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ABSTRACT 
WAPENAAR, C.P.A., HERRMANN, P., VERSCHUUR, D.J. and BERKHOUT, A.J. 1990. Decomposi- 
tion of multicomponent seismic data into primary P- and S-wave responses. Geophysical 
Prospecting 38,633-661. 

Inversion of multicomponent seismic data can be subdivided in three main processes : (1) 
Surface-related preprocessing (decomposition of the multicomponent data into ‘ primary ’ P- 
and S-wave responses). (2) Prestack migration of the primary P- and S-wave responses, yield- 
ing the (angle-dependent) P-P, P-s, s-P and s-S reflectivity of the subsurface. (3) Target- 
related post-processing (transformation of the reflectivity into the rock and pore parameters 
in the target). This paper deals with the theoretical aspects of surface-related preprocessing. 

In a multicomponent seismic data set the P- and S-wave responses of the subsurface are 
distorted by two main causes: (1) The seismic vibrators always radiate a mixture of P- and 
S-waves into the subsurface. Similarly, the geophones always measure a mixture of P- and 
S-waves. (2) The free surface reflects any upgoing wave fully back into the subsurface. This 
gives rise to strong multiple reflections, including conversions. 

Therefore, surface-related preprocessing consists of two steps : (1) Decomposition of the 
multicomponent data (pseudo P- and S-wave responses) into true P- and S-wave responses. 
In practice this procedure involves (a) decomposition per common shot record of the particle 
velocity vector into scalar upgoing P- and S-waves, followed by (b) decomposition per 
common receiver record of the traction vector into scalar downgoing P- and S-waves. (2) 
Elimination of the surface-related multiple reflections and conversions. In this procedure the 
free surface is replaced by a reflection-free surface. The effect is that we obtain ‘primary’ P- 
and S-wave responses, that contain internal multiples only. 

Paper read at the 51st EAEG meeting, Berlin, May-June 1989; revision accepted February 
1990. 
Delft University of Technology, Laboratory of Seismics and Acoustics, P.O. Box 5046, 
2600 GA Delft, The Netherlands. 
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An interesting aspect of the procedure is that no knowledge of the subsurface is required. 
In fact, the subsurface may have any degree of complexity. Both the decomposition step and 
the multiple elimination step are fully determined by the medium parameters at the free 
surface only. After surface-related preprocessing, the scalar P- and S-wave responses can be 
further processed independently by existing scalar algorithms. 

INTRODUCTION 

In the seismic industry there is an important trend towards multicomponent data 
acquisition. Compared with conventional single-component data, multicomponent 
data contain much additional information about the elastic parameters of the sub- 
surface. Of course, the key question is how to resolve this additional information in 
a sensible and economic way. Recently Berkhout and Wapenaar (1988) proposed a 
new elastic seismic processing scheme which contains a number of distinct modules 
(Fig. 1). Each module represents one seismic processing step (ranging from decom- 
position of the multicomponent data to lithologic inversion for rock and pore 
parameters) and is based on physical principles. 

estimation of estimation of 
P-wave S-wave 

macro-model 

migration 

redatuming 

P response 

migration 

redatuming 

S response 

i t 
( stratigraphic elastic inversion ) 

I 

FIG. 1. Elastic seismic processing scheme, a stepwise approach. 
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This paper deals with the theoretical aspects of the following two surface-related 
preprocessing steps : (1) Decomposition into P- and S-wave responses. (2) Elimi- 
nation of the surface-related multiples and conversions. 

The main effect of these two steps is that the vector data at the free surface are 
transformed into a number of independent scalar responses at a reflection-free 
acquisition surface (compare Figs 12 and 15). These scalar responses can be further 
processed independently by scalar schemes such as prestack migration or 
redatuming. Any existing or future scheme can be used for this purpose. Preferably, 
the acoustic extrapolation operators should be replaced by elastic extrapolation 
operators for P- and/or S-waves (Wapenaar and Haimé 1990). 

HISTORICAL OUTLINE 
Without claiming completeness, we give an outline of some highlights in the history 
of surface-related preprocessing. For horizontally-layered elastic media, Kennett 
(1979) derived a procedure for the elimination of surface-related multiples from 2D 
multicomponent seismic data. Berkhout (1982) published the first multiple elimi- 
nation scheme which deals with laterally varying 2D acoustic media; recent exam- 
ples may be found in Verschuur, Berkhout and Wapenaar (1989). Kennett (1984) 
extended Berkhout's scheme for the elastic situation. Both Berkhout and Kennett 
acknowledged that source and receiver effects must be removed from the data before 
the multiple elimination can be applied successfully. For the elastic situation 
removal of source and receiver effects means decomposition into downgoing and 
upgoing P- and S-waves. Dankbaar (1985) published a scheme for decomposing 
receiver data into upgoing P- and S-waves. We discuss a wave theoretical approach 
to decomposition of the source and receiver data into downgoing and upgoing P- 
and S-waves, followed by elimination of the surface-related multiple reflections and 
conversions. The theory is presented for arbitrarily inhomogeneous anisotropic 3D 
subsurface configurations. The surface layer may be inhomogeneous but it is 
assumed to be isotropic. 

