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ELASTIC E X T R A P O L A T I O N  
OF PRIMARY SEISMIC P- A N D  S-WAVES' 

C. P.  A .  W A P E N A A R  and G.  C. H A I M É ~  

ABSTRACT 
WAPENAAR, C.P.A. and HAIMÉ, G.C. 1990. Elastic e?trapolation of primary seismic P- and 
S-waves. Geophysical Prospecting 38,23-60. 

The elastic Kirchhoff-Helmholtz integral expresses the components of the monochro- 
matic displacement vector at any point A in terms of the displacement field and the stress 
field at any closed surface surrounding A. By introducing Green's functions for P- and S- 
waves, the elastic Kirchhoff-Helmholtz integral is modified such that it expresses either the 
P-wave or the S-wave at A in terms of the elastic wavefield at the closed surface. This modi- 
fied elastic Kirchhoff-Helmholtz integral is transformed into one-way elastic Rayleigh-type 
integrals for forward extrapolation of downgoing and upgoing P- and S-waves. We also 
derive one-way elastic Rayleigh-type integrals for inverse extrapolation of downgoing and 
upgoing P- and S-waves. The one-way elastic extrapolation operators derived in this paper 
are the basis for a new prestack migration scheme for elastic data. 

INTRODUCTION 

Berkhout and Wapenaar (1988) proposed a new approach for processing of elastic 
seismic data which consists of the following steps (Fig. 1): (1) decomposition of the 
multi-component seismic data into one-way P+-P-.  P+-S-, S+-P- and S+-S- 
data; (2) elimination of the surface related multiple reflections and conversions; (3) 
estimation of the elastic macro subsurface model from the P+-P- and S+-S- data; 
(4) modelling of forward and inverse one-way extrapolation operators for primary 
P- and S-waves; (5) shot record migration of the P+-P-,  P+-S-, S+-P- and S+-S- 
data, yielding the subsurface reflectivity in terms of RLp, RLs, RLp and R&, 
optionally as a function of angle a ;  (6) elastic inversion for the detailed velocity and 
density information (cp, c, , p);  (7) lithologic inversion for the rock and pore param- 
eters. 

The theory of the first two steps is discussed in detail by Wapenaar et al. (1990). 
It is interesting to note that the actual elastic migration (step 5 )  is not more 
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FIG. 1. Elastic seismic processing scheme. 

complicated than acoustic shot record migration, e.g., migration of the P+-S- data 
can be accomplished with a standard shot record migration scheme in which we 
substitute extrapolation operators for downgoing P-waves and upgoing S-waves. Of 
course, the quality of the migrated sections will depend largely on the accuracy of 
the extrapolation operators which are modelled in step 4. This paper deals with the 
theory of the true amplitude extrapolation operators for primary P- and S-waves. 
After a brief review of the elastic Kirchhoff-Helmholtz integral for inhomogeneous 
anisotropic solids, we introduce the concept of elastic Green's functions for P- and 
S-waves. With these new Green's functions we derive elastic Kirchhoff-Helmholtz 
integrals for P- and S-waves. Next, following the same path as Berkhout and 
Wapenaar (1989, hereafter referred to as paper I), we derive one-way elastic Ray- 
leigh integrals which are the basis for forward extrapolation operators for primary 
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P- and S-waves. Following the same path as Wapenaar et al. (1989, hereafter 
referred to as paper II), we also derive one-way elastic Rayleigh integrals with back- 
propagating Green's functions. These integrals are the basis for inverse extrapo- 
lation operators for primary P- and S-waves. They are well suited for application in 
shot record migration of P+-P-, P+-S-, S+-P- and S + - S -  data (step 5 of the 
elastic processing scheme). We expect that this robust elastic one-way approach to 
seismic inversion will play a major role in the practice of seismic processing. 

THE ELASTIC KIRCHHOFF-HELMHOLTZ INTEGRAL 
FOR INHOMOGENEOUS ANISOTROPIC SOLIDS 

We consider an inhomogeneous anisotropic solid, which is described by the space 
dependent mass density p(r) and the stiffness tensor c(r), where r is a shorthand 
notation for the Cartesian coordinates (x, y, z). The components of the stiffness 
tensor are represented by cijkl(r), where i (or j ,  k, i )  = 1, 2, 3 stands for x, y, z, 
respectively. In this solid we consider a (sub)-volume Y enclosed by a surface S with 
an outward pointing normal vector n (Fig. 2). Assuming that I/ is source free, then 
the space and frequency dependent elastic wavefield satisfies in Y the linearized 
stress versus displacement relation (generalized Hooke's law) 

T i j  - cijki ai U k  = 

ajzij + paw, = O, 

(14 

(W 
and the linearized equation of motion (generalized Newton's law) 

(throughout this paper, the summation convention is assumed for repeated indices). 
Here Ui  for i = 1, 2, 3 represents the three components of the displacement vector 
U(r, O); zij  for i = 1, 2, 3 and j = 1, 2, 3 represents the nine components of the 
symmetric stress tensor z(r, O); O represents the radial frequency. Also in Y we 
define Green's functions which satisfy the following equations : 

m - cijki Gk, m = (24 

yrx z 

n 

FIG. 2. Sub-volume V, enclosed by surface S, in an inhomogeneous anisotropic solid. V is 
assumed to be source free. The full elastic Kirchhoff-Helmholtz integral (4) states that the 
elastic wavefield at A in V can be computed when the elastic wave field is known on S. 
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FIG. 3. Overview of elastic Green's function. 
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and 

