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Modal expansion of one-way operators in laterally varying media

Joris L. T. Grimbergen∗, Frank J. Dessing∗, and Kees Wapenaar‡

ABSTRACT

One of the main benefits of prestack depth migra-
tion in seismic processing is its ability to handle com-
plicated medium configurations. When considerable lat-
eral variations in the acoustic parameters are present
in the subsurface, prestack depth migration is necessary
for optimal lateral resolution. However, most migration
algorithms still deal with lateral variations in an approxi-
mate manner because these variations are in many cases
moderate compared to the profound variations in the
depth direction.

From other areas of science (e.g., optics, oceanogra-
phy, and seismology), it is known that lateral variations
can be dealt with by a decomposition of the wavefield
into wave modes. In this paper, we explore the possibil-
ity of applying this concept to the construction of one-
way wavefield operators for depth migration. We expand
the Helmholtz operator on an orthogonal basis of wave
modes and obtain one-way wavefield operators that are
unconditionally stable and significantly increase the lat-
eral resolution of the result.

INTRODUCTION

An important requirement for current seismic migration
schemes is the ability to deal accurately with lateral as well as
depth variations in the subsurface. In many cases, the subsur-
face shows profound variations in the depth direction, while
lateral changes are less rapid. In the past, this characteristic
has been exploited by a number of wavefield extrapolation al-
gorithms that use a one-way decomposition of the wavefield
(Claerbout, 1971; Berkhout, 1982; Holberg, 1988; Blacquière
et al., 1989; Hale, 1991).

A one-way (or directional) decomposition comprises the
splitting of the wavefield with respect to a certain direction
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of preference. In surface seismic applications, the direction
of preference is usually the depth direction. The axes perpen-
dicular to the direction of preference are referred to as lateral
coordinates. Hence, in surface seismic applications the lateral
coordinates are the horizontal coordinates, i.e., parallel to the
surface (in well-to-well seismics the coordinate along the bore-
hole is chosen as the lateral coordinate). Mathematically, lat-
eral variations and depth variations are dealt with separately.
Depth variations result in coupling between up- and downgo-
ing waves, whereas horizontal scattering, due to lateral changes,
is in principle included in the downward or upward extrapo-
lation (continuation) of the one-way wavefield. In Claerbout
(1971) and Berkhout (1982), the extrapolation operators are
constructed via series expansions. The other references use op-
timized operators that are derived from the phase-shift opera-
tor in the Fourier domain. The operators of the latter class are
further referred to as local explicit operators.

In all of the above-mentioned references, the assumption
is made that the medium is homogeneous within the spatial
length of the extrapolation operators. If the medium varies lat-
erally, the operator is applied locally for each gridpoint, accord-
ing to the values of the acoustic parameters at that gridpoint.
This approximation is only acceptable for smooth, lateral vari-
ations of the medium. However, if the lateral variations in the
medium are no longer small on a wavelength scale, the results
of these methods become unreliable. In the case of the local
explicit operator, the extrapolation results can even become
unstable (Etgen, 1994).

In this paper, the possibility of an improved handling of lat-
eral medium variations is investigated. From optics, seismology,
and specific seismic applications, it is known that an expansion
of the wavefield into wave modes proves to be an appropri-
ate method of dealing with predominantly laterally varying
media (e.g., Weinberg and Burridge, 1974; Collin, 1991; Ernst
and Herman, 1995). These applications are usually limited to
waveguides or other structures with comparatively small vari-
ations in the direction of preference. Moreover, the medium
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parameters vary in such a way that the guided wave modes
dominate the wavefield. Clearly, this is not the case in reflec-
tion seismics, where wave-guiding situations seldom occur as
a result of lateral variations. Here, the radiating part of the
wavefield is more important than the guided wave modes.

An extrapolation scheme, based on a modal expansion of
the wavefield into both guided and radiating wavefield con-
stituents, significantly increases the lateral resolution of the
result. The method is tested in a synthetic migration example,
where the subsurface model contains a high-velocity domal
structure (typical of salt) and a number of faults. It is shown that
by using the modal expansion for the construction of one-way
wavefield operators, significant improvements can be achieved
compared to local explicit methods.