FORWARD MODEL OF MULTICOMPONENT SEISMIC DATA 
Before we discuss the decomposition scheme we present a forward model of multi- 
component seismic data. We show step by step that this forward model is obtained 
by applying a number of simple matrix manipulations to the primary P- and S-wave 
responses of the subsurface. An important consequence is that decomposition of 
multicomponent seismic data may be accomplished by applying the same matrix 
manipulations in reverse order. 

First we consider the forward model of the primary response of an acoustic 
subsurface bounded by a reflection-free surface at zo . With reference to Fig. 2a, we 
write 
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FIG. 2. The primary one-way response matrix X(z,) describes the relationship between 
primary downgoing and upgoing wavefields at depth level zo . (a) Acoustic version: vectors 
p+(zo) and p-(z,) represent the pressure of the downgoing and upgoing waves at z,. (b) 
Elastic version: vectors ++(zo) and +-(zo) represent the potentials for the downgoing and 
upgoing compressional waves at z,; vectors +:(zo), +l(zo) and +;(zo), +y(z0) represent the 
potentials for the downgoing and upgoing shear waves at zo (the subscripts x and y refer to 
the different polarizations). 

(Berkhout 1982). Here vector p+(zo) represents a 3D monochromatic downgoing 
acoustic wavefield at depth level zo (the matrix/vector notation for discretized wave- 
fields is explained in Appendix A). This acoustic wavefield propagates into the 3D 
inhomogeneous subsurface z > zo ,  is partly reflected at  the layer boundaries and 
propagates back to the surface. The 3D upgoing wavefield arriving at the surface zo 
is denoted by p-(z,). According to (1), the primary one-way response matrix X(zo) 
describes the relationship between the downgoing and upgoing one-way wavefields 
at z,. Here and in the following the adjective 'primary' refers to the absence of 
multiple reflections related to surface zo ; internal multiple reflections occurring in 
the 3D inhomogeneous subsurface are included in X(zo). 

Next we consider an elastic subsurface bounded by a reflection-free surface at zo 
(Fig. 2b). Again the forward model of the primary response is given by (1), where the 
wavefield vectors p-(zo) and p+(zo) each contain three sub-vectors, according to 
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whereas the response matrix X(z,) contains nine sub-matrices, according to 

(Wapenaar and Berkhout 1989). Vectors @+(zo) and @-(z,) represent the potentials 
for the 3D monochromatic downgoing and upgoing compressional (P) waves at 
depth level z,; vectors $:(z,), $;(zo) and $;(zo), $;(zo) represent the potentials for 
the downgoing and upgoing shear (Sx, S,,) waves at zo (the sub-scripts x and y refer 
to the different polarizations, see also Appendix B). Any of the sub-matrices in (2b) 
represents a primary response of the elastic subsurface. For example, matrix 
X ,  @,(z0) describes the relationship between downgoing S, waves (polarized in the 
plane perpendicular to the y-axis) and upgoing P- waves at z,. The one-way 
forward model of (1) is visualized by the block-diagram of Fig. 3. 

So far we have assumed that surface zo is reflection free. In practical seismic 
situations, however, surface zo represents the Earth’s free surface which is a perfect 
reflector for the upgoing waves p-(z,). Therefore in the forward model of (1) we 
should write for the total downgoing wavefield at zo 

P+(ZO) = P:(zo) + PAZ,). (34 

P:(zo) = R,(zo)P-(zo), (3b) 

Here vector p,?(z,) is the downgoing reflected wavefield at zo , according to 

where matrix R i  (z,) describes the reflectivity (including conversion) of the Earth’s 
free surface for upgoing waves. For an acoustic free surface we may simply write 

R,(z,) = -1, (34 
where I is the identity matrix. For an elastic free surface R;(z,) is derived in Appen- 
dix B (B20). In (3a), vector pg(z,) contains the downgoing source wavefields at z,. 
The relationship between p;(z,) and the seismic sources at zo is discussed later. 
Upon substitution of (3a) and (3b) into the forward model (1) we obtain the follow- 
ing implicit expression for the upgoing wavefield at zo : 

P-(zo) = X(zo)CRf,(zo)P-(zo) + Ps%o)l, (4) 

P-(zo) = xfr(zo)Ps+(zo)~ (54 

see Fig. 4. This expression can be rewritten explicitly, according to 

FIG. 3. One-way forward model of the primary response of an acoustic or elastic subsurface, 
bounded by a reflection free surface at zo . 
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FIG. 4. One-way forward model, including surface-related multiple reflections and conver- 
sions. 

where the free surface one-way response matrix Xfr(zo) is defined as 

or, rewriting the inverse matrix as a series expansion, 

The latter expression clearly shows that the free surface generates an infinite number 
of multiple reflections and conversions. 

