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Wave field extrapolation including critical angle events in modeling, migration and 
inversion can be handled with algorithms based on both the one-way wave equations and the 
two-way wave equation. It is shown that for l - D  inhomogeneous media, critical angle events 
as well as multiple reflections may elegantly be included in pre-stack modeling, pre-stack 
migration and velocity inversion. For 2-D and 3-D inhomogeneous media a powerful pre- 
stack migration scheme can be developed which includes critical angle events as well as 
multiple reflections. Finally, suggestions for practical applications are given. 

1. INTRODUCTION 

It has been shown by Berkhout (1982) that a seismic experiment can be elegantly 
described by a sequence of independent one-way processes, which is schematically 
represented by 

S+ W +  4 R A  W -  + D+ P. (1.1) 
A wave field, generated by sources S at the surface, propagates downward into the 
earth, which is described by one-way wave field extrapolation operator W'. In the 
subsurface this wave field is reflected, described by R, and propagates upward to the 
surface again, described by one-way operator W - .  At the surface the wave field is 
registered by detectors D, resulting in a seismic section P. This simplified model is 

* Received December 1984, revision accepted July 1985. 
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valid for sub-critical angle events only, as interaction between downgoing and 
upgoing waves is neglected. Based on this model, Berkhout discussed modeling as 
well as migration schemes for sub-critical data in 1-D, 2-D and 3-D inhomogeneous 
media. We generalized relation (1.1) (Wapenaar and Berkhout 1985) such that criti- 
cal angle events may be included in 1-D inhomogeneous media, according to 

S+ $4'"' --t 9- %'- 4 D + P. (1.2) 
Here %'+ and $4'"- represent WKBJ one-way wave field extrapolation operators 
which include sub-critical as well as critical angle events, while 9 describes the 
reflectivity at the turning point. This improved one-way approach breaks down for 
2-D and 3-D inhomogeneous media. Therefore, in part I1 (Wapenaar and Berkhout 
1986a) we discussed the two-way approach to wave field extrapolation, which is 
schematically represented by 

Here [P, p - l  d,PIT describes the total wave field, while W describes the two-way 
wave propagation effects (downgoing source waves and upgoing reflected waves) 
between two depth levels. (1.3) holds for subcritical as well as critical angle events in 
1-D, 2-D and 3-D inhomogeneous media. In part I11 we present various pre-stack 
modeling, migration and inversion algorithms based on (1.2) and (1.3). For notation 
convenience we often denote a wave field P(x, y, zi, CO) in the space-frequency 
domain as P(z,) or P, while a wave field P(k, ,  k , ,  zi, CO) in the wave number- 
frequency domain is often denoted as P(z,) or P. Similar conventions are used for 
operators. 

2. MODELING SCHEME BASED O N  T H E  ONE-WAY 
WAVE EQUATIONS 

We discuss a recursive modeling scheme based on the WKBJ one-way wave equa- 
tions for l-D inhomogeneous media, where primary and multiple energy as well as 
critical angle events are included. A similar scheme for sub-critical angle events in 
2-D and 3-D inhomogeneous media is discussed by Berkhout (1982). 

We consider a horizontally layered medium consisting of M (vertically 
inhomogeneous) macro layers (fig. 1). We assume homogeneous half spaces for z < 
zo and z 2 zM. Throughout this paper, the z-axis is pointing downward. In layer 
rn + 1, with z ,  s z < z,+~,  the propagation velocity and the density is given by 
c,+ l(z) and pm+ l(z), respectively. These are continuous monotonous functions of 
depth, with vanishing gradients in the vicinity of the interfaces. Notice that the 
concept " vicinity of an interface " is related to the seismic frequency content. This 
means that the assumed gradient-free area around the interfaces is proportional to 
the largest local wave length under consideration. 
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In the wave number-frequency domain (k,, k,, w), modeling consists of the fol- 

1. given the impulse response Z(z,+ 1) for the lower half space z 2 z,+ then 

lowing steps: 

the primary waves in layer m + 1 can be modeled according to 

W‘O’(Zrn) = m ’ ( Z m ,  zm+1)CZ(zm+l - E )  + Rzm+1)1@++(zrn+l, Zrn), (2.1) 

with E+O.  The extrapolation operators m+ and @- as well as the reflection 
operator I? are discussed below; 

2. given w(o)(zrn), then the multiples related to interface z = z ,  can be optionally 
included according to 