aieij, , + pw2Gi,,  = -S,,S(r - r,). (2b) 
Here S i ,  is the Kronecker delta ( S i ,  = 1 if i = m; Si, = O if i # m); r, = (x, , y A  , 

z,) denotes the Cartesian coordinates of the Green’s ‘ source point ’ A in V ;  Gi, , for 
i = 1, 2, 3 represents the three components at ‘observation point ’ r of the Green’s 
displacement vector G,(r, r,, O); 8 ,  , for i = 1, 2, 3 and j = 1, 2, 3 represents the 
nine components at ‘observation point ’ r of the Green’s stress tensor g,(r, rA , O); 
finally, the subscript m, which may also take the values 1,2, 3, refers to the direction 
of the unit body force at Green’s ‘source point’ r,, (see Figs 3a and 3b). The 
Green’s function satisfies the following reciprocity relation : 

to the vector function 

Qm = ZGm - !LU, (3b) 
where the components of U, 2, G,, and 0, satisfy (1) and (2) in V ,  then we obtain 
the full elastic Kirchhoff-Helmholtz integral 

um(r, O) = Cz(r, O)Gm(r, r, O) - 8m(r, r, w)U(r, O)] * n dS. (4) 4 
In the derivation, use was made of the symmetry properties zij  = z j i ,  8 ,  , = û,, , 
and q j k [  = C k [ i j .  Representation theorem (4) states that the elastic wavefield at any 
point rA in V can be calculated when the elastic wavefield in terms of U(r, O) and 
Z(r, O) is known on S (see also De Hoop 1958; Burridge and Knopoff 1964; Aki and 
Richards 1980). Kuo and Dai (1984) use (4) as the starting point for an elastic wave 
migration scheme. They substitute Green’s functions for homogeneous, isotropic 
layers and apply (4) recursively from layer interface to interface. In this paper we use 
(4) as the starting point for the derivation of forward and inverse one-way extrapo- 
lation operators for primary P- and S-waves. These operators are the basis for an 
elastic wave migration scheme for arbitrarily inhomogeneous anisotropic media 
(Berkhout and Wapenaar 1988). 

ELASTIC GREEN’S FUNCTIONS FOR P-  A N D  S-WAVES 
After elimination of û,, from (2a) and (2b) we find that the components of the 
Green’s displacement vector satisfy 

aj(cijki ai Gk, m) + m = - rA)* (5 )  
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Let us now assume that the solid medium is homogeneous and isotropic in a 
(infinitely) small region around the Green’s source point r,. At r, we define the 
constrained bulk compression modulus according to 

U r , )  = @A) + 2p(r,), (64 
where the Lamé coefficients A and p are related to the stiffness coefficients, accord- 
ing to 

Cijkl(rA) = n(r,)sij + p(rAX8ik  + 6jk)* (6b) 

-Kc(r,) a;>;, (7) 

We define an operator 

where a;>; for rn = 1, 2, 3 denotes differentiation with respect to the Green’s source 
point coordinates x, , y , ,  z ,  , respectively. By applying this operator to both sides of 
(5) we obtain 

aj(cijkt at Gk, (p) + p W Z G i ,  (p = - K c ( r A )  ai - (84 

where we made use of the property 

af 6(r - r,) = -ai  6(r - r,), 

and where 

Gi, (p(r, r, 9 0) P - K c ( r A )  a;>; Gi, r, 7 0). (8b) 

G i ,  &r, r, , w) for i = 1, 2, 3 represents the three components of a new Green’s dis- 
placement vector G&, r,, O). The right-hand side of (8a) is a source at r, for 
P-waves (Wapenaar and Berkhout 1989). Hence, the subscript cp in Gi,& r,, O) 
refers to the P-wave character of the Green’s source at r, (see Fig. 3c). Of course, at 
observation point r, this Green’s function may consist of both P- and S-waves. Let 
us now assume that the solid medium is also homogeneous and isotropic in a 
(infinitely) small region around an observation point r = r B .  Then, in agreement 
with (ASa), we may define a Green’s P-wave potential, according to 

r(p, qdrB 9 r, 9 

rV, 

-Kc( rB)VB ’ G(p(rB 3 rA 3 O), 

3 r, 9 0) 2 - K c ( r B )  $ c i ,  (p(rB 9 r, 9 O), 

(8c) 

(84 

or 

where for i = 1, 2, 3 denotes differentiation with respect to the Green’s observa- 
tion point coordinates x B ,  y, ,  zB,  respectively. In agreement with (A5b), we may 
also define a Green’s S-wave potential, according to 

or 
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where &kij is the alternating tensor 

&kij = O if any of k, i , j  are equal. 

Otherwise 

~ 1 2 3  = 8 3 1 2  = 6 2 3 1  - 8 2 1 3  - 8 3 2 1  = -8132 = 1, (8h) 
and hence by definition ïJlk, represents the k-component of rJI, <p. 

In the following, the symbol ï stands for Green’s potential functions. The first 
subscript in ïQ, Q(rB, rA , O) and ï#k, .(re, rA , w) refers to the wavetype at observa- 
tion point r,; the second subscript refers to the wavetype at source point rA (cp refers 
to P-WaVeS, $k refers to s,-waves, polarized in the plane perpendicular to the k-axis; 
see Figs 3d and 3e). 