Close links exist between the method presented in this pa-
per and the work of Pai (1985) and Kosloff and Kessler (1987).
In Pai (1985), a modal decomposition in the wavenumber-
frequency domain is carried out for laterally varying media
and applied to the two-way wave equation. For laterally in-
variant media the resulting extrapolation operator reduces to
the phase-shift operator. Kosloff and Kessler (1987) mention
the possibility of a modal decomposition applied to the two-
way wave equation in the space-frequency domain, but they use
Chebyshev polynomials as an approximation. Both references
take the discretized wave equation as a point of departure,
whereas in the present paper a derivation from the continuous
formulation is carried out. This derivation leans upon func-
tional calculus (Reed and Simon 1978, 1979).

ONE-WAY OPERATORS AND KERNELS

In this section, the relevant concept of one-way wavefield
operators for lossless source-free inhomogeneous fluids is re-
viewed briefly. We consider the one-way wave equation in the
space-frequency (x, ω) domain. In the following, the tempo-
ral frequency ω is suppressed in the notation, for reasons of
convenience. Since in this paper we are interested primarily in
the impact of lateral variations on propagation, we will neglect
the vertical variations within each extrapolation step, similar to
the local explicit method. Internal multiples and other second-
order effects related to the vertical variations will be neglected
as well. [For a recent discussion on the one-way wave equation
and its properties in arbitrarily inhomogeneous media, we re-
fer to Wapenaar and Grimbergen (1996).] At depth level x3 we
may thus write

∂P±(xH , x3)
∂x3

= ∓ j Ĥ1 P±(xH , x3), (1)

where xH = (x1, x2) represents the horizontal coordinates.
P±(xH , x3) is the monochromatic one-way upgoing (−) or
downgoing (+) flux-normalized acoustic wavefield (de Hoop,
1992), j the imaginary unit, and Ĥ1 the so-called square root
operator (Claerbout, 1971). In this paper, operators are distin-
guished from other variables by a circumflex. The square-root
operator relates to the Helmholtz operator Ĥ2, according to

Ĥ2 = Ĥ1Ĥ1. (2)

The Helmholtz operator may be written as

Ĥ2 =
(
ω

c′

)2

+∇2
H , (3)

where∇H = (∂/∂x1, ∂/∂x2). In equation (3), lateral variations
in the density % are incorporated in the modified velocity c′,
satisfying(

ω

c′

)2

=
(
ω

c

)2

− 3(∇H%) · (∇H%)
4%2

+
(
∇2

H%
)

2%
, (4)

with c= c(x) and %= %(x) (Wapenaar and Grimbergen, 1996).
From equations (2) and (3), it can be seen that one cannot come
up with an ordinary partial differential operator Ĥ1 that satis-
fies these equations. The square root operator belongs to the
more general class of pseudodifferential operators (Calderón
and Zygmund, 1957; Kumano-go, 1974; Treves, 1980; Taylor,
1981).

The wavefield P±(xH , x3) at depth level x3 can be expressed
in terms of the wavefield at depth level x′3 according to

P±(xH , x3) =
∫
R2

W±(xH , x3; x′H , x′3)P±(x′H , x′3) d2x′H ,

(5)

where the propagator W±(xH , x3; x′H , x′3) is the solution of the
one-way wave equation (1),

∂W±(xH , x3; x′H , x′3)
∂x3

= ∓ j Ĥ1W±(xH , x3; x′H , x′3), (6)

with initial condition

W±(xH , x3 = x′3; x′H , x′3) = δ(xH − x′H ). (7)

We choose x3 > x′3 for downgoing waves because W+(xH , x3;
x′H , x′3) represents the forward propagator. Similarly, we choose
x3 < x′3 for the upward propagator W−(xH , x3; x′H , x′3). From
equation (7), the propagator W±(xH , x3; x′H , x′3) can be solved
by a Taylor series expansion with respect to (x3 − x′3):

W±(xH , x3; x′H , x′3) =
∞∑

k=0

(x3 − x′3)k

k!

×
[
∂kW±(xH , x3; x′H , x′3)

∂xk
3

]
x3=x′3

.

(8)
Using equation (6) with equation (7), we have

W±(xH , x3; x′H , x′3) =
∞∑

k=0

(x3 − x′3)k

k!
(∓ j )k Ĥk

1 δ(xH−x′H ).