Z(zrn) = [ 1 - P ) ( Z m ) I ?  -(zrn)] - I P ( z m ) .  (2.2) 

Multiple generation, as described by (2.2), is schematically shown in fig. 2. Notice 
that the reflection operator I?-(zm) = -I?(z,) describes reflection at the lower side of 
interface z ,  . 
Steps 1 and 2, which describe the total modeling procedure for layer m + 1, should 
be applied recursively ; 

3. the procedure (for each k,, k, and w-value) starts at the shallowest level z ,  
where total reflection occurs, or at the maximum depth z = zM if total reflection 
does not occur. 
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Fig. 2. Feed-back system for multiple generation at interface m. 

4. when the surface z = zo has been reached, then the source and detector 
properties can be included, according to 

P"&G(zO) = @zO)~(zo)S"+(zO), (2.3) 

where s"+(zo) represents the downgoing source pressure wave, B(zo) represents the 
detector transfer function and P"&(zo) represents the detected upgoing pressure 
wave in a Common Shot Gather (CSG); 

5 .  when this modeling procedure has been applied for all wave numbers and 
frequencies, then the space-time data (one shot record) are obtained after inverse 
Fourier transforms. 

Discussion 
The extrapolation operators @in (2.1) are composed of N sub-operators, according 
to 

(2.4a) 
N - 1  

@+(z,+l, z,) = n W'+[z,  + (i + 1)d, 2 ,  + id], 

W ( z m ,  Z,+J = n W [ z ,  + id, z ,  + (i -t 1)d], 

i = O  

N - 1  

(2.4b) 

with S = (z,+ - z,)/N. If in each micro layer [z ,  + id 5 z < z ,  + (i + l)d] the 
operator fi,(z) = 02/c2(z) - k: - kf may be linearized in z ,  the sub-operators rep- 
resent LG-operators for sub-critical angle events given by (5.1 la, b) in part I if R,(z) 
is sufficiently large positive; they represent WKBJ operators @+ and @- for 
critical angle events given by (7.6c, d) in part 1 if fi,(z) is small positive. Notice that 
we assume propagating waves for z ,  5 z < z,+ 1. 

Recall that the LG-operators are based on wave functions, developed by Liou- 
ville and Green in 1837, which hold away from a turning point. The WKBJ- 
operators are based on wave functions, developed by Wentzel, Kramers, Brillouin 
and Jeffreys in 1924-1926, which hold close to and at a turning point (see part I). 

i = O  

An expression for Z(z,+ - E), e+  0, in (2.1), is given by 

(2.5a) 
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where T + ,  7- and R” describe the transmission and reflection properties of the 
interface, with I? given by (AI.3b) in part I. 

The shallowest level z ,  where total reflection occurs, as introduced in step 3, can 
represent an interface or a turning point. In the latter case, z ,  generally lays inside a 
macro layer ( z ,  < zt < z , + ~ ) ,  with fi,(z,) = 0. Now the recursion procedure starts 
with 

W‘O’(z,) = m-(z , ,  z ,)&(z,)W++(zt,  Z J ,  

where &(zJ describes the reflectivity at the turning point, given by (7.9b) in part I, 
while the operators @+ and 6f- are again composed of LG and WKBJ operators, 
similar as in (2.4). 

Notice that in the critical angle modeling scheme as introduced in this section, 
evanescent waves are neglected. This is justified if-as assumed- 

(i) macro layers are considered; 
(ii) the velocity gradients vanish in the vicinity of the interfaces, so no turning 

(iii) the velocity functions are continuous monotonous, so not more than one 

A similar modeling scheme for piecewise smooth models is presented by Kennett and 
Illingworth (1981). The main difference of both approaches lies in the formulation. 
Our approach is basically founded on model (1.2): 

points are present in this area; and 

turning point is present in each macro-layer. 

S + W + + W + W - + D + P  

and therefore it provides an excellent starting point for the critical angle migration 
scheme, as discussed in section 5. 

For more complicated velocity models, a two-way wave equation modeling 
scheme is preferred. This is discussed in the next section, where also a numerical 
example is given for the more general case. 

3.  MODELING S C H E M E  BASED O N  T H E  T W O - W A Y  W A V E  EQUATION 
In this section we discuss a recursive modeling scheme, based on the two-way wave 
equation, which includes primary and multiple energy as well as critical angle 
events. 

