a well-log by shifted versions of self-similar functions of the form

c(z) =

{
c1|z/z1|α for z < 0

c2|z/z2|α for z > 0 ,
(2.2)

for which we will show that the wavelet transform exhibits a similar constant slope behavior.

Note that for the special case of α = 0, Eq. (2.2) defines a stepfunction from c1 to c2.

For arbitrary α, the scaling behavior of this self-similar singularity reads

c(σz) = σαc(z) , (2.3)

for σ > 0. The wavelet transform č(σ, z) of this singularity is defined by Eq. (2.1). Replacing

z by σz, z′ by σz′ and using Eq. (2.3) for σ > 0 we arrive at

č(σ, σz) = σα+1−µ
∫ ∞
−∞

c(z′)ψ(z′ − z)dz′ , (2.4)

or, comparing the right-hand side with that of Eq. (2.1) for σ = 1,

č(σ, σz) = σα+1−µč(1, z) . (2.5)

Let z = zmax denote the z-value for which |č(1, z)| reaches a local maximum. Substitution

in Eq. (2.5) gives

č(σ, σzmax) = σα+1−µč(1, zmax) . (2.6)

Taking the logarithm of the modulus of both sides of Eq. (2.6) yields the following expression

for the logarithm of the amplitudes along a modulus maxima line:

log2 |č(σ, σzmax)| = (α+ 1− µ) log2 σ + log2 |č(1, zmax)| . (2.7)

For µ = 1 we obtain

log2|č(σ, σzmax)| = C + α log2 σ , (2.8)

with C = log2 |č(1, zmax)|. According to Eq. (2.8), the slope of the amplitudes along the

modulus maxima lines is defined by α, where α is the singularity exponent of the self-similar

function defined in Eq. (2.2). Note that a constant amplitude along a modulus maximum line

(i.e., α = 0) corresponds to a stepfunction, hence, any nonzero slope identifies a singularity

other than the stepfunction. It is interesting to see that the analyzed singularities in the

real well-log of Fig. 1 reveal an amplitude-versus-scale behavior approximately described by

Eq. (2.8).
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Fig. 2. (a) Synthetic well-log; (b) wavelet transform of well-log; (c) position of modulus maxima lines in
wavelet transform; (d) log–log plot of amplitude A along modulus-maxima lines versus scale: (top) α = −0.4,
(middle) α = 0, (bottom) α = 0.2.

Now we will test the parameterization by constructing a synthetic velocity function as

in Fig. 2(a), which consists of two shifted versions of the singularity as in Eq. (2.2), which

are characterized by a scaling exponent α of −0.4 and 0.2 respectively, and c1 = c2 for

both singularities. The stepfunction in between the two singularities can also be seen as

a singularity, but its scaling exponent α must then be chosen equal to 0, but in this case

c1 6= c2. The analyzing wavelet ψ has been chosen to be the first derivative of the Gaussian

window.

Figures 2(b) and 2(c) show the same analysis as in Figs. 1(b) and 1(c). For the chosen

wavelet ψ, the scale range of the analysis (σ ∈ [4, 64], or to be consistent with the σ-axes in

Figs. 1(b)–1(d) and 2(b)–2(d), log2 σ ∈ [2, 6]) is approximately equivalent to the bandwidth

of a seismic wavelet in surface seismics. Figure 2(d) shows the amplitude-slope along the

corresponding modulus maxima lines of Fig. 2(c). It shows that the singularity exponent α

from Eq. (2.2) can be retrieved as the value of this slope, in accordance with Eq. (2.8).

3. Extraction of Singularity Parameters from Angle-Dependent Seismic

Data

The foregoing section showed a method for retrieving a singularity parameter α from a

well-log. In this section, we will introduce a method for the extraction of the same singular-

ity parameter α from seismic reflection data. For this purpose we will analyze the scaling

properties of the wavelet transform of angle-dependent reflections in seismic data.