Next we discuss the relationship between the one-way wavefields in the forward 
model (5 )  and the two-way seismic data. According to (B18a), the general relation- 
ship between two-way and one-way elastic wavefields reads 

where the three-component velocity and traction vectors v(z) and ~ ( z )  are defined 
according to 

v(z) = v,(z) and ~ ( z )  = T,,(z) , (:I (3 
matrices L,'(z) for a =  1,2  are defined by (B18b) and vectors p*(z) are defined as in 
(2a). In (6b), vectors v,(z), v,,(z) and v,(z) represent the velocity components of the 3D 
elastic wavefield at depth level z; vectors T,(z), T,(z) and T,(z) represent the traction 
components of the same wavefield at depth level z. 

In the following we restrict ourselves for simplicity to the situation where the 
sources and receivers are at the free surface (Fig. 5). We define a source- 
decomposition operator D(zo) which describes the relationship between the traction 
source vector z,(z0) at the free surface and the downgoing source wave vector p:(zo), 
according to 

P,+(ZO) D(Zo)~,(Zo). (74 
On the other hand, since the upgoing source wavefields at zo must be zero, we 
derive from (6a) 

a o )  = L:(zo)P:(zo) + 0. (7b) 
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(b) 

FIG. 5. Multicomponent data acquisition. (a) Three differently oriented seismic vibrators, 
imposing stresses in the x-, y- and z-direction to the earth’s surface. (b) Three differently 
oriented geophones, measuring the x-, y- and z-components of the particle velocity at the 
earth’s surface. 

Hence, the source-decomposition operator reads 

W O )  = cLz’(Z0)l- * (74 

Next we derive an expression for the receiver-composition operator C(zo). For 
velocity receivers at the free surface (geophones, see Fig. 5b) we derive from (6a) and 
(34 

V(Z0) = L:(zo)(P:(zo) + P,+(ZO)) + L;(zo)P-(zo), (84 
or, ignoring the contribution of the direct source wave p;(z0) and substituting (3b) 
for the reflected waves p:(zo) 

V(Z0) = L:(zo)R,(zo)P-(zo) + L;(zo)P-(zo), (8b) 

V(Z0) = c-L:(~oxL:(zo))- ‘L;(Zo) + L;(zo)lP-(zo)~ (8c) 

V(Z0) W 0 ) P  - (zo), (94 

C(Z0) = -L:(zoxL:(zo))- lLz(zo) + L;(zo), (9b) 

C(Z0) = cM;(Zo)l- l,  (94 

or, upon substitution of (B2Oc) for the free surface reflection matrix R;(zo), 

Hence, if we define the receiver-composition process as 

then the receiver-composition operator reads 

or, according to (B19a) 

with M;(zo) defined by (B17e). Note that the one-way forward model (sa) may be 
elegantly combined with the decomposition and composition algorithms (7a) and 



640 C.  P. A. W A P E N A A R  ET AL. 

(sa), yielding 

V(Z0) = ~ ~ ~ o ~ ~ , r ~ ~ o ~ ~ ~ ~ o ~ ~ s ~ ~ o ~ ~  ( 104 

Xfr(Z0) = CI - X(zO)R,(zo)l- 'X(ZO), 

where 

(lob) 

see also Fig. 6. From right to left (10a) contains a source vector (describing the stress 
distribution of a seismic vibrator at the free surface), a decomposition matrix 
(transforming the traction into downgoing P- and S-waves), a one-way response 
matrix (describing the response of the subsurface, including multiple reflections and 
conversions related to the free surface), and a composition matrix (transforming the 
upgoing P- and S-waves into velocities at the free surface). It may be concluded that 
(10) is the forward model of one (monochromatic) multicomponent shot record, 
ignoring direct waves. In accordance with (6b), vector v(zo) contains the velocity 
components measured by the geophones at the free surface. Also in accordance with 
(6b), vector r,(zo) contains the vectors rx, s(zo), ry,  Jz0) and rz, s(zo). For a point source 
of tensile stress (a vertical vibrator), vector rz, Jz0) contains only one non-zero 
element, its value representing the source signature s(o). Similarly, for a point source 
of shearing stress (a horizontal vibrator), one of the vectors rx, ,(z0) or ry,  s(zo) con- 
tains only one non-zero element, its value representing s ( ~ ) .  When the vibrators are 
not ideal point sources as in Fig. 5a, then the source vector contains the stress 
distribution at zo . The forward model for one shot record can be extended easily to 
a forward model for a complete seismic survey. Ideally, in the elastic situation three 
independent seismic experiments should be carried out for each source position by 
applying three differently oriented seismic vibrators. For a 3 x 3 component seismic 
survey the extended forward model reads 

W O )  = ~ ~ ~ o ~ ~ f , ~ ~ o ~ ~ ~ ~ o ~ ~ s ~ ~ o ~ .  (114 

Here the columns of the data matrix V(zo) contain the different data vectors v(zo). 
The columns of the source matrix T,(zo) contain the corresponding source vectors 
rs(zo). When use is made of independent horizontal vibrators and vertical vibrators 
(Fig. sa), then the source vectors can be ordered in such a way that the source 

L - - - - - - _ i  
FIG. 6. Forward model for multicomponent seismic data (the direct waves are ignored). 