(9)
The series above is recognized as the series expansion of an
exponential. Hence, we may write symbolically

W±(xH , x3; x′H , x′3) = exp{∓ j (x3 − x′3)Ĥ1} δ(xH − x′H ).

(10)

At this point, it is convenient to introduce the kernelA(xH , x′H )
of some operator Â, according to

ÂF(xH ) =
∫
R2
A(xH , x′H )F(x′H ) d2x′H , (11)

where F(xH ) is a function of xH on which the operator is active.
In our case this function represents a monochromatic wavefield
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at a fixed depth level. From equation (11) it is clear that the
following symbolic relation holds between operator Â and its
kernel A(xH , x′H ):

A(xH , x′H ) = Âδ(xH − x′H ). (12)

Considering equation (10), we conclude that W±(xH , x3;
x′H , x′3) can be identified as the kernel of an operator Ŵ±(x3, x′3):

Ŵ±(x3, x′3) = exp{∓ j (x3 − x′3)Ĥ1}. (13)

Analogous to equation (11), we introduce the kernel H2(xH ,

x3; x′H ) of the Helmholtz operator Ĥ2, according to

Ĥ2 F(xH ) =
∫
R2
H2(xH , x3; x′H )F(x′H ) d2x′H . (14)

The kernel of the square root operator Ĥ1 can be related to
the kernel of the Helmholtz operator Ĥ2 by applying it twice
to a function F(xH ):

Ĥ2 F(xH ) = Ĥ1Ĥ1 F(xH )

=
∫
R2

∫
R2
H1(xH , x3; x′′H )H1(x′′H , x3; x′H )

×F(x′H ) d2x′′H d2x′H . (15)

Comparing equation (15) with equation (14), we note that the
kernels of the operators Ĥ2 and Ĥ1 are interrelated according
to

H2(xH , x3; x′H )

=
∫
R2
H1(xH , x3; x′′H )H1(x′′H , x3; x′H ) d2x′′H . (16)

This relation is the equivalent of equation (2) in terms of op-
erator kernels.

EXPANDING THE HELMHOLTZ OPERATOR

The problem of finding expressions for one-way operators
is essentially a problem of finding the square root operator Ĥ1

from equation (2) or, similarly, from equation (16). As will be-
come clear later in this section, this problem can be solved if
the Helmholtz operator Ĥ2 is expanded in terms of its eigen-
functions.

Consider again the Helmholtz operator Ĥ2 at a fixed depth
level x3:

Ĥ2 =
(

ω

c′(xH , x3)

)2

+∇2
H = k2(xH , x3)+∇2

H , (17)

where k(xH , x3) is the wavenumber at that depth level. In the
remainder of this section, x3 is suppressed for notational con-
venience. The eigenfunctions φ(xH ) of Ĥ2 satisfy

Ĥ2φ(xH ) = λφ(xH ). (18)

Because Ĥ2 acts on an unbounded lateral space, the parameter
λ in equation (18) represents an operator spectrum rather than
a set of eigenvalues. Regarding its mathematical properties,
the Helmholtz operator is similar to the Hamiltonian operator

from nonrelativistic quantum mechanics. For this reason, we
will lean on this well-developed theory in deriving the spectral
properties of Ĥ2 (Reed and Simon, 1978). From this theory it
can be shown that Ĥ2 is a self-adjoint operator if it is defined
on an appropriate domain of functions. As a result, the eigen-
functions are orthogonal and complete and the spectrum is real
valued.

At this point, we assume the lateral variations in the medium
vanish outside some arbitrary but finite range of xH . This means
we assume some lateral background medium with phase veloc-
ity c0, corresponding to a wavenumber k0=ω/c0. Under this
condition, the spectrum σ of Ĥ2 generally consists of a discrete
part and a continuous part:

σ (Ĥ2) = σdiscr(Ĥ2) ∪ σcont(Ĥ2). (19)

The outline of the spectrum of Ĥ2 is given in Appendix A.
Figure 1 shows the structure of the spectrum.

Due to the completeness of the basis of eigenfunctions, any
function F(xH ) in the domain of Ĥ2 can be expanded in terms
of the eigenfunctions of Ĥ2:

F(xH ) =
∫
R2
φ(xH ,κ)F̄(κ) d2κ+

∑
λi ∈σdiscr

φ(i )(xH )F̄ (i ).