We consider a horizontally layered medium consisting of I (inhomogeneous) 
micro layers, as is shown in fig. 3. We assume homogeneous half-spaces for z < zo 
and z 2 z I .  In layer i + 1, with zi  I z < z ~ + ~ ,  the propagation velocity and density 
be given by ci+ l ( z )  and pi+ l (z) ,  respectively. As we consider micro layers we assume 
that these functions may be linearized in z.  

In the wave number-frequency domain, modeling consists of the following steps : 

1. given the total field O ( Z ~ + ~ ) ,  all propagation eflects for layer i + 1 can be 

(3.1) 

modeled according to 

OCzi) = Q ( Z i  9 zi + , )Q(Zi + 11, 

with 0 = [F, p - l  d Z F l T  = [F, -joKlT, and being given by (3.9) in part 11. 
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Fig. 3. Acoustic model of the subsurface for the two-way wave equation modeling scheme 
which includes critical angle events. 

Step 1, which describes the total modeling procedure for layer i + 1, should be 

2. the procedure starts at z = zr  by specifying o ( z I ) ,  according to 

applied recursively; this is allowed because 0 is continuous for all depths; 

Q ( Z r )  = Uz,)Rz , ) ,  (3.2) 

with i' = [P"', P"-IT, and 
space z 2 z I  is homogeneous, the upgoing wave P"-(z,) should be taken zero; 

lated from @z,) = [P"(z,), - j c ~ q ( z ~ ) ] ~ .  We consider two cases; 

being given by (3.3b) in part 11. Since the lower half 

3. when the surface z = z o  has been reached, the impulse response can be calcu- 

(i) we define the impulse response x ( z o )  which describes the detected upgoing 
pressure wave due to an impulsive downgoing pressure source wave, accord- 
ing to 

P(z,) = [13+(Z0),  B-(zo)]' = z - y z o ) Q ( z o ) ,  

8(0)(z , )  = P-(zo)/ f3+(zo) ,  

r?(zo) = [ 1 - Z(O'(Z,)R -(zo)]  - 1 Z ( O ) ( Z o ) ,  

(3.3a) 

(3.3b) 

(3.3c) 

where we assumed micro layer 1 to be homogeneous; 
(ii) if zo  is a (pressure) free surface, we prefer an admittance impulse response 
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y(z,) which describes the detected total particle velocity due to an impulsive 
pressure source. We may simply write 

RZ,) = E(ZO)/&O)> (3.4) 
since at a free surface the total pressure is given by the source pressure only; 
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Fig. 4. Critical angle data, modeled with the two-way wave equation. (a) Subsurface velocity 
model (density is constant). (b) Ray-representation. (c) CSG in x, t-domain. 
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4. next the source and detector properties can be included. Again we consider 

(i) we write for the detected upgoing pressure wave in a Common Shot Gather 

two cases : 

k & O )  = ~ ( z o ) ~ ~ z o ) s " + ( z o ) ,  (3.5) 

with s"+(z,) and 6 ( z o )  defined in section 2 ;  

surface we may write 
(ii) for the detected particle velocity in a Common Shot Gather at a pressure free 

K,  CSG(Z0)  = &o) R Z O ) % d >  (3.6) 

where g(zo) represents the pressure source and d(z,) represents the particle 
velocity detector transfer function; 

5. when this modeling procedure has been applied for all wave numbers and 
frequencies, the space-time data are obtained after inverse Fourier transforms. 

Notice that in step 2 the downgoing wave P+(z,) can be chosen arbitrarily, e.g., 
P(z,) = [l, O I T ,  because in step 3 the ratios P"-/p+ or E/P are considered. 

A two-dimensional Common Shot Gather was modeled for the 1-D subsurface 
configuration shown in fig. 4a. Figure 4b shows the ray representation, while fig. 4c 
represents the CSG in the space-time domain (x, t). Notice that sub-critical angle 
events (2, 4) as well as critical angle events (1, 3) and multiple reflection (5) are 
clearly visible in fig. 4c. Of course, more multiples are present; they are not visible 
due to their very low amplitudes. 

The advantage of the scheme introduced in this section over that introduced in 
the previous section is that critical angle events, multiple reflections, transmission 
effects as well as evanescent energy are all included in the simple recursion algo- 
rithm (3 .1)  and that arbitrary t-D piecewise continuously layered media can be 
handled (compare figs 1 and 3). Based on the same concept, a two-way wave equa- 
tion modeling scheme for full elastic media is presented by Wapenaar and Berkhout 
(1986b). 