DECOMPOSITION OF MULTICOMPONENT SEISMIC DATA 641 

geophone vibrator geophone vibrator 

(a) 

geophone vibrator geop hone vibrator 
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FIG. 7. 2D visualization of multicomponent data acquisition at a free surface zo . The double 
raypaths represent P- and S-waves. 

matrix can be written as 

Moreover, for identical point sources this expression may be further simplified to 

Ts(zo) = s(w)I. (1 1 4  

V(Z0) = c(zo)xt~(zo)D(zo), ( 124 

XtYzo) = S(~)X,*(Z,), (12b) 

Now (1 la) may be replaced by 

with 

and 
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Here any of the sub-matrices Vi,,(zo) for i = x, y, z and j = x, y, z represents a 
(monochromatic) single-component seismic survey, carried out with geophones 
oriented in the i-direction and vibrators oriented in the j-direction. In Fig. 7a the 
situation is shown for one element of matrix Vz, z(zo). Similarly, in Figs 7b, c and d 
the situation is shown for the corresponding elements in matrices Vx, z(zo), Vz, x(zo) 
and Vx, Jz,), respectively. 

Finally we remark that the forward model we described is not a proposal for a 
numerical modelling scheme for multicomponent seismic data (we did not discuss 
the relationship between the subsurface parameters and the one-way response 
matrix and we ignored the direct waves). The only purpose of this section was to 
provide a starting point for a systematic discussion of the surface-related pre- 
processing scheme. 

DECOMPOSITION INTO P- A N D  S-WAVES 
Assume that a 3 x 3 component seismic survey has been carried out. When the 
different vibrators are oriented in arbitrary directions, then mutually perpendicular 
vibrators should be simulated by applying a weighted summation of the different 
responses. A similar remark can be made for the geophones (Cliet and Dubesset 
1987). Before the decomposition can be carried out, the direct waves should be 
removed from the data. We do not discuss this procedure; a good reference is 
Beresford-Smith and Rango (1989). By applying a Fourier transform to each trace, 
the data are decomposed into monochromatic seismic surveys. Any of these mono- 
chromatic surveys satisfies the forward model described in the previous section. Our 
starting point for the discussion of the elastic decomposition scheme is (12), which is 
the forward model of a monochromatic multi-experiment multi-offset multi- 
component seismic data set, excluding the direct waves. Assuming that the source 
signature s(w) is unknown, the scaled free surface one-way response matrix can be 
obtained from the seismic data V(z,) by inverting (12a), yielding 

where 

CD(z0)l- = L,+(z,) (13b) 

cc(z0)l- = M;(zo), (134 

and 

matrices L;(z,) and M;(z,) being defined by (B18b) and (B17e), respectively. Hence, 
decomposition of the two-way seismic data into one-way P- and S-wave responses 
may be carried out by applying the matrix operators [C(z,)] - and [D(zo)] -' to the 
data matrix V(z,), see Fig. 8. Note that [C(z,)]-'V(z,) describes a lateral deconvolu- 
tion process along the columns (i.e., the monochromatic common shot records) of 
matrix V(z,). This accounts for the decomposition of the received wavefields into 
upgoing P- and S-waves. Similarly, V(z,)[D(z,)] - describes a lateral deconvolution 
process along the rows (i.e. the monochromatic common receiver records) of matrix 
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I \ \ I I  

common shot record 

FIG. 8. According to (13), decomposition into P- and S-wave responses involves lateral 
deconvolution processes along the receivers in each common shot record and along the 
sources in each common receiver record. The same principle holds for prestack inverse wave- 
field extrapolation, as applied in depth migration. 

V(zo). This accounts for the decomposition of the emitted wavefields into downgoing 
P- and S-waves. Note the important similarity of (1 3a) with Berkhout's formulation 
for prestack inverse wavefield extrapolation, which is the nucleus of prestack migra- 
tion (Berkhout 1982). Hence, the practical implementation of a decomposition 
scheme is very similar to the practical implementation of a prestack migration 
scheme. Like prestack migration, decomposition as formulated by (13) fully 
accounts for lateral variations of the medium parameters. 

In analogy with (2b), the decomposed data matrix X$)(zo) may be written as 

Any of the sub-matrices simulates a (monochromatic) single-component one-way 
seismic survey at the free surface. Matrices (X4, ,+,(zo))F and (X4, ,.(zo))g) for a = x, y 
represent seismic surveys in terms of received upgoing P-waves related to sources in 



644 C. P. A. WAPENAAR ET AL. 

(b) (d) 
FIG. 9. 2D visualization of decomposed data at a free surface zo 

terms of downgoing P-waves or downgoing S,- or S,-waves. Similarly, matrices 
(X$8, +(zo))g) and (Xs8, ,.(z,))g) for B = x, y and a = x, y represent seismic surveys in 
terms of received upgoing S,- or S,-waves related to sources in terms of downgoing 
P-waves or downgoing S,- or S,-waves. In Fig. 9a the situation is shown for one 
element of matrix (X+,+(zo))$). Similarly, in Figs 9b, c and d the situation is shown 
for the corresponding elements in matrices (X$y, +(zo))g), (X+, ,,<z0))g) and 