So far we only considered modified Green’s functions related to a P-wave source 
at T A .  Next, we follow the same procedure for an S-wave source at rA . By applying 
the operator 

- &A)&hmn a. 
to both sides of equation (5 )  we obtain 

aj(cijki ai Gk. $3 + p w Z G i ,  #h = -p(rA)Ehin an 6(r - rA), (9a) 

$h(r, rA -Ar&hmn a.Gi, m(r9 rA 9 O). (9b) 

where 

rA, w) for i = 1, 2, 3 represents the three components of a new Green’s 
displacement vector G$h(r, rA, O). The right-hand side of (9a) is a source at rA for 
S,-waves, polarized in the plane perpendicular to the h-axis (Wapenaar and Berk- 
hout 1989). Hence, the subscript i,hh refers to the S,-wave character of the Green’s 
source at r A  (see Fig. 3f). At the observation point r = r, this Green’s function may 
consist of both P- and S-waves. In agreement with (A5a) we define a Green’s P-wave 
potential according to 

(94 r ~ ,  $&E 9 rA > 0) g - Kc(rdvB G$h(rB, r A  9 O), 

rQ, 9 ‘ A  9 -KC(rB) a?Gi, $h(rB 9 rA 9 O) (94 

or 

(see Fig. 3g). In agreement with (A5b) we define a Green’s S-wave potential, accord- 
ing to 

9 rA 9 O) P(rB)vB G$h(r, 9 rA 9 O), (9e) 

‘@k, #h(rB 9 rA > - d r B ) & k i j  $h(rB 9 9 w), (9f) 

or 

where ï$k, iIh represents by definition the k-component of ïJl, $,, (see Fig. 3h). From 
reciprocity relation (2c) and from definitions (8b), (8d), (8f), (9b), (9d) and (9f), the 
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following reciprocity relations can be derived : 

Note that these reciprocity relations hold for arbitrarily inhomogeneous anisotropic 
elastic media. The only assumption is that the medium is locally homogeneous and 
isotropic at rA and rB. In the following sections we make extensive use of these 
Green’s functions for P- and S-waves. 

ELASTIC KIRCHHOFF-HELMHOLTZ INTEGRALS 
FOR P- AND S - W A V E S  

Kirchhoff-Helmholtz integral (4) expresses the displacement U, at rA in terms of the 
elastic wavefield on S. We now derive Kirchhoff-Helmholtz integrals which express 
the P-wave potential or the S-wave potential at rA in terms of the elastic wavefield 
on S.  Again we assume that the medium is homogeneous and isotropic in a 
(infinitely) small region around rA . Hence, in agreement with (A5a) we can define a 
P-wave potential at rA , according to 

or 

By substituting Kirchhoff-Helmholtz integral (4) and changing the order of integra- 
tion (over S(r)) and differentiation (at rA), we obtain 

where 

and 

Kirchhoff-Helmholtz integral (12a) states that the P-wave potential at rA can be 
computed from the elastic wavefield on S with the aid of Green’s functions that have 
a P-wave source at rA. The components of G, were already defined in (8b), so in 
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practice they are found by solving (8a) rather than by solving (2) for m = 1, 2, 3 and 
applying (12b). Subsequently, the components of 9, are found by applying 

ei j ,  Q = cijki ai G k ,  Q ( 124  
on S.  

Next, in agreement with (ASb) we define an S-wave potential at rA , according to 

w.4 9 4 p CL(rA)VA x w.4 ,O), (134 

yh(r.4 3 0) - p(rA)&hmn a?Urn(r,4 7 O), (13b) 

or 

where y,, represents by definition the h-component of Y. By substituting Kirchhoff- 
Helmholtz integral (4) and changing the order of integration and differentiation we 
obtain 

Cz(ra , rA 4 - 9,,(r, rA , w ) W ,  41 * n dS. (144 

This Kirchhoff-Helmholtz integral states that the &,-wave potential at rA can be 
computed from the elastic wavefield on S with the aid of Green's functions that have 
an S,-wave source at rA . The components of G,, are defined by (9b), so in practice 
they are found by solving (Sa). Subsequently, the components of Q,, are found by 
applying 

'i,, ,h = cijkI Gk, s h  

on S.  
Kirchhoff-Helmholtz integrals (4), (12a) and (14a) can be summarized as 

[zGn - 9, U] - n dS, 

where Q(rA, O) stands for Um(rA, O), or q r A ,  O) or Yh(rA, O) and where G,, 9, 
stand for G,  ,em or G, ,9, or G,, , g,,, respectively. 

O N E - W A Y  V E R S I O N S  OF THE ELASTIC KIRCHHOFF-HELMHOLTZ 
AND RAYLEIGH INTEGRALS 

Consider the geometry of Fig. 4. Closed surface S consists of a horizontal flat 
surface So at z = zo and a hemisphere S, in the lower half space z 2 zo,  with mid- 
point A and radius R. Assuming that the sources are situated in the upper half space 
z < z o ,  then the contribution of the Kirchhoff-Helmholtz integral over S ,  to the 
wavefield in A vanishes if R goes to infinity, (Sommerfield radiation conditions, Pao 
and Varatharajulu 1976). Hence, for this situation (15) may be replaced by 
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.. . 