(20)

The expansion coefficients F̄ (i ) in the second term on the right
side of equation (20) correspond to the discrete eigenvalues λi .
The first term on the right side contains the expansion coeffi-
cients F̄(κ), where the integration variable κ is related to the
continuous spectrum variable λ, according to

λ(κ) = k2
0 − κ · κ, λ ∈ σcont. (21)

From this relation, we can see that the continuous part of the
spectrum is degenerate because for fixed λ(κ) ∈ σcont, an infi-
nite number of solutions for κ exists. Equation (20) can be in-
terpreted as an inverse transformation from the modal domain
to the space domain. Using the orthogonality of the eigenfunc-
tions and a proper normalization, the related forward trans-
form can thus be written as

F̄(κ) =
∫
R2

F(xH )φ∗(xH ,κ) d2xH (22)

and

F̄
(i ) =

∫
R2

F(xH )φ
(i )

(xH ) d2xH , (23)

FIG. 1. Spectrum of the Helmholtz operator Ĥ2 in the complex
plane.
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where the asterisk (∗) denotes complex conjugation. As an
example, consider the laterally invariant case. In this case, the
discrete spectrum disappears. It is easily seen, then, that the
following complex exponential functions satisfy equation (18):

φ(xH ,κ) = 1
2π

exp{− jκ · xH }, (24)

in which a plane wave can be recognized. However, since Ĥ2 is
a real-valued self-adjoint operator having a real spectrum, we
can alternatively choose the eigenfunctions to be real valued:

φ(xH ,κ) = 1

π
√

2
cos{κ · xH − π/4} . (25)

In this equation, the π/4 phase shift is essential for the con-
struction of both odd-as-even functions F(xH ). Substitution of
equations (24) or (25) in equations (20) and (22) yields the in-
verse and forward spatial Fourier and Hartley transformations,
respectively (Bracewell, 1986).

We return to the laterally variant situation. By definition, Ĥ2

becomes a multiplication operator in the domain constituted
by its eigenfunctions. Therefore, according to equations (18)
and (20), we may write

Ĥ2 F(xH ) =
∫
R2
λ(κ)φ(xH ,κ)F̄(κ) d2κ

+
∑

λi ∈σdiscr

λiφ
(i )

(xH )F̄
(i )
. (26)

The expansion coefficients can be eliminated from expres-
sion (26), by using the modal transform [equations (22) and
(23)], yielding

Ĥ2 F(xH ) =
∫
R2
H2
(
xH , x′H )F(x′H ) d2x′H , (27)

where the kernelH2(xH , x′H ) can be expressed according to

H2(xH , x′H ) =
∫
R2
φ(xH ,κ)λ(κ)φ∗(x′H ,κ) d2κ

+
∑

λi ∈σdiscr

φ(i )(xH )λiφ
(i )(x′H ). (28)

Equation (28) and other expansions of following kernels
should be understood in the sense of distributions (Zemanian,
1965).

EXPANDING THE ONE-WAY PROPAGATOR

Using equations (16) and (28) as well as the orthonormality
of the eigenfunctions, the kernel of the square root operator
can be written as

H1(xH , x′H ) =
∫
R2
φ(xH ,κ)λ

1
2 (κ)φ∗(x′H ,κ) d2κ

+
∑

λi ∈σdiscr

φ(i )(xH )λ
1
2
i φ

(i )(x′H ), (29)

where for later convenience the signs of the square root are
chosen according to

Re
(
λ

1
2
) ≥ 0 for λ ≥ 0 (30)

and

Im
(
λ

1
2
)
< 0 for λ < 0. (31)

Figure 2 shows the spectrum of the square root operator. Sim-
ilarly, for the primary propagator as defined in equation (10),
we may write

W±(xH , x3; x′H , x′3)

=
∫
R2
φ(xH ,κ) exp

{
∓j (x3 − x′3)λ

1
2 (κ)

}
×φ∗(x′H ,κ) d2κ

+
∑

λi ∈σdiscr

φ(i )(xH ) exp
{
∓j (x3 − x′3)λ

1
2
i

}
φ(i )(x′H ).