We illustrate the elastic decomposition procedure with a 2D example. For the 
subsurface configuration shown in Fig. 10, we generated 128 multicomponent 
seismic shot records by finite-difference modelling (Kelly et al. 1976; Haimé 1987). 
We used vertical and horizontal vibrators as well as vertical and horizontal geo- 
phones at the free surface zo. One multicomponent shot record is shown in the 
space-time domain in Fig. 11. Figure 12 shows the same multicomponent shot 
record after removal of the ground roll. All multicomponent shot records are trans- 
formed from the time domain to the frequency domain, yielding a data matrix V(zo) 

(X$,, $JqF 9 respectively. 

zo= O 1 
1 1 

z(m) 1 , , , , , J  
O 1 O00 20%x(m) 

800 

4100 
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6 4200 
7 3500 

2000 1600 
2000 2100 
2200 2200 

2000 2300 
2400 2000 
2100 1800 

FIG. 10. 2D inhomogeneous elastic subsurface. The multicomponent vibrators and geo- 
phones are situated at the free surface zo = O m. 
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FIG. 11. Multicomponent shot record. The source position is indicated by the arrow in 
Fig. 10. (a) pseudo P-P data (Vz,z, see Fig. 7a); (b) pseudo Sy-P data (Vx , z ,  see Fig. 7b); (c) 
pseudo P-S, data (Vz, x ,  see Fig. 7c); (d) pseudo Sy-S, data ( V ,  x ,  see Fig. 7d). The arrows 
indicate the ground roll. 

for each frequency in the seismic band (5  Hz < f = 0/(27c) < 80 Hz). Next, decom- 
position is carried out by applying (13a) for each frequency in the seismic band. 
Finally, the results are transformed back from the frequency domain to the time 
domain. Figure 13 shows one multicomponent shot record after decomposition. 
Note that the spurious events, indicated by the arrows in Fig. 12, have vanished 
completely. 

ELIMINATION OF SURFACE-RELATED MULTIPLE 
REFLECTIONS A N D  CONVERSIONS 

After the decomposition has been carried out, the scaled multicomponent free 
surface one-way response matrix Xg)(z,) is available for all frequencies in the seismic 
band. This response matrix contains significant multiple reflections and conversions 
related to the free surface (see Fig. 13). They can be removed by inverting (12b) and 
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FIG. 12. Multicomponent shot record of Fig. 11 after removal of the ground roll: (a) pseudo 
P-P data; (b) pseudo Sy-P data; (c) pseudo P-S, data; (d) pseudo SYS, data. The arrows 
indicate spurious events. 

(lob), yielding 

followed by 

or, rewriting the inverse matrix as a series expansion, 

Note that this 3D elastic multiple elimination scheme is identical to Berkhout’s 2D 
acoustic multiple elimination scheme. The matrices in (1 5), though, are generalized 
versions of Berkhout’s matrices. 
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FIG. 13. Multicomponent shot record, after decomposition into one-way P- and S,-wave 
responses. The source position is indicated by the arrow in Fig. 10. (a) True P-P data (see 
Fig. 9a); (b) true Sy-P data (see Fig. 9b); (c) true P-S, data (see Fig. 9c); (d) true S,-S, data 
(see Fig. 9d). The arrows indicate surface-related multiple reflections and conversions. 

According to (1 5), surface-related multiple elimination involves source signature 
deconvolution, i.e. removal of s(o) from the data, according to (lsa), and multiple 
prediction and subtraction, according to (1 5c). 

Note that the multiple predictor 
m 

- XfI(Z0) c (- R,(zo)XfI(zo))m 
m = l  

is fully determined by the free surface response matrix Xf,(zo) and the free surface 
reflection matrix R,(zo). Hence, no knowledge of the subsurface is required for 
surface-related multiple elimination. Only knowledge of the source signature s(o) is 
required for the deconvolution. However, when the source signature is not known, it 
can be estimated by applying adaptive multiple elimination. This can be considered 
as a standard minimization problem : the multiple refiections are optimally removed 
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FIG. 14. 2D visualization of decomposed data at a reflection-free surface z,, (after surface- 
related elastic multiple elimination). 

(i.e. the energy in the broad-band data is minimized) when the correct source signa- 
ture is used for the deconvolution. Hence, using an adaptive procedure, the source 
deconvolution and the multiple elimination are carried out simultaneously. For a 
further discussion on adaptive elimination of surface-related multip!e reflections, see 
Verschuur et al. (1989). Note that the final result may be written as 