O z = z  
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FIG. 4. Configuration for which the closed surface integral (15) may be replaced by the open 
surface integral (16). The lower half space is assumed to be source free. 

where we used the fact that n on So is a unit vector in the negative z-direction. The 
tractions T, and 8 ,  represent the third column of the tensor 5 and en, respectively. 
In the following we assume that the medium is homogeneous and isotropic 
(described by il, ,U and p)  in a (infinitely) thin region around the surface zo . So in this 
region the wavefield can be separated into downgoing and upgoing waves. In addi- 
tion, for the Green's functions we choose a homogeneous and isotropic upper half 
space. This choice is justified, because in the derivation of the Kirchhoff-Helmholtz 
integral we only considered the medium inside S, which is the lower half space. With 
this choice, the Green's functions at zo represent purely upgoing waves. Equation 
(16) can now be rewritten as 

R(r,, O) = [I-+)& - (U+ + U-) - G; - (r: + T;)],~ dx dy. (17) 

Here the superscripts + and - denote downward and upward propagation, respec- 
tively. In agreement with (A2) we define P- and S-wave potentials at zo for the wave- 
field and for the Green's functions, according to 

(see Fig. 5b). It is shown in Appendix B that by applying the one-way wave 
equations for the P- and S-wave potentials at zo , the elastic Kirchhoff-Helmholtz 
integral (17) can be transformed to 
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(a) (b) 

FIG. 5. Downgoing and upgoing P- and S-wave potentials at z = z,,. (a) Potentials for the 
elastic wavefield. (b) Potentials for the Green’s functions. 

or alternatively to 

Note the high degree of similarity of these equations with the one-way acoustic 
Rayleigh integrals that were derived in paper I. Equation (19a) represents the 
one-way elastic Rayleigh I integral; equation (19b) represents the one-way elastic 
Rayleigh II integral. Note that in both integrals only the downgoing P-wave inter- 
acts with an upgoing Green’s P-wave, and the downgoing S-wave interacts with an 
upgoing Green’s S-wave. No interaction occurs between the P-wave and the Green’s 
S-wave or between the S-wave and the Green’s P-wave. Finally, note that for the 
configuration of Fig. 4, equations (19a) and (19b) are exact; the only assumption is 
that the medium is locally homogeneous and isotropic at z,, and at rA . 

O N E - W A Y  ELASTIC RAYLEIGH I N T E G R A L S  FOR P- A N D  S - W A V E S  

Depending on the choice of the source for the Green’s functions, R in (19a) and 
(19b) can represent either U, for m = 1, 2, 3 or @ or y,,. We consider the latter two 
cases. If the Green’s functions have a P-wave source at rA, then R represents the 
P-wave potential at rA . For instance, for (19b) we may now write 

On the other hand, if the Green’s functions have an &,-wave source at rA, then R 
represents the &-wave potential at rA . For (19b) we may now write 

Y,,(rA, O) = 2J1’m 4 [az’h @+ + az 
- m  P O  

Here ri, ,+, , ï ,  ,+, , iIh and ï; Jlh represent upgoing Green’s potentials for P- 
and S-waves. Equation (20a) represents a one-way full elastic Rayleigh II integral for 
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the computation of the P-wave potential in the subsurface. If we assume that the 
sources in the upper half-space generate mainly P-waves, then I I+ I at zo will be 
small compared with 10' I .  The Green's source at rA is a P-wave source, so also 
lI';,ql at zo will be small compared with l17;,ql. Hence, the magnitude of the 
product ( û ï , J a z ) .  I' is proportional to multiply converted waves, so it is two 
orders lower than the magnitude of (ar, ,,,/az)@+ at zo . In other words, for P-wave 
sources in the upper half space, (20a) may be approximated by 

With similar arguments, for S-wave sources in the upper half-space, (20b) may be 
approximated by 

It should be emphasized that the extremely simple elastic expressions (21a) and (21b) 
hold for arbitrarily inhomogeneous anisotropic solids. The errors are of the same 
order as the negligence of multiply converted waves. 

THE ELASTIC KIRCHHOFF-HELMHOLTZ INTEGRAL 
W I T H  BACK-PROPAGATING GREEN'S FUNCTIONS 

The one-way elastic Rayleigh integrals discussed so far describe forward wavefield 
extrapolation: assuming the sources are in the upper half space z < zo, the down- 
going part of the elastic wavefield at zo is extrapolated away from the sources 
towards a point rA in the lower half space z > zo . In the following we derive expres- 
sions for elastic inverse wavefield extrapolation, towards the sources. For this deri- 
vation we follow the same path as in paper II. Therefore we introduce the 
back-propagating Green's functions Gm(r, T A ,  w) and e:(r, T A ,  O), where * denotes 
complex conjugation. 

We define a new vector function Q, , according to 

Q, = z G ~  - @;U, (22) 

where the components of U, 2, G, and 9, satisfy equations (1) and (2) in V.  Apply- 
ing the theorem of Gauss (3a) to this vector function yields 

U m ( r A ,  4 = Cz(r, 4Gm(r, r A ,  0) - r A ,  w)U(r, w)ln dS. (23) i 
This elastic Kirchhoff-Helmholtz integral is exact and is equivalent to elastic 
Kirchhoff-Helmholtz integral (4). However, as is shown later on in this paper, the 
back-propagating Green's functions in (23) appear to be a convenient choice when 
deriving inverse wavefield extrapolation operators. 
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In analogy with (12a) and (14a), we may derive the following two versions of the 
Kirchhoff-Helmholtz integrals : 

r 

and 

Y ~ A  > O) = Cz(r, 4Ggh(r, T A  , 4 - 9fh(r, r A ,  @)U@, 41 * n dS, (24b) i 
respectively. Kirchhoff-Helmholtz integrals (23), (24a) and (24b) can be summarized 
as 

n(r,, O) = [zGR - 9; U] * n dS, i 
where i2(rA, O) stands for Um(rA, O) or @(rA, O) or Y,,(rA, O) and where GR, 0;: 
stand for Gz ,!jz or G,* , (33 or G& , lezh, respectively. 

