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ABSTRACT

Marchenko imaging is based on integral representations
for focusing functions and Green’s functions. In practice,
the integrals are replaced by finite summations. This works
well for regularly sampled data, but the quality of the results
degrades in a case of imperfect sampling. We have devel-
oped discrete representations that account for imperfect sam-
pling of the sources (or, via reciprocity, of the receivers).
These representations contain point-spread functions that
explain the blurring of the focusing functions and Green’s
functions due to imperfect sampling. Deblurring the focus-
ing functions and Green’s functions involves multidimen-
sional deconvolution for the point-spread functions. The
discrete representations form the basis for modifying Mar-
chenko imaging to account for imperfectly sampled data,
which is important for field data applications.

INTRODUCTION

Marchenko imaging is based on integral representations for
Green’s functions with virtual sources and/or receivers in the sub-
surface (Broggini and Snieder, 2012; Slob et al., 2014; Wapenaar
et al., 2014). In practice, the integrals are replaced by finite sum-
mations over the available sources (or, via reciprocity, over the
available receivers). This works well for regularly sampled sources
(or receivers) obeying the Nyquist criterion, on a large enough grid.
Most authors who use the Marchenko method tacitly assume that
these conditions are fulfilled; however, some authors have investi-
gated the effects of imperfect sampling. Peng et al. (2019) numeri-
cally evaluate the effects of downsampling the sources and/or
receivers in a regular way. Staring and Wapenaar (2019) numeri-
cally investigate the effects of missing near offsets, limited crossline

aperture, and undersampling in the crossline direction on 3D Mar-
chenko imaging. Apart from evaluating the effects of imperfect
sampling, one would also like to compensate for them. Ravasi
(2017) and Haindl et al. (2018) consider the situation of irregularly
sampled sources and well-sampled receivers. Using reciprocity,
they reformulate the representation integrals along the well-sampled
receivers and propose a sparse inversion method to compensate for
the source irregularity.
Ultimately, one would like to compensate for imperfect sampling

of the sources as well as the receivers. This paper makes a first step
in that direction by reformulating the integral representations in
terms of discrete finite summations over imperfectly sampled
sources. This is akin to reformulating the representations underlying
seismic interferometry for irregular source distributions. For seismic
interferometry, the approach is as follows. The classic correlation in-
tegral representation is replaced by an implicit convolution integral
representation, which is subsequently inverted by multidimensional
deconvolution (MDD) (Wapenaar et al., 2011). The point-spread
function (PSF) plays a central role in this approach (Van der Neut
andWapenaar, 2015). This approach is not straightforwardly adapted
for Marchenko imaging because this method is based on a combina-
tion of convolution and correlation integral representations.
Following a different route, we derive discrete representations for
Marchenko imaging, which include PSFs. We illustrate these repre-
sentations with numerical examples. These representations form the
basis for modified Marchenko imaging of imperfectly sampled data,
which is the subject of ongoing research.

INTEGRAL REPRESENTATIONS

We consider an inhomogeneous lossless acoustic medium bounded
by acquisition surface S0 (Figure 1a). We assume that this surface is
reflection free and that the half-space above it is homogeneous. The
reflection response at this surface is given by RðxR; xS; tÞ, where xS
and xR denote the source and receiver positions, respectively, and t
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denotes the time. Let us define a virtual receiver position xA inside the
inhomogeneous medium. The Green’s functions from the surface S0
to this virtual receiver are given by GþðxA; xR; tÞ and G−ðxA; xR; tÞ,
where the superscriptsþ and − denote downward and upward propa-
gation, respectively, at xA. Next, we define a horizontal surface SA at
the depth of the virtual receiver. We consider a truncated version of the
medium, which is identical to the actual medium above SA and homo-
geneous below it (Figure 1b). At S0 we introduce a downgoing focus-
ing function fþ1 ðxS; xA; tÞ that, when emitted from all xS at S0 into the
truncated medium, focuses at xA. Its upgoing response at S0 is denoted
by f−1 ðxR; xA; tÞ.
All of these quantities are related via the following integral

representations:

G−ðxA; xR; tÞ þ f−1 ðxR; xA; tÞ

¼
Z
S0

RðxR; xS; tÞ � fþ1 ðxS; xA; tÞdxS; (1)

GþðxA; xR; tÞ − fþ1 ðxR; xA;−tÞ

¼ −
Z
S0

RðxR; xS; tÞ � f−1 ðxS; xA;−tÞdxS; (2)

where the asterisk ð�Þ denotes the temporal convolution. These rep-
resentations hold for flux-normalized as well as pressure-normal-
ized wavefields (Wapenaar et al., 2014).
We illustrate these representations with a 2D numerical example,

assuming for the moment that the source positions xS are regularly

distributed along S0. For simplicity, we consider a horizontally lay-
ered medium, of which the propagation velocity and mass density as
a function of depth are shown in Figure 2. We define S0 at x3 ¼ 0 m

and SA at x3 ¼ 1000 m. We numerically model the reflection re-
sponse at S0 and convolve it with a Ricker wavelet with a central
frequency of 25 Hz. Also, the focusing functions are numerically
modeled (because the aim of this paper is to investigate represen-
tations rather than the performance of the Marchenko method). We
evaluate the integrals in the right sides of equations 1 and 2 for a
fixed receiver position (x1;R ¼ 0), using regular source sampling
(Δx1;S ¼ 5m, and the number of sources is 601). The results are
shown in Figure 3a and 3b, respectively. The dashed red lines sep-
arate the retrieved focusing functions from the Green’s functions at
the left sides of equations 1 and 2 (except for the first event below
the red line in Figure 3b, which belongs to the focusing function and
the Green’s function, as indicated by the arrows).
In practice, the right sides of equations 1 and 2 are approximated

by summations, according to

X
i

RðxR; xðiÞS ; tÞ � fþ1 ðxðiÞS ; xA; tÞ � SðtÞ (3)

and

a) b)

Figure 1. (a) Inhomogeneous medium, its reflection response, and
Green’s functions. (b) Truncated medium with focusing functions.
In both figures, the rays stand for full responses, including all orders
of multiple scattering.

Depth (m)

Velocity (m/s)

Density (kg/m3)

Figure 2. Propagation velocity and mass density of a horizontally
layered medium as a function of depth.

a)

b)

Figure 3. Evaluation of the integrals in equations 1 and 2, for fixed
xR at S0 and variable xA along SA.
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−
X
i

RðxR; xðiÞS ; tÞ � f−1 ðxðiÞS ; xA;−tÞ � SðtÞ; (4)

respectively, with SðtÞ being the source wavelet. Assuming that the
source position xðiÞS is imperfectly sampled, these approximations
have an effect on the retrieved focusing functions and Green’s func-
tions. We illustrate this with a numerical example. Figure 4 shows
an irregular distribution of source positions xðiÞS along S0 (the
average Δx1;S ¼ 16.7 m, and the number of sources is 181). We
evaluate equations 3 and 4, using resampled versions of the reflec-
tion response and focusing functions of the previous example (the
sources are resampled; the receiver position is again fixed at
x1;R ¼ 0). The results, which are shown in Figure 5a and 5b, respec-
tively, are blurred versions of those in Figure 3. This blurring can be
quantified by PSFs, which are introduced in the next section.

POINT-SPREAD FUNCTIONS

The focusing function fþ1 is defined as the inverse of the trans-
mission response between S0 and SA. This is quantified as follows:

δðx 0
H;A − xH;AÞδðtÞ

¼
Z
S0

Tðx 0
A; xS; tÞ � fþ1 ðxS; xA; tÞdxS; (5)

with x 0
A and xA at SA, and x 0

H;A and xH;A denote the horizontal co-
ordinates of x 0

A and xA, respectively. Here, T stands for the flux-nor-
malized transmission response or for a modified version T of the
pressure-normalized transmission response (Wapenaar et al., 2014).
For the case of imperfect sampling, the discretized band-limited
version of equation 5 reads