Seismic reflection data is best analyzed for its angle-dependent parameters when the

data is converted to the Radon-transformed representation urefl(p, τ). The Radon transform

performs the decomposition into plane waves by stacking along slanted lines in the seismic

gather, as recognized and described by Schultz and Claerbout.4 In this representation the

rayparameter is given by p = sin φ(z)/c(z). Note that both the local angle of incidence φ
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and the velocity c are dependent on the depth, whereas the rayparameter p is constant for all

depths. This makes it possible to perform analyses of angle-dependency, without knowledge

of the velocity function c(z).

The starting point for the analysis is the scalar acoustic wave equation, with c(z) defined

by Eq. (2.2): [
∂2

∂z2
−
(

1

c2(z)
− p2

)
∂2

∂τ2

]
u(z, p, τ) = 0 , (3.1)

where u(z, p, τ) is the Radon transform of the pressure field. Replacing z by βz, substituting

Eq. (2.3) and multiplying the result by β2 gives[
∂2

∂z2
−
(

1

c2(z)
− (βαp)2

)
∂2

(∂βα−1τ)2

]
u(βz, p, τ) = 0 . (3.2)

The term between the square brackets is the same as in Eq. (3.1), with p replaced by βαp and

τ replaced by βα−1τ . Hence, Eq. (3.2) is satisfied by u(z, βαp, βα−1τ) as well as u(βz, p, τ).

Consequently,

u(z, βαp, βα−1τ) = f(α)u(βz, p, τ) , (3.3)

where f(α) is an undetermined α-dependent factor. In the upper half-space z < 0 we define

an “incident” wave field uinc and a “reflected” wave field urefl, both obeying Eq. (3.3) with one

and the same factor f(α). For our analysis we do not need to specify this “decomposition”

any further. We relate these incident and reflected wave fields via a reflection kernel r(p, τ),

according to

urefl(−ε, p, τ) =

∫ ∞
−∞

r(p, τ − τ ′)uinc(−ε, p, τ ′)dτ ′ , (3.4)

with ε → 0. When we replace ε by βε and substitute Eq. (3.3) for uinc and urefl, we can

compare the result with Eq. (3.4), which shows that the reflection kernel r(p, τ) obeys the

following similarity relation

r(p, τ) = βα−1r(βαp, βα−1τ) . (3.5)

We now perform the wavelet transform on r(p, τ), according to

ř(p, σ, τ) =

∫ ∞
−∞

r(p, τ ′)ψ

(
τ ′ − τ
σ

)
dτ ′ . (3.6)

Note that in this case we have taken the normalization coefficient µ = 0. Substituting

Eq. (3.5), replacing τ ′ by β1−ατ ′ and dτ ′ by β1−αdτ ′ yields

ř(p, σ, τ) =

∫ ∞
−∞

r(βαp, τ ′)ψ

(
τ ′ − βα−1τ

βα−1σ

)
dτ ′ , (3.7)

or, comparing the right-hand side with that of Eq. (3.6),

ř(p, σ, τ) = ř(βαp, βα−1σ, βα−1τ) . (3.8)
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Let τ = τmax denote the τ -value for which |ř(p, σ, τ)| reaches its maximum for fixed p and σ.

We define a modulus maxima plane as the plane in the (p, σ, τ)-space that connects the local

maxima |ř(p, σ, τmax)| for all p and σ. It follows from Eq. (3.8) that the reflection amplitude

in a modulus maxima plane behaves as

|ř(p, σ, τmax)| = |ř(βαp, βα−1σ, βα−1τmax)| . (3.9)

The latter equation implies that contours of constant reflection amplitude in a modulus

maxima plane are described by

p1−ασα = constant . (3.10)

Note that for α = 0 these contours reduce to straight lines p = constant, hence, any

deviation from these straight lines indicates that we are dealing with a singularity, other

than the stepfunction.