ONE-WAY ELASTIC R A Y L E I G H  INTEGRALS 
FOR INVERSE WAVEFIELD EXTRAPOLATION 

Elastic Kirchhoff-Helmholtz integral (25) is not yet applicable to the seismic situ- 
ation because the ‘seismic measurements’ U(r, w) and z(r, O) are never available at a 
closed surface. Consider the geometry of Fig. 6. Closed surface S consists of 
‘acquisition surface’ So of infinite extent, at z = z o ,  a ‘reference surface’ S,, also of 
infinite extent, at z = zl, and a cylindrical surface S, with a vertical axis through A 
and radius R. Furthermore, we assume that the (secondary) sources are situated in 
the lower half-space below S,. The contribution of the elastic Kirchhoff-Helmholtz 
integral over cylindrical surface S, to the wavefield in A vanishes if R goes to infin- 
ity. So for the geometry of Fig. 6 elastic Kirchhoff-Helmholtz integral (25) may be 
replaced by 

W A ,  4 = Q O @ A ,  0) + A q A ,  4, 
where 

and 

Ai2(rA, O) = - [ û z .  U - GR - T,],~ dx dy. 

Still this formulation is not suited for the seismic situation because U and T, are not 
known at z = zl. When Ai2(rA, O), as defined in (26c), may be neglected, then (26b) 
describes inverse wavefield extrapolation (towards the secondary sources) from 
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FIG. 6. Elastic inverse wavefield extrapolation (towards the sources below S,) from acquisi- 
tion surface So to subsurface point A is described by elastic Kirchhoff-Helmholtz integral 
(26). Under certain conditions (discussed in the text) the contribution of this integral over S ,  
can be neglected. (a) Perspective view. (b) Cross-section for y = O. 
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acquisition surface So to subsurface point A. In the following we analyse the expres- 
sions for Qo(rA, O) and AR(r, , O) and show that, under certain conditions, the latter 
may be neglected. We assume that the medium is homogeneous, isotropic in 
(infinitely) thin regions around zo and around zl.  So in these regions the wavefields 
can be separated into downgoing and upgoing waves, which satisfy one-way wave 
equations (see also Appendix A). In addition, for the Green’s functions we choose 
homogeneous and isotropic half spaces z I zo and z 2 zl, which is allowed outside 
V.  With this choice, the Green’s functions at zo represent purely upgoing waves 
whilst the Green’s functions at z1 represent purely downgoing waves, which also 
satisfy one-way wave equations. Now, as (19b) was derived from (16), we can derive 
the following expressions from (26b) and (26c), respectively : 

and 

AR(r, , w )  x -2 j1-r --$ [ (%)*@+ + ar;, R Y +] dx dy. (27b) 
21 

Unlike (19b), equations (27a) and (27b) are not exact since in the derivation we 
assumed that the wavenumbers kz, and kz,  , (see Appendix A) satisfy 

k z , p  = k:,p and k , ,  = k z ,  at zo and at zl,  (27c) 
which is only true for propagating waves. Hence, (27a) and (27b) represent spatially 
band-limited approximations of (26b) and (26c), respectively (evanescent waves are 
neglected). Let us for the moment assume that the elastic medium is homogeneous 
and isotropic everywhere in space. Because the sources are below zl,  the wavefield 
at z1 is purely upgoing; hence, @+ = O and Y +  = O at zl, and, consequently, AR@, , 
O) x O. Hence, according to (26a), for a homogeneous isotropic solid, inverse wave- 
field extrapolation from acquisition surface So (z = zo) to subsurface point A is 
described by the elastic Kirchhoff-Helmholtz integral (26b), or, equivalently, by the 
one-way elastic Rayleigh II integral (27a). In both expressions the only approx- 
imation is the spatial band-limitation (the negligence of evanescent waves). This 
imposes a restriction to the maximum obtainable spatial resolution (Berkhout 1984). 
When the elastic medium is arbitrarily inhomogeneous and anisotropic, then @ +  
and Y + at z1 are generally non-zero, so AR(r, , O), given by (27b), will generally not 
vanish. 

Similar arguments as given in paper II lead to the conclusion that we may write 
for the upgoing wavefield at rA : 

WA7 4 = Qo(rA7 4 + AQ-(rA7 4, (274 
where the magnitude of AQ-(rA , w )  is proportional to multiply reflected waves. 
Hence, by neglecting AQ-(rA , O), we obtain for the upgoing wavefield at rA 
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Depending on the choice of the source for the Green’s functions, R- can represent 
either U; for rn = 1, 2, 3, or CD- or Y;. We consider the latter two cases. If the 
Green’s functions have a P-wave source at rA, then R -  represents the upgoing 
P-wave potential W ( r A ,  O). If, in addition, the wavefield is generated by P-wave 
sources below z1 then, analogous to (21a), equation (28) may be approximated by 

With similar arguments, for S-wave sources below zl, (28) may be approximated by 

Summarizing, one-way elastic Rayleigh II integrals (29a) and (29b) describe 
inverse wavefield extrapolation (towards the source) from acquisition surface So 
(z = zo) to subsurface point A. Evanescent waves are neglected. In the case of an 
inhomogeneous, anisotropic medium, amplitude errors are introduced into the 
reconstructed upgoing wavefield at A. These errors are of the same order as the 
negligence of multiply reflected and multiply converted waves. First order amplitude 
effects, related to geometrical spreading and transmission/conversion at interfaces 
are all incorporated. In conclusion, assuming weak to moderate contrasts, integrals 
(29a) and (29b) describe non-recursive ‘ true amplitude ’ inverse extrapolation of 
primary P- and S-waves, respectively. In the situation of significant contrasts the 
‘error term’ AR-(rA, O) should be estimated in an iterative way. Further discussion 
is beyond the scope of this paper. The reader is referred to Wapenaar and Berkhout 
(1989). 