Γþðx 0
A;xA; tÞ

¼
X
i

Tðx 0
A;x

ðiÞ
S ; tÞ �fþ1 ðxðiÞS ;xA; tÞ �SðtÞ;

(6)

where Γþðx 0
A; xA; tÞ is a PSF. It is illustrated in

Figure 6a (obtained from the numerically mod-
eled fþ1 and T), for the same irregular source dis-

tribution that was used in the example in Figure 5. In the next
section, we show that this PSF explains the blurring in Figure 5a.
However, it does not explain the blurring in Figure 5b. For this we
need a second PSF, which we discuss now.
Analogous to equation 5, we define a quantity Y as the inverse of

f−1 as follows:

δðx 0
H;A − xH;AÞδðtÞ

¼
Z
S0

Yðx 0
A; xS; tÞ � f−1 ðxS; xA;−tÞdxS: (7)

Distance (m)

Figure 4. Irregular distribution of xðiÞS along S0. The black bars denote the positions of
the sources.

a)

b)

Figure 5. Evaluation of the irregular summations in equations 3 and
4, for fixed xR at S0 and variable xA along SA.

a)

b)

Figure 6. The PSFs, as defined in equations 6 and 8, for fixed x 0
A

and variable xA, at SA. These PSFs quantify the blurring in Figure 5a
and 5b, respectively.
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In the following, we tacitly assume that Y exists, but we remark that
because f−1 is a reflection response, inversion of equation 7 for Y
may not always be stable. Analogous to equation 6, we define a PSF
for the case of imperfect sampling as follows:

Γ−ðx 0
A; xA; tÞ

¼
X
i

Yðx 0
A; x

ðiÞ
S ; tÞ � f−1 ðxðiÞS ; xA;−tÞ � SðtÞ; (8)

which is illustrated in Figure 6b (obtained from the numerically
modeled f−1 and Y).

DISCRETE REPRESENTATIONS

We use the PSFs introduced in the previous section to transform the
integral representations of equations 1 and 2 into discrete representa-
tions. We start by applying the operation ∫ SA

f·g � Γþðx 0
A; xA; tÞdx 0

A
to both sides of equation 1 (with xA replaced by x 0

A). For the terms on
the left side, we define the blurred functions G̑− and f̑−

1 , according to

G̑−ðxA; xR; tÞ

¼
Z
SA

G−ðx 0
A; xR; tÞ � Γþðx 0

A; xA; tÞdx 0
A; (9)

f̑−
1 ðxR; xA; tÞ

¼
Z
SA

f−1 ðxR; x 0
A; tÞ � Γþðx 0

A; xA; tÞdx 0
A: (10)

Applying the same operation to the right side of equation 1, substitut-
ing equation 6 and interchanging the order of summation over xðiÞS and
integration along SA, we obtain

X
i

Z
S0

RðxR; xS; tÞ � fþ1 ðxðiÞS ; xA; tÞ � SðtÞ

�
Z
SA

fþ1 ðxS; x 0
A; tÞ � Tðx 0

A; x
ðiÞ
S ; tÞdx 0

AdxS: (11)

Because T and fþ1 are each other’s inverse, the integral along SA

yields δðxH;S − xðiÞH;SÞδðtÞ, where xH;S and xðiÞH;S denote the horizontal

coordinates of xS and x
ðiÞ
S , respectively. Using the sift property of this

delta function in the integral along S0, what remains of equation 11 is
a summation over xðiÞS , precisely as formulated in equation 3. Com-
bining the results, we thus obtain

G̑−ðxA; xR; tÞ þ f̑−
1 ðxR; xA; tÞ

¼
X
i

RðxR; xðiÞS ; tÞ � fþ1 ðxðiÞS ; xA; tÞ � SðtÞ: (12)

This discrete representation is the counterpart of the integral represen-
tation of equation 1. The right side can be seen as the practical im-
plementation of the integral in equation 1 when the sources xðiÞS are
imperfectly sampled. The left side contains blurred versions of the
Green’s function and the focusing function. According to equation 9,
the receiver of the Green’s function is smeared around xA by the PSF
Γþðx 0