(32)

NUMERICAL IMPLEMENTATION IN 2-D

The discretization of the wavefield operators and variables
leads to matrix operators and (column) vectors. The one-way
matrix operators differ fundamentally from their continuous
counterparts as the “spectrum” becomes fully discrete due to
the finite dimensions of the matrix. The important properties
of the continuous operators (e.g., self-adjointness) and eigen-
functions (orthogonality and completeness), however, trans-
late elegantly into similar properties for matrix operators and
eigenvectors (Golub and Van Loan, 1989).

For the 2-D situation, the transition from the Helmholtz op-
erator Ĥ2 to the corresponding matrix operator can be clarified
using the operator kernel Ĥ2(x1, x3; x′1). From equations (12)
and (17) we have

H2(x1, x3; x′1) =
(

ω

c′(x1, x3)

)2

δ(x1−x′1)+ ∂2

∂x2
1

δ(x1−x′1).

(33)

FIG. 2. Spectrum of the square root operator Ĥ1 in the complex
plane.
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The continuous variables (x1, x′1) above relate to discrete in-
dices of an M × M matrix operator according to

˜
H2 =

˜
C+

˜
D2. (34)

Here,
˜
C is a diagonal matrix corresponding to the first term in

equation (33):

˜
C =



(
ω

c′1

)2

0 · · · 0

0
(
ω

c′2

)2

· · · 0

...
...

. . .
...

0 0 · · ·
(
ω

c′M

)2


, (35)

where c′n = c′(n1x1, x3) and 1x1 is the lateral discretization
interval. Furthermore, the matrix operator

˜
D2 represents the

second-order differentiation filter, which may be implemented
as

˜
D2 = 1

1x2
1

=



−2 1 0 · · · 0 0

1 −2 1 · · · 0 0

0 1 −2 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · −2 1

0 0 0 · · · 1 −2


. (36)

However, in practice a matrix operator is applied which con-
tains more nonzero diagonals. The matrix elements of this oper-
ator are calculated using a least-squares optimization algorithm
(Thorbecke and Rietveld, 1994). As can be seen by inspection
of equations (35) and (36), both matrix operators in equation
(34) are real valued and symmetric; hence,

˜
H2 is self-adjoint

(
˜
H2=

˜
HH

2 , where H denotes transposition and complex con-
jugation). A well-known result from matrix algebra (Golub
and van Loan, 1989) states that, for a self-adjoint matrix, the
following decomposition can be applied:

˜
H2 =

˜
L

˜
Λ

˜
L−1 =

˜
L

˜
Λ

˜
LH , (37)

where
˜
L contains the discrete equivalents of the normalized

eigenfunctions φ in its columns and
˜
Λ is a diagonal matrix

containing the eigenvalues of
˜
H2. This equation is the discrete

counterpart of equation (28). Hence, the eigenvalues in
˜
Λ re-

place both the discrete and the continuous part of the spectrum
(see also Figure 1). The square root matrix operator

˜
H1 conse-

quently can be written as

˜
H1 =

˜
L

˜
Λ

1
2
˜
L−1 =

˜
L

˜
Λ

1
2
˜
LH , (38)

with the signs of the square root of the eigenvalues in
˜
Λ

1
2 cho-

sen according to equations (30) and (31). This result is evident
because, as an equivalent of equations (2) and (16), we have

˜
H2 =

˜
H1

˜
H1.

The procedure described above is illustrated for a laterally
invariant and a laterally variant medium. Figure 3 shows the
laterally variant medium profile. At a fixed value of x3, this
medium contains a lateral perturbation (i.e., a velocity dip) of
the laterally invariant medium. In Figure 4 the spectrum of the
square root operator Ĥ1 and eigenfunctions of both profiles are
compared. The common part of the spectra [Figures 4(a) and
4(d)] corresponds to the continuous part in Figure 2. These
eigenvalues would condense into a continuous branch if the
lateral aperture were increased to infinity. The isolated eigen-
values on the right in Figure 4(d) are caused by the velocity dip
in the medium, which acts as a waveguide. In Figures 4(b) and
4(c), two eigenfunctions are shown for the laterally homoge-
neous profile. In Figures 4(e) and 4(f), one guided wave mode
and one radiating wave mode are shown.