EXAMPLES OF ELASTIC INVERSE WAVEFIELD EXTRAPOLATION 
The practical implementation of elastic inverse wavefield extrapolation consists of 
the following steps (see also Fig. 1): (i) decomposition of the surface measurements; 
(ii) elimination of the surface multiples ; (iii) computation of the inverse extrapolation 
operator (the Green’s function); (iv) application of this operator to the decomposed 
surface measurements. 

We discuss these steps with the aid of two numerical 2 0  examples. The first 
model consists of two half-spaces connected by a horizontal interface at z = 600 m 
shown in Fig. 7a. A P-wave (secondary) source is buried in the subsurface at a depth 
of z = 1600 m. The response of this source at surface level zo = O is shown in 
Figs 7b and 7c. They represent the vertical and horizontal component of the particle 
displacement, U&, z o ,  t) and ux(x, zo, t), respectively, both as a function of the 
lateral coordinate x and time t. The objective of the extrapolation process is to 
inverse extrapolate the recorded data from level zo , through the subsurface, towards 
level zA and thereby removing all propagating effects from this subsurface. It is 
general practice in seismic processing to use the vertical component of the displace- 
ment as a measure for the P-wave response, which is of course not correct. In addi- 
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C, = 3800 m/s 
c, = 2200 m/s 
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- 1600 
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(Cl 

FIG. 7. (a) Two homogeneous half-spaces connected by a horizontal interface at z = 600 m. 
The black dot marks the position of a buried P-wave source at z = 1600 m. The crosses mark 
a receiver array at level zo . (b) Recorded vertical displacement at level zo (pseudo P-data). (c) 
Recorded horizontal displacement at level zo (pseudo SV-data). 

40 
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FIG. 8. (a) Acoustically inverse extrapolated pseudo P-data at zA  . (b) Exact upgoing P-wave 
at zA . (c) Maximum amplitude per trace of Fig. Sa (dotted line) and exact result (solid line), 
Fig. 8b. 
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FIG. 9. (a) Decomposed upgoing &data at level z,, (true P-data). (b) Decomposed upgoing 
$,-data at level z,, (true SV-data). (c) Elastically inverse extrapolated upgoing P-data at z A .  (d) 
Exact upgoing P-wave at z A .  (e) Maximum amplitude per trace of Fig. 9c (dotted line) and 
exact result (solid line), Fig. 9d. 
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2. s 

FIG. 9 (continued) 

tion to that, acoustic Green’s functions are used to extrapolate these pseudo P-data 
@,-data). Figure 8a shows the result of acoustic inverse extrapolation applied to the 
pseudo P-data of Fig. 7b. These inversely extrapolated data simulate the direct 
P-wave, measured at depth level z A ,  above the P-wave source. For comparison in 
Fig. 8b the exact direct P-wave at level zA is depicted. In Fig. 8c the amplitude 
cross-sections are compared. From these results we may conclude that the acoustic 
approach to inverse extrapolation of elastic data is not valid (artifacts in Fig. 8a; 
poor amplitude match in Fig. 8c). 

Next we discuss the full elastic approach. First we decompose the surface mea- 
surements of Fig. 7 into one-way P-wave and S-wave potentials. The decomposed 
data at z = zo are shown in Figs 9a and 9b. They represent the upgoing potentials 
for P- and SV-waves, cp-(x, zo , t )  and J/; (x ,  zo , t), respectively (for the 2D-situation 
we denote S,-waves as SV-waves). Because surface zo is reflection free we can omit 
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the multiple elimination step. A discussion of the decomposition and elastic multiple 
elimination is beyond the scope of this paper. The reader is referred to Wapenaar et 
(1990). 

To compute the elastic Green’s functions we can in principle use any accurate 
forward modelling algorithm. In paper II we used the Gaussian beam method; here 
we use an elastic finite difference scheme (Kelly et al. 1976) to model the elastic 
Green’s functions. In the frequency domain, we apply (29a), i.e. we apply the model- 
led elastic Green’s functions to the true P-wave response (Fig. 9a). It can be seen 
from the inverse extrapolated result in Fig. 9c that the artefact is no longer present. 
In Fig. 9e the amplitude cross-section of Fig. 9c is compared with the amplitude 
cross section of the exact result (Fig. 9d). Note the significant improvement, com- 
pared with Fig. 8c. Also note that the amplitudes only match in the middle part. 
This is not a limitation of the inverse operator but of the finite aperture. 

We did a second experiment on this model. Now, instead of using a buried 
P-source we use a buried SV-source. The response of this source at surface z = zo is 
shown in Figs 10a and lob. Again in accordance with seismic practice, we first 

o. s 

2. s 

o. s 

2. s 

FIG. 10. Data related to a buried SV-source in Fig. 7a. (a) Recorded vertical displacement at 
level zo (pseudo P-data). (b) Recorded horizontal displacement at level zo (pseudo SV-data). 
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o. s 
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o. s 

2. s 

FIG. 11. (a) Acoustically inverse extrapolated pseudo SV-data at z A .  (b) Exact upgoing 
SV-wave at zA .  (c) Maximum amplitude per trace of Fig. 1la (dotted line) and exact result 
(solid line), Fig. 1 lb. 
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applied ‘acoustic’ inverse extrapolation (based on the S-wave velocity) to the pseudo 
SV-data @,-data). It can be seen from Fig. l l a  that, just as in the first example, 
there is an artefact present in the inverse extrapolated data, but now this concerns 
the first event in the data which corresponds to the converted P-data in Fig. lob. 
Applying (29b) to the decomposed upgoing SV-wave potential (Fig. 12b) results in 
the data set depicted in Fig. 12c. It can be seen that now the artefact has disap- 
peared. We see from Fig. 12e that there is still an amplitude mismatch within the 
aperture. Apparently the assumption of ‘moderate contrasts ’ is violated. 