For the testing of this method, the full acoustic response has been modeled in the velocity

function of Fig. 2(a), making use of a reflectivity method. The density has been chosen at

a constant value of 2000 kg/m3 over the complete depth-interval. With some fore-sight the

well-log has been chosen such that the first three arrivals are the primaries which are caused

by the three self-similar reflectors, with α = −0.4, 0 and 0.2 respectively. The left backplane

of Fig. 3 shows the prestack depth-migrated dataset R(p, z). It will now be given a third

dimension, as visible in Fig. 3, by the continuous wavelet transform according to Eq. (3.6).

An artist’s impression of the dataset Ř(p, σ, z) constructed in this way is visible in Fig. 3.

The results derived above for the scaling properties of ř(p, σ, τ) apply equally well to this

imaged data set.

In Fig. 4 we can see the analytical curves, described by Eq. (3.10) for the three values

of α in the (p, σ)-plane, as well as the results obtained from the analysis of the data cube

in Fig. 3.

Fig. 3. 3-D representation of the scale analysis on imaged seismic data Ř(p, σ, z).
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Fig. 4. Analytical contours along which p1−ασα = constant; (a) α = −0.4; (b) α = 0; (c) α = 0.2 and the
corresponding results obtained from the image in Fig. 3: (d); (e) and (f).

When we compare the contours obtained from the seismic image with the analytical

contours, we can see that the results match very well. This can be quantified by matching

the contours of Eq. (3.10) for a range of α-values, which we expect to exist in the data set,

with the contours extracted from the seismic data. The matching algorithm consists of the

computation of the standard deviation along a set of analytical contours, followed by taking

the minimum value of these standard deviations. This will effectively give the best match

for α.

The aim of this multi-angle, multi-scale inversion is to resolve the parameters of com-

posite reflectors from the (p, σ)-planes at various depths derived from actual reflection re-

sponses. Two examples are shown for seismic data modelled in actual well-logs. Figures 5(a),

5(b) and 5(c) show a multi-scale analysis of a real well-log, analogous to Fig. 2. The slope

along the modulus maxima line in Fig. 5(c) (α = −0.32) characterizes the singularity at

z = 155 m in the well-log of Fig. 5(a). Figures 5(d), 5(e) and 5(f) show a multi-angle,

multi-scale analysis of the migrated seismic response, analogous to Figs. 3 and 4 (only the

angle-dependent reflectivity section and the (p, σ)-plane at z = 155 m are shown). Using

the contour matching algorithm, it appears that the contours in Fig. 5(f) are approximately

described by p1−ασα = constant, with α = −0.34. Note that this corresponds very well to

the value obtained directly from the well-log. Figure 6 shows a similar example, but this

time the analyzed singularity at z = 170 m clearly resembles a stepfunction. Note that the

contours in Fig. 6(f) show that for this situation there is hardly any scale-dependency, as

expected (the contours are approximately described by p = constant).
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Fig. 5. (a–c) Multi-scale analysis of a singularity in a well-log: α = −0.32. (d–f) Multi-angle, multi-scale
analysis of its seismic response: α = −0.34.

Fig. 6. (a–c) Multi-scale analysis of a stepfunction in a well-log: α = 0.0. (d–f) Multi-angle, multi-scale
analysis of its seismic response: α = 0.03.
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4. Conclusions

An alternative parameterization for reflectors in the subsurface has been proposed, which

is a generalization of stepfunctions. Reflectors described by this parameterization exhibit a

similar multi-scale behavior as several reflectors in real well-logs. It has been shown that

the proposed multi-angle multi-scale inversion method provides consistent estimates of the

singularity parameter α from synthetic and real well-logs and from seismic data modeled in

these well-logs. When looking at the results obtained from the seismic data modeled in the

real well-logs, we expect that the singularity exponent α may prove to be a useful seismic

indicator. Current research involves the application of this method to real walkaway VSP

data by Goudswaard et al.5 and to shallow shear wave seismics by Ghose and Goudswaard.6
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