Any of the sub-matrices simulates a (monochromatic) single-component one-way 
seismic survey at a reflection-free surface. In Fig. 14a the situation is shown for one 
element of matrix X4, +(z0). Similarly, in Figs 14b, c and d the situation is shown for 
the corresponding elements in matrices X,,, &zo), X4, ,,(zo) and X,,, ,,(z0), respec- 
tively. We illustrate the elastic multiple elimination procedure with a 2D example. 
We consider the decomposed data of the example in the previous section. Using our 
adaptive procedure, the phase and amplitude of the source signature were estimated 
and the surface-related multiples were eliminated. One multicomponent shot record 
after adaptive multiple elimination is shown in Fig. 15. Note that this result clearly 
shows the primary one-way response (including minor internal multiple reflections 
and conversions) of the subsurface configuration of Fig. 10. This is confirmed by 
Fig. 16, which was obtained by forward modelling, assuming a reflection-free acqui- 
sition surface. Note that there are hardly any visible differences between Figs 15 and 
16. 
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FIG. 15. Multicomponent shot record, after elastic multiple elimination. The source position 
is indicated by the arrow in Fig. 10. (a) True P-P data (see Fig. 14a); (b) true Sy-P data (see 
Fig. 14b); (c) true P-S, data (see Fig. 14c); (d) true S,-Sy data (see Fig. 14d). The arrows 
indicate the response of the target reflectors below z, = 450 m. 

CONCLUSIONS 
Each data panel in a multicomponent seismic data set contains a mixture of P- and 
S-wave responses, including strong multiples and conversions related to the free 
surface (Figs 7 and 12). We have introduced a surface-related preprocessing pro- 
cedure which consists of the following two steps (assuming the direct waves have 
been removed) : 

1. Decomposition of the multicomponent data set into P- and.S-wave responses, 
in matrix notation described by (13a), 

XC(Z0) = cc(z0)l- 'V(zo)CD(zo)l- '. (17) 
In the resulting data set, the P- and S-wave responses are separated. However, the 
strong multiples and conversions related to the free surface are still present (Figs 9 
and 13). 
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FIG. 16. Multicomponent shot record, obtained by forward modelling. The acquisition 
surface z,, in Fig. 10 was assumed reflection-free. (a) True P-P data (see Fig. 14a); (b) true 
Sy-P data (see Fig. 14b); (c) true P-S, data (see Fig. 14c); (d) true Sy-S, data (see Fig. 14d). 

2. Elimination of surface-related multiples and conversions, in matrix notation 
described by (1 5a) and (1 54, 

and 

The source signature s(o) in (18a) is obtained adaptively by minimizing the energy 
in X(zo). In the resulting data set, the P- and S-wave responses are separated and the 
strong multiples and conversions related to the free surface have been removed 
(Figs 14 and 15). The remaining artefacts are related to internal multiples and con- 
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versions. In most practical situations these effects are significantly smaller than the 
surface-related multiples and conversions (compare Figs 12 and 15). 

The procedure is valid for any inhomogeneous anisotropic subsurface with an 
inhomogeneous isotropic surface layer. 

An interesting aspect of the procedure is that no knowledge of the subsurface is 
required. 

The subsurface may have any degree of complexity. In the decomposition algo- 
rithm (17), the matrices C(zo) and D(zo) are fully determined by the medium param- 
eters at the free surface zo . Similarly, in the multiple elimination algorithm (18), the 
reflectivity matrix R&(zo) is also fully determined by the medium parameters at the 
free surface zo . Hence, only the isotropic surface layer is assumed to be known. 

Decomposition into primary P- and S-wave responses (steps 1 and 2) is pro- 
posed by Berkhout and Wapenaar (1988) as a preprocessing procedure, prior to 
elastic migration and inversion (Fig. 1). 
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APPENDIX A 

MATRIX/VECTOR NOTATION FOR DISCRETIZED 
WAVEFIELDS 

We review Berkhout’s matrix notation, generalized for 2D and 3D applications. 

lateral position and time, described by 
Consider a 2D wavefield, measured at a constant depth level as a function of 

P(x, ZO? 0, ( A W  

where 

p wavefield (for instance the acoustic pressure), 
x lateral coordinate of the receivers, 

zo depth level of the acquisition surface, 
t time. 

After a Fourier transformation from time to frequency, this wavefield is described by 

P(X, zo 9 4, (Alb) 



652 C. P. A. WAPENAAR ET AL. 

where 

p Fourier-transformed wavefield, 
w circular frequency. 

In the following we only consider the frequency-domain representation, that is, we 
assume that monochromatic wavefields p(x,  z o ,  mi) are available for a range of wi 
values. All these monochromatic wavefields can be treated independently. If we con- 
sider one frequency component wi only, then the discretized version of the wavefield 
can be represented by a vector, according to 

where Ax is the distance between the receivers. 

one common shot record. Let us now write this vector symbolically as 
For the seismic situation this vector may represent the (monochromatic) data in 

where x, denotes that the different elements in this vector correspond to the different 
lateral positions of the receivers. With this notation we can write the 
(monochromatic) data p(x, ,  xs, zo,  ai) in a 2D seismic survey symbolically as a 
matrix, according to 

+ x, ... ... P - K , - M  P - ~ , m  P - K ,  M 

P k .  - M  * * *  P k ,  m * * *  P k , M  

* ' *  P K , M  ... 
P K .  - M  P K ,  m 

where x, denotes the different lateral positions of the sources. Each element P k , , ,  

corresponds to a fixed lateral receiver coordinate x , , ~  and a fixed lateral source 
coordinate x , , ~ .  Each column (fixed x,) in this data matrix represents one 
(monochromatic) common shot record; each row (fixed x,) represents one common 
receiver record; the diagonal (x, = x,) represents zero-offset data and the anti- 
diagonal (x, = -x,) represents common midpoint data. 
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FIG. 17. Organization of the data matrix for a 3D seismic areal survey. 