In the last experiment we use a more complex model. The model is displayed in 
Fig. 13a. A plane P-wave source is buried at the depth of z = 2000 m. The response 
at zo is shown in Figs 13b and 13c. Using equation (29a) with elastic Green’s func- 
tions and the decomposed P-data (Fig. 14a) results in the data set depicted in 

FIG. 12. (a) Decomposed upgoing &data at level zo (true P-data). (b) Decomposed upgoing 
$,-data at level zo (true SV-data). (c) Elastically inverse extrapolated upgoing SV-data at zA . 
(d) Exact upgoing SV-wave at zA . (e) Maximum amplitude per trace of Fig. 12c (dotted line) 
and exact result (solid line), Fig. 12d. 
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FIG. 12 (continued) 
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zo x x x x x x x x x x x x x  x x x x x x x  
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layer nr velocities 

Cp = 2600 m/s + Cs = 1500 m/s 
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FIG. 13. (a) Complex overburden. A plane P-wave source is buried at z = 2000 m. (b) 
Recorded vertical displacement at level zo (pseudo P-data). (c) Recorded horizontal displace- 
ment at level zo (pseudo SV-data). 
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Fig. 14c. Note that the distorting propagation effects of the elastic overburden have 
been properly removed (compare with Fig. 13b). The amplitude match with the 
exact result is very good (Fig. 14e). 

Finally, using the same model we now consider a buried plane SV-wave source 
at z = 2000 m. The response at level zo is shown in Figs 15b and 1%. Using (29b), 
extrapolation of the decomposed SV-data (Fig. 16b) results in the data set displayed 
in Fig. 16c. The distorting propagation effects of the elastic overburden have been 
removed for the greater part (compare with Fig. 1%). The amplitude match 
(Fig. 16e) is less accurate than in the P-wave example (Fig. 14e). Again, apparently 
the assumption of ‘moderate contrasts ’ is violated. 

.6 s 

2. s 

.6 s 

2. s 

FIG. 14. (a) Decomposed upgoing &data at level zo (true P-data). (b) Decomposed upgoing 
$,-data at level zo (true SV-data). (c) Elastically inverse extrapolated upgoing P-data at z A  . 
(d) Exact upgoing P-wave at z A .  (c) Maximum amplitude per trace of Fig. 14c (dotted line) 
and exact result (solid line), Fig. 14d. 
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FIG. 14 (continued) 
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FIG. 15. (a) Complex overburden. A plane SV-wave source is buried at z = 2000 m. (b) 
Recorded vertical displacement at level zo (pseudo P-data). (c) Recorded horizontal displace- 
ment at level zo (pseudo SV-data). 
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inverse extrapolated 'A 
l i l l i l l l l l l l l ! l l l l l l l l l l l l l l l l l l l l l l l l l l I  

.6 s 

2. s 

o. s 

1 
FIG. 16. (a) Decomposed upgoing +-data at level zo (true P-data). (b) Decomposed upgoing 
$,-data at level zo (true SV-data). (c) Elastically inverse extrapolated upgoing SV-data at zA . 
(d) Exact upgoing SV-wave at zA . (e) Maximum amplitude per trace of Fig. 16c (dotted line) 
and exact result (solid line), Fig. 16d. 
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FIG. 16 (continued) 

CONCLUSIONS 
1. We have introduced Green’s functions for P- and S-waves in 3D inhomoge- 

neous anisotropic solid media. rq, &, T A ,  w )  represents the monochromatic P-wave 
response at ‘observation point’ r related to a P-wave source at Green’s ‘source 
point’ rA (see Fig. 3d). ï*,& T A ,  O) represents the monochromatic S-wave 
response at ‘observation point’ r, related to an &-wave source at Green’s ‘source 
point’ rA (an $,-wave is polarized in the plane perpendicular to the h-axis, see 
Fig. 3h). These Green’s functions satisfy the following reciprocity relations 

rp>, &I3 9 r A  9 4 = rq, &A 9 T B  9 4 (304 
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A 
FIG. 17. Forward extrapolation of P- or S-waves from zo to A (equation 31). 

and 

'$Ir,  $Ih(rB 3 ' A  Y ml = r$Ih, $It(rA 7 TB Y w ) ~  (30b) 
where TJIk, Jlh represents the k-component of rJI, S h .  

P- and S-waves (Fig. 17) 
2. We derived one-way elastic Rayleigh II integrals for forward extrapolation of 

WrAY 4 = 2 11-r --$ [(%)@+I 20 dx dy (31a) 

and 

(31b) '-I'&A, 4 x 2 1I-r --$ [ (7) $Ih * Y +] dx dy. 
20 

,.' % 

A 
FIG. 18. Inverse extrapolation of P- or S-waves from zo to A (equation 32). 
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Assuming P-wave sources in the upper half-space z < zo , equation (31a) expresses 
the (monochromatic) P-wave at rA (in the lower half-space z 2 zo) in terms of the 
downgoing P-wave at zo and the upgoing Green's P-wave at zo . Assuming S-wave 
sources in the upper half space, (31b) expresses the (monochromatic) S,-wave at rA 
in terms of the downgoing S-wave at zo and the upgoing Green's S-wave at zo . 