A; xA; tÞ. Similarly, equation 10 quantifies the smearing by the
PSF of the focal point of the focusing function around xA. Hence, the
PSF Γþðx 0

A; xA; tÞ explains the blurring observed in Figure 5a. We
deblur this figure by MDD, that is, by applying the least-squares in-
verse of the PSF to G̑−ðxA; xR; tÞ þ f̑−

1 ðxR; xA; tÞ (for fixed xR and
variable xA). Note that, although the medium is laterally invariant, the
PSF is not shift-invariant due to the irregular sampling. Hence, MDD
requires a full matrix inversion. The result is shown in Figure 7a and
accurately matches the ideal result in Figure 3a. The maximum
deviation for the central trace is 2.4%. At far offsets, the amplitudes
are somewhat overestimated due to limitations of the MDD method.
Next, we apply the operation ∫ SA

f·g � Γ−ðx 0
A; xA; tÞdx 0

A to both
sides of equation 2 (with xA replaced by x 0

A). In a similar way as
above, we obtain

G̑þðxA; xR; tÞ − f̑þ
1 ðxR; xA;−tÞ

¼ −
X
i

RðxR; xðiÞS ; tÞ � f−1 ðxðiÞS ; xA;−tÞ � SðtÞ; (13)

with

G̑þðxA; xR; tÞ

¼
Z
SA

Gþðx 0
A; xR; tÞ � Γ−ðx 0

A; xA; tÞdx 0
A; (14)

a)

b)

Figure 7. Results of deblurring Figure 5a and 5b by MDD.
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f̑þ
1 ðxR; xA;−tÞ

¼
Z
SA

fþ1 ðxR; x 0
A;−tÞ � Γ−ðx 0

A; xA; tÞdx 0
A: (15)

Equation 13 is the discrete counterpart of the integral representation
of equation 2. The PSF Γ−ðx 0

A; xA; tÞ in equations 14 and 15 ex-
plains the blurring observed in Figure 5b. Deblurring this figure
by MDD yields the result shown in Figure 7b, which accurately
matches the ideal result in Figure 3a. The maximum deviation for
the central trace is 4.7%. There are also some small edge effects,
probably caused by the quantity Y (introduced in equation 7 as the
inverse of f−1 ), which is not unconditionally stable. At far offsets,
the amplitudes are somewhat underestimated due to our efforts to
suppress the aforementioned edge effects.

TOWARD MARCHENKO IMAGING OF
IMPERFECTLY SAMPLED DATA

The discrete representations of equations 12 and 13, with the
blurred Green’s functions and focusing functions defined in equa-
tions 9, 10, 14, and 15, form the basis for a modification of the
Marchenko method, which accounts for the effects of imperfect
source sampling. We propose an iterative scheme, building on the
current Marchenko method, where in each iteration the effect of the
PSF is removed by MDD (between the evaluation of the summation
and the application of the time window). This requires an initial es-
timate of the PSF and an update in each iteration. The initial estimate
of the PSF can be obtained from an estimate of the direct arrival of the
transmission response and the initial focusing function. For the sit-
uation in which the sources as well as the receivers are imperfectly
sampled and occupy different positions, we envisage an iterative
scheme that combines the inversion of the discrete representations
(to account for imperfect source sampling) with a sparse inversion
method such as that proposed by Haindl et al. (2018) (to account
for imperfect receiver sampling).

CONCLUSION

Current implementations of the Marchenko method do not ac-
count for imperfect sampling. We have derived discrete representa-
tions as an alternative for the integral representations that underlie
the Marchenko method. These discrete representations account for
the effects of imperfect source sampling (or, via reciprocity, of im-
perfect receiver sampling). The Green’s functions and focusing
functions expressed by these representations are blurred by PSFs,
for which we derived explicit expressions.

The discrete representations form the basis for a modification of
the Marchenko method, which accounts for the effects of the inher-
ent imperfect sampling of seismic field data. The development of
such a modified Marchenko method is subject of ongoing research.
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