The (monochromatic) data p(x ,  , y,, x, , y,, zo , mi) in a 3D seismic areal survey 
can also be represented by a matrix (Kinneging et al. 1989), according to 

where y, denotes the different cross-line positions of the receivers and where y, 
denotes the different cross-line positions of the sources. Each submatrix P!, corre- 
sponds to a fixed cross-line receiver coordinate y,,! and a fixed cross-line source 
coordinate ys, n .  The elements in the sub-matrix itself are defined as in (A2b) (see 
Fig. 17). Note that each column (fixed x,, y,) of the total matrix P(zo) represents one 
(monochromatic) common shot record and each row (fixed x, , y,) represents one 
common receiver record. Throughout this paper a data matrix P(zo) may represent 
either a 2D seismic survey, as in (A2b), or a 3D seismic areal survey, as in (A2c). 
Hence, a data vector p(zo) (one column of P(zo)) may represent either a 2D or a 3D 
seismic shot record. 
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APPENDIX B 

TWO-WAY AND ONE-WAY ELASTIC WAVE FIELDS 
We shall derive the relationship between two-way elastic wavefields (in terms of the 
total particle velocity and traction) and one-way elastic wavefields (in terms of 
potentials for downgoing and upgoing P- and S-waves). For the moment, vectors 
denote continuous elastic wavefields, just as in the common literature on elastic 
wave theory. In a homogeneous isotropic source free region, the elastic wave equa- 
tion for the particle velocity reads, in the space-frequency domain, 

(Â.+2p)V(V*v)-pV x v  x v + p o 2 v = o ,  (BI) 

(2 and p are the Lamé coefficients). Define Lamé potentials 4 and \Ir for P- and 
S-waves, respectively, according to (Pilant 1979; Aki and Richards 1980), 

-1 

'OP 
v = - (V4 + v x Jr);  v .\Ir = o. 

The factor -(imp)-' is generally omitted. The reason that we use this factor is 
because in the limiting case of an ideal fluid (p = O) the Lamé potential (b represents 
the acoustic pressure. Substitution of (B2) into (Bl) yields two independent equa- 
tions for P- and S-waves, 

and 

Let us now define the 2D spatial Fourier transform of a space- and frequency- 
dependent function according to 

J J - m  

and its inverse as 

In the following, a tilde ( -) above a symbol denotes the wavenumber-frequency 
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domain (k, , k, , z, O). In the wavenumber-frequency domain, (B2) reads 

- a$ 
aZ -ikx4 - - ik,$, 

- + ik,$, - ik,$, 

with 

- a$ 
a Z  

-ik,$, - ik,+,, + = O .  

The z-derivatives in (B5) follow from (B3a) and (B3b) in the wavenumber-frequency 
domain : 

or 

with 

Similarly 

or 
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Define $ and $ as the sum of downgoing and upgoing waves, according to 

$ = $ + + $ - ,  

and 

$=$+++-.  

Y = z:p+ + E;@-, 
Now (B5) may be rewritten as 

where 

and 

Note that we eliminated gZ from (B5a) and (B5b). If we make use of the stress- 
velocity relations in the wavenumber-frequency domain, 

where i is the traction vector, then we obtain, in analogy with (Bga), 

r=z:p+ +E;#-,  (Blla) 

where 

(Bllb) 
f 2kx kz* p 2kx k, (k: - 2kX) 

f 2k, kz, 
-(k: - 2ky) -2kxk,  

-(k: - 2kX - 2ky) f 2kx kz. 
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Equations (B9) and (Bll) can be combined into one equation, according to 

(i;) = (;I E; E;)(p-). p+ 

This equation describes, in the wavenumber-frequency domain, composition of the 
total elastic wavefield from downgoing and upgoing P- and S-wave potentials. 

Decomposition of the total elastic wavefield into downgoing and upgoing P- and 
S-wave potentials is described by the inverse of equation (B12) 

(v) =(a: y') 
M; A; t '  

where 

fi: =.E 
2 w  

and 

\ 

k 
T- 

kz. P 

-1 

O 

(B13a) 

(B13b) 

(B13c) 

Composition and decomposition formulae conformable to (B 12) and (B 13) have 
been used by many authors. An outline is given by Ursin (1983). It should be noted, 
however, that we made an important modification with respect to the definition of 
the operators. Generally, the composition and decomposition operators contain 
terms such as (in our notation) kJ J (kJ  + ky)  and k,/ J (kJ  + ky). Note that these 
terms are discontinuous for k ,  = k,  = O, i.e. for vertical wave propagation. Trans- 
forming these expressions back to the space domain causes considerable artefacts. 
This problem is directly related to the choice of S-wave separation. Generally 
S-waves are sub-divided into SV-waves (polarization in the vertical plane through 
the wave vector and the z-axis) and SH-waves (horizontal polarization). Note that 
any vertically propagating S-wave can be classified as either an SV-wave or an 
SH-wave, hence, the decomposition problem is not unique. We avoided these prob- 
lems by sub-dividing S-waves into S,-waves (polarization in the plane perpendicular 
to the x-axis) and S,-waves (polarization in the plane perpendicular to the y-axis). In 
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our formulation, these wave types are represented by the S-wave potentials $, and 
$, , respectively. 