Finally, the primary propagator matrix
˜
W±(x3, x′3) can be

expressed according to

˜
W±(x3, x′3) =

˜
L(x′3) exp

{
∓j (x3−x′3)

˜
Λ

1
2
}

˜
LH (x′3). (39)

In equation (39), the amplitude of the exponential function
equals unity for propagating wave modes and is lower than
unity for evanescent wave modes. This is demonstrated in Fig-
ure 5, where the amplitude of the exponential for each eigen-
value in Figure 4(a) is depicted. Hence, the wavefield is extrap-
olated accurately and in a stable manner up to 90◦ and beyond
(the evanescent wavefield). The stability of the extrapolator
is an important distinctive feature of the described method
compared to local explicit methods, which have been reported
to exhibit unstable behavior in various situations (Etgen,
1994).

NUMERICAL IMPLEMENTATION IN 3-D

As in the 2-D case, we now take the kernel of the Helmholtz
operator for the 3-D situation as a point of departure:

H2(xH , x3; x′H ) =
(

ω

c′(xH , x3)

)2

δ(xH − x′H )

+∇2
Hδ(xH − x′H ). (40)

Evidently, the eigenvectors of this operator are in this case two
dimensional in space, which raises the question if equation (40)
can still be expressed in terms of a matrix operator. Kinneging
et al. (1989) show that monochromatic 3-D data can indeed be

FIG. 3. Laterally variant medium profile at a fixed depth
level x3.
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organized in vectors such that the corresponding 3-D wavefield
operators again become matrices. Following this procedure, a
one-way monochromatic wavefield at depth level x3 can be
written as a vector, according to

P±(x3) =



P±(1x1,1x2, x3)

P±(21x1,1x2, x3)
...

P±(M1x1,1x2, x3)

P±(1x1, 21x2, x3)
...

...

P±(M1x1, N1x2, x3)


. (41)

This way of organizing the data can be used to derive a matrix
operator from equation (40), which represents the Helmholtz
operator at a fixed depth level x3 for the 3-D situation. As in the
2-D case, this matrix operator is extremely sparse. To illustrate,
we have computed a number of modes. One medium is later-
ally invariant with a velocity of 2500 m/s; the other medium
profile is the circular symmetric extension of the profile shown
in Figure 3. Figure 6 shows the 2-D eigenfunctions at a
fixed x3.

FIG. 4. (a) Spectrum of the square root operator Ĥ1 for a laterally invariant medium with a velocity of c0 = 2500 m/s. The frequency
equals 25 Hz; hence, k0 = ω/c0 = 0.063 m−1. (b) and (c) Two radiating wave modes at fixed x3. Note that the radiating wave modes
in the homogeneous profile are harmonic functions. (d) Spectrum of the square root operator Ĥ1 for the laterally variant medium
of Figure 3. (e) Guided wave mode. (f) Radiating wave mode. The squares in the spectrum of the square root operator denote the
eigenvalues corresponding to the plotted eigenfunctions.

EXAMPLES

Well-to-well extrapolation

As a first illustration of the one-way operators that have been
constructed, a crosswell configuration is considered. A point
source in one well generates a wavefield that is recorded in an-
other well. The medium is assumed to be depth dependent only.
In this example, the direction of preference is horizontal, while
the lateral dimension represents depth. Figure 7 shows the 1-D
subsurface model and the result of finite-difference modeling,
which is used as a benchmark. The results of model expan-
sion and the local explicit method are compared in Figure 8.
Not surprisingly, the results of the local explicit method are
very poor in this example because of the considerable velocity

FIG. 5. Amplitude of the eigenvalues of the propagator matrix
for an extrapolation distance of 30 m.
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changes perpendicular to the propagation direction. On the
other hand, note the high resemblance between the results of
modal expansion and finite-difference modeling.

Migration example

As a second example, we have migrated a set of synthetic shot
records that have been generated by finite-difference modeling
using the subsurface model in Figure 9. In this case both lateral
(i.e., horizontal) variations and depth variations are present
in the model. The model contains a high-velocity layer (salt)

FIG. 6. (a)–(c) Two-dimensional eigenfunctions at fixed x3 in a homogenous 3-D medium with c0 = 2500 m/s. (d)–(f) Two guided
modes and one radiating mode in a radially symmetric extension of the profile of Figure 3.