3. We derived one-way elastic Rayleigh II integrals for inverse extrapolation of 
P- and S-waves (Fig. 18) 

gD-(r,, O) x 2 5 [(%)*a-] dx dy - m  20 

and 

ï';(rA, O) x 2 II'm 5 [(%)* * 'I-] dx dy. 
- m  20 

Assuming P-wave sources below z A ,  (32a) expresses the upgoing P-wave at rA in 
terms of the upgoing P wave at zo and the back-propagating upgoing Green's 
P-wave at zo. Assuming S-wave sources below z A ,  (32b) expresses the upgoing 
S,-wave at rA in terms of the upgoing S-wave at zo and the back-propagating 
upgoing Green's S-wave at zo . 

The underlying assumption for (31) and (32) is that the contrasts in the inhomo- 
geneous, anisotropic medium between zo and zA are weak to moderate. For the 
examples that we showed, this assumption appears to be more severe for S-wave 
extrapolation than for P-wave extrapolation. In the situation of significant contrasts 
the results can be improved by estimating the 'error term' A12-(rA, O) in (27d) in an 
iterative way. 

We expect that the forward and inverse one-way extrapolation operators for 
primary P- and S-waves will play a major role in the practice of prestack migration 
of decomposed elastic data (Berkhout and Wapenaar 1988, see also Fig. 1). 
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APPENDIX A 

One-way elastic wave equations for P- and S-waves 

reads (Pilant 1979) 
In a homogeneous, isotropic source-free region the full elastic wave equation 

K,V(V * v) -,UV x v x U + pozu = O, (Al) 
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where K c  = I + 2p. We define Lamé potentials 
tively, according to 

and Y for P- and S-waves, respec- 

U & (p02)-'[va + v x Y ] ,  (A24 

V . Y G 0 .  (A2b) 

where 

The factor (pu2)-' is generally omitted. The reason that we use this factor is 
because in the limiting case of an ideal fluid (p  = O) the Lamé potential a, as defined 
in (A2a), represents the acoustic pressure. This can be clearly seen in (A5a) below. 
From (A2a) and (A2b) we obtain 

v * U = ( p d ) - W D  (A3a) 
and 

v x U = (poZ)-'V x v x Y ,  

v x U = -(pw2)-'v2Y. 

or, with (A2b) 

Substituting these expressions in (Al) yields two independent equations for P- and 
S-waves, respectively, 

and 

V2Y + ($)Y = O 

or 

From (A3) and (A4) we obtain 

@ =  -K,V*U 

or 

O =  - K ,  aiui 

Y = p V x U  

Y, = - p E k i j  ajui. 

and 

or 
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Throughout this paper, (A5a) and (A5b), respectively, are used as alternative defini- 
tions of P- and S-wave potentials. 

In the wavenumber-frequency domain (k , ,  k , ,  z ;  O), (A4a) and (A4b) may be 
written as 

and 

respectively, where 

and 

Now the one-way wave equations follow immediately: 

-- - f j k , , , & *  a&* 
aZ 

and 

With definitions (A24 (A2b) and one-way wave equations (A7a) and (A7b), we may 
write for the displacement in the wavenumber-frequency domain 

B* = fi; &* + e:s*, (A84 

(A8b) 

where - 
- j k , q :  - j k , Y ?  f j k Z , , q :  = O, 

and 
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Finally we give a similar expression for the traction in the wavenumber-frequency 
domain 

t: = ep @* + @: Qf. 

E P  - - P  P 

(A94 
Here operators and E,' are related to operators fi; and &:, respectively, via 
the stress-displacement relations in the wavenumber-frequency domain, according to 

(A9b) f -gin* 

where 

APPENDIX B 

Substitution of the one-way elastic wave equations in the two-way elastic 
Kirchho#-Helmholtz integral 

Applying the 2 D  version of Parseval's theorem (Dudgeon and Mersereau 1984) 
to elastic Kirchhoff-Helmholtz integral (17) yields 

where the tilde (- ) denotes the wavenumber-frequency domain : 

U* = U * ( k , ,  k , ,  Z; U) 

%,I = t : (k , ,  k , ,  Z; U) 

and where the prime (') denotes that k,  and k,  are replaced by - k ,  and - k y ,  
respectively : 
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We can now elegantly make use of the one-way wave equations for P- and S-waves 
(see also Appendix A) 

O* = f i p *  + p,I it’, 
?; = E,”$* + E***:, 
G;; = - f i+ ]TI -  -fi+fl- 

(B2a) 

(B2b) 

(B24 

- S  

P Q . n  -s $,n 

and 

at z = zo . With the definitions in Appendix A it can be verified that 

cez;* * 6- - * ?ilz0 = o. (B34 
This equation expresses that at z = zo the upgoing Green’s functions do not 
‘interact’ with the upgoing part of the wave field (waves that were reflected in the 
lower half-space z > zo). Furthermore it can be verified that 

2 
[&yn * 0’ - G;; * ?z]20 = - ]jk2, fGn 5’ + jkz,  f;Tn * *+Iz0. (B3b) 

P O Z  

Substitution of (B3a) and (B3b) into (Bla) yields 

a(rA, o) = 2 (L)’ JI-: [ jk2, FGn 6’ + jkz ,  fKn * q+]zo dk, dk, . (B4) 

Substituting one-way wave equations (A7a) and (A7b) and applying Parseval’s 
theorem again yields the one-way elastic Rayleigh integrals (19a) and (19b). 

p o 2  2n 
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