Let us now derive the composition and decomposition formulas in the space- 
frequency domain. First we consider the decomposition algorithm (B13), which can 
be rewritten as 

3 

Here for i = 1, 2, 3 represents $*, $: and $:, respectively, see also (B9b). O j  for 
j = 1, 2, 3 represents O , ,  O,  and Oz, respectively, see also (B5a). fj for j = 1, 2, 3 
represents ?, , f y  and f , ,  respectively, see also (B10). Finally, @, ij and a;, i j  for 
i = 1, 2, 3 and j = 1, 2, 3 represents the elements of matrices fi: and fi;, respec- 
tively, as defined by (B13b) and (B13c). Multiplications in the wavenumber domain 
correspond to convolutions in the space domain, hence 

3 

M t  iXx, y, x’, Y’, Z, ~ ) v j ( x ’ ,  Y’, Z, 0) dx’ dy‘ JI-: P”X, Y, z, 4 = C 
j =  1 

M:, ij(x, y, x’, y’, Z, w)rj(x’, y’, Z, 0) dx’ dy’, (B15a) 
j =  1 

with 

M,f  ii(x, y, x‘, Y‘, Z, 0) = M i  ij(x - x’, y - Y‘, Z, 01, (B15b) 

for a = 1,2, where M,f &, y, z, w )  is obtained by applying a band-limited version of 
the inverse Fourier transform (B4b) to the matrix elements 

From here onwards we adopt the matrix/vector notation of Appendix A. In this 
notation, the discretized version of (B15a) reads 

i j (kx,  k , ,  z, O). 

Here the vectors p’(z), vxz) and zAz) contain the discretized scalar wavefields p i ( x ,  
y, z, O), uhx, y, z, O) and r j x ,  y, z, O). The matrices M:, iJ(z) and M: ij(z) contain the 
discretized operators M t  y, x‘, y‘, z, O) Ax Ay and M;, ij(x, y, x‘, y’, z, O) Ax Ay 
(Ax and Ay are the discretization intervals). The format of these operator matrices is 
the same as the format of the data matrix P(z,) in (A~c), which contains the mono- 
chromatic data p(x,  , y,, x, , y,, zo , O). Because of the special character of 
ators (see (B15b)), operator matrices M:, iXz) and M;, iJ(z) are Toeplitz 
Note that (B16) may also be written as 

the oper- 
matrices. 

(B 17a) 
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(B17b) 

(B17c) 

(B17d) 

(B17e) 

for U = 1, 2. In a similar way we can derive the space-frequency domain representa- 
tion of the composition algorithm (B12), yielding 

where 

(B18a) 

(B18b) 

for U = 1,2, where submatrices L: i i z )  contain the discretized operators 

L,tii(~, Y ,  XI, Y', Z, O) = L,fij(~ - XI, Y - Y', Z, O) (B18c) 

Note that the decomposition operators in (B17a) are related to the composition 

M: = (L: - L:(Lz)-'Lz)-' 

for a = 1,2, L: 

operators in (B18a) according to 

y, z, O) being the inverse Fourier transform of L: i,(kx, k, , z, O). 

(B19a) 

and 

M: = (L: - L:(L:)-'Lf)-'. (B19b) 

Also note that (B18a) can be used elegantly to derive the reflection matrix R;(zo) for 
a free surface at z = zo . For the situation depicted in Fig. 18 we write 

P+(ZO) = R;(zo)P-(zo). (B20a) 
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FIG. 18. Reflection at the free surface of an elastic half-space. 

Substituting this expression into (B18a), using the free surface property z(zo) = O, 
yields 

(B20b) 0 = CL:(zo)R,(zo) + Li(zo)lP-(zo)? 
or, since this expression should hold for any upgoing wavefield p-(zo), 

Rf-30) = - cL:(Zo)l- lLi(zo). (B20c) 

So far we have considered the homogeneous situation. Variations of the medium 
parameters can be accounted for by designing the operators L,ti,(x, y, x’, y’, z, w) 
and M,tiXx, y, x‘, y’, z, O) for CI = 1, 2 in accordance with the local medium param- 
eters at (x, y, z). In this case (B15b) and (B18c) are no longer valid, so matrices L,‘ 
and M,f lose their simple Toeplitz structure. 

Blacquière et ai. (1989) discuss the design of optimized operators F*(x,  y, x’, y’, 
z, O) for 3D inverse wavefield extrapolation in inhomogeneous media. Their 
approach can be easily adapted for the design of optimized operators Lafi,(x, y, x‘, 
y’, z, O) and Mo,fi,(x, y, x‘, y’, z, O) for 3D elastic wavefield decomposition in inho- 
mogeneous media. A further discussion of operator optimization is beyond the 
scope of this paper. 
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