FIG. 7. Velocity-depth profile of the medium with discontinous transitions (left) and the corresponding result of
well-to-well finite-difference modeling (right). The source is located 135 m below the surface and is denoted by
a bullet.

piercing through a number of layers. To the right of this struc-
ture, the block-shaped structure implies yet another lateral
discontinuity. The acquisition parameters are summarized in
Table 1. Because we are now dealing with depth variations, the
wavefield is extrapolated in small steps, using the complex con-
jugate transposed of

˜
W±, as defined in equation (39) (hence,

the evanescent waves are suppressed).
The stacked result of the separate shot record migrations us-

ing modal expansion is shown in Figure 10. The flanks of the
salt as well as the faults are clearly imaged. Note the overall
crisp character of the result. An unambiguous comparison with
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the available local explicit method is not straightforward be-
cause both the length and the optimization angle can be varied.
Choosing these parameters leads to conflicting requirements.
In case of strong lateral variations, short operators are needed
to avoid instabilities. Imaging of steep dips, however, asks for
longer operators that allow for higher optimization angles. Fig-
ure 11 shows the results for several choices of these parameters.
Note that a higher optimization angle improves the imaging of
steep dips but causes stronger artifacts at the same time. These
artifacts are caused by the increased spatial length of the opera-
tor. All results in Figure 11 are inferior to the model expansion
result in Figure 10.

DISCUSSION

We have shown that the proposed method to calculate one-
way operators has desirable properties such as the absence
of dip limitation, the accurate handling of lateral variations,
and the unconditional stability of the operators. The obvious
drawback of the method is the computational cost of a full
eigenvalue decomposition, which is considerable compared to
the construction of the local explicit operators. However, the
following considerations may help to overcome this problem.

1) The Helmholtz matrix operator is a sparse symmetric
band matrix. For a full symmetric M ×M matrix, the
number of floating-point operations necessary to cal-
culate all eigenvalues and all eigenvectors will increase
with the third power of M . However, in case of a matrix

Table 1. The acquisition parameters for the migration
example.

Parameter Value

Geometry Fixed spread
Number of shots 11
Shot spacing 500 m
Number of detectors per shot 251
Receiver spacing 20 m
Recording time 3 s
Time sampling 4 ms
Frequency content wavelet Up to 35 Hz

FIG. 8. Results of well-to-well extrapolation using modal expansion (left) and the local explicit method (right).

operator with a fixed number of nonzero diagonals inde-
pendent of M , the number of floating-point operations
will increase only with the square of M (Golub and Van
Loan, 1989).

2) Not all eigenvalues need to be calculated (Druskin and
Knizhnerman, 1994). Calculating only the positive eigen-
values (propagating modes) still leads to accurate results
because the evanescent part of the wavefield decays expo-
nentially with the extrapolation distance. (In inverse ex-
trapolation, the evanescent field is suppressed anyway to
obtain stable operators.) This argument holds in particu-
lar for low temporal frequencies where a large number of
the eigenvalues are associated to evanescent wave modes.

3) Hybrid methods may be implemented. Local explicit
operators and modal expansion operators (in regions
of significant lateral variations) can be applied in
combination. This will be a subject of future research.

The modal expansion method also provides an interest-
ing scope for turning-wave migration. In some references
(Claerbout, 1985; Hale et al., 1992), the phase-shift method
is applied because it has no dip limitation, which is an es-
sential requirement for turning-wave migration. However, the
phase-shift method is applicable only in laterally invariant me-
dia (which was acknowledged by the authors). The modal ex-
pansion method combines both the ability to deal with lateral
variations and the ability to handle dips up to 90◦.

FIG. 9. Velocity model for the migration. Velocities are indi-
cated in the corresponding layers.
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FIG. 10. Migrated section using modal expansion extrapolation operators.

FIG. 11. Migrated sections using local explicit operators. (a) Operator length 27, optimization up to 60◦ (top).
(b) Operator length 27, optimization up to 80◦. (c) Operator length 37, optimization up to 80◦.
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CONCLUSION

From the modal expansion of the Helmholtz operator, one-
way wavefield operators can be constructed that have the ca-
pacity to handle strong lateral variations in the medium param-
eters. The spectrum of the Helmholtz operator can be derived
along the same lines as the Hamiltonian operator from the field
of quantum mechanics. It provides clear insight into the com-
ponents of the wavefield, guided and radiating wave modes. In
case of a laterally invariant medium, the method is equivalent
to a plane-wave decomposition. The analysis based upon func-
tional calculus justifies the subsequent 2-D and 3-D discrete
implementations.

The modal expansion divides the wavefield into constituents
(wave modes) distinguished by their vertical-phase velocity.
The construction of the square root operator and the primary
propagator is straightforward in the modal domain because
these operators turn into multiplication operators. The expan-
sion of the wavefield into modes implies the exact solution of
the horizontal scattering process, which is related to the lateral
variations of the medium parameters. The one-way extrapola-
tion operators obtained by this method are intrinsically stable.
The migration result that was presented clearly shows an im-
proved lateral resolution and a quality superior to local explicit
operators that have been optimized for steeply dipping events.
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APPENDIX A

THE SPECTRUM OF Ĥ2

Consider the second-order differential operator Ĥ2 on the
(Hilbert) space of square integrable functions, defined on the
lateral coordinates xH . We demand the outcome of the action
of Ĥ2 on a test function to be square integrable as well. This
limits the domain of Ĥ2 to a so-called Sobolev space. For a
(bounded) wavefield in an inhomogeneous fluid, this does not
lead to any restrictions in the analysis.

We first examine the analogy of Ĥ2 with the Hamiltonian
from nonrelativistic quantum mechanics. The similarities be-
tween both operators allow for a quantitative description of
the spectral properties of the Helmholtz operator using the re-
sults for the Hamiltonian operator Ĥ (Reed and Simon, 1978,
1979).

The 2-D Hamiltonian operator can be written according to

Ĥ = −1+ V(xH ), (A-1)

where 1 is the Laplacian (∂2/∂x2
1 + ∂2/∂x2

2 ) and V(xH ) is the
potential function. For our purpose, we assume this function to
have compact support, i.e., it vanishes outside some bounded
domain. According to Von Neumann’s definition of the spec-
trum σ (Ĥ), it can be described as a perturbation of the spec-
trum of the Laplacian1. On an appropriately chosen Sobolev
space, the Laplacian is a self-adjoint operator, implying that its
spectrum is real valued. Moreover, the related space of eigen-
functions is orthogonal and complete.

Using the Fourier transform, it can be shown that the spec-
trum of −1 is purely continuous. It covers the interval [0,∞).
The perturbation by V(xH ) does not affect the continuous
spectrum or the property of self-adjointness, provided that
V(xH ) is a real function. However, resulting from the per-
turbation, a finite number of real eigenvalues in the interval
[−min{V(xH )}, 0) may occur (Reed and Simon, 1978).
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We now return to the Helmholtz operator. Rewriting equa-
tion (17), we obtain

Ĥ2 = k2
0−
[ potential V(xH )︷ ︸︸ ︷{

k2
0 − k2(xH )

}−∇2
H

]︸ ︷︷ ︸
2-D Hamiltonian

. (A-2)

As indicated in equation (A-2), the Hamiltonian can be rec-
ognized on the righthand side of the equation, provided k(xH )
is real (no losses). A “background” wavenumber k0 has been
introduced to obtain a potential function k2

0−k2(xH ) with com-
pact support.

Equation (A-2) shows that the Helmholtz operator Ĥ2 is the
sum of a multiplication operator k2

0 and the Hamiltonian (with

reversed polarity). Therefore, the spectrum of Ĥ2 is obtained
if the spectrum of Ĥ is first mirrored around the imaginary axis
and then shifted with k2

0 to the right. The result of this procedure
is depicted in Figure 1. Physically, the eigenvalues λ in equa-
tion (18) correspond to k2

3 , the square of the vertical wavenum-
ber. The continuous part stretches over the interval (−∞, k2

0),
where k0 is the background wavenumber and the discrete eigen-
values are located within the interval (k2

0,max{k2(xH )}). Be-
cause the eigenvalues λ relate directly to the square of k3, we
conclude that, for positive λ, the corresponding eigenfunctions
φ(xH ) must represent wavefield constituents that propagate
with a vertical phase velocity ω/

√
λ; for negative λ, the cor-

responding eigenfunctions φ(xH ) represent evanescent wave
modes.