I 

4. PRE-STACK MIGRATION,  GENERAL CONSIDERATIONS 
In principle all migration schemes are based on the following two steps: 

1. downward extrapolation; 
2.  imaging. 

We briefly discuss these steps for various migration schemes. 
The best known scheme is the post-stack migration scheme based on the explod- 

ing reflector model (Loewenthal, Lu, Roberson and Sherwood 1974). The stacked 
(pseudo zero-offset) data are considered as an upgoing wave field P-(zo)  which is 
radiated at t = 0 by sources inside the medium. The source strength distribution is 
assumed to be proportional to the zero-offset reflectivity distribution R(x, y ,  z). 

For post-stack migration, the two basic steps can be specified as follows: 
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1. downward extrapolation involves inverse extrapolation of the upgoing wave 

2. imaging involves integration over all frequencies in order to resolve the wave 
field using half the propagation velocity, yielding Pp(zi); 

field at t = 0, according to 

(4.1) 

The procedure is repeated (recursively or non-recursively) for all depths zi  . 
Of all pre-stack migration schemes, the Single Shot Record Inversion (SSRI) 

scheme proposed by Berkhout (1982) seems to be the most promising one, for both 
2-D and 3-D applications, since individual seismic experiments (which obey the 
wave equation) are migrated, while true Common Depth Point (CDP) stacking is 
accomplished. 

We specify the two recursion steps for pre-stack migration by SSRI. 

1. Downward extrapolation should be applied to a single CSG. We consider 

(i) apply forward extrapolation to the downgoing source wave, based on the 
one-way wave equation for downgoing waves, yielding S+(zi). Apply inverse 
extrapolation to the upgoing detected wave, based on the one-way wave 
equation for upgoing waves, yielding Pp(zi); 

(ii) alternatively, apply downward extrapolation to the total wave field, based on 
the two-way wave equation, followed by decomposition, yielding S+(zi) and 

The first approach is very robust, and may handle sub-critical as well as critical 
angle events (the latter only in 1-D inhomogeneous media). The second approach 
may handle multiple reflections, transmission effects, wave conversion (optionally), 
and sub-critical as well as critical angle events, but is less robust. 

2. Imaging can be applied either in the space-frequency domain or in the wave 
number-frequency domain : 

(i) in the space-frequency domain, ZO-imaging involves integration of the Zero 
Offset (ZO) impulse response X over all frequencies in order to resolve the 
ZO-reflectivity at the current level (downgoing and upgoing waves are time- 
coincident), according to 

two cases: 

P - (ZJ. 

where 

X(X, y, z i ,  0) 2 P-(x, Y ,  zi, ~ ) / S + ( X ,  Y ,  z i ,  (4.2b) 

in some stable sense. The integration is carried out for constant x and y ;  
(ii) alternatively, imaging in the wave number-frequency domain involves integra- 
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tion of the Plane Wave (PW) impulse response 8 over all frequencies, in order 
to resolve the PW-reflectivity at the current level, according to 

1 '  
( ~ ( p x  9 P y  > zi)> = - j ~ ( k x  > k y  > zi 9 do,  (4.3a) 

2n w 

where 

r f ( k x ,  k y ,  zi, 0) P " - ( k x ,  k y ,  zi, w)/S"+(kx, k y ,  zi, 0) (4.3b) 

in some stable sense. The symbol i' denotes that the integration is carried out 
for constant px = k,/m and p y  = k , /o  (constant propagation angle). 

In media with strongly laterally varying reflection properties, ZO-imaging 
should be applied according to (4.2). On the other hand, in media with purely 
vertically varying medium properties, PW-imaging should preferably be applied 
according to (4.3), particularly when angle dependent turning point problems are 
considered. When both lateral and vertical variations of the medium properties are 
important, then the choice of the imaging principle depends on the relevant migra- 
tion objectives. 

The procedure is repeated (recursively or non-recursively) for all depths zi. In 
case of laterally varying reflection properties, steps 1 and 2(i) should be repeated for 
all CSG's. The individual migration results can be summed afterward (true CDP- 
stacking), optionally after a residual NMO-correction if the input velocity model is 
in error. 

5. P R E - S T A C K  M I G R A T I O N  S C H E M E  BASED O N  T H E  O N E - W A Y  
W A V E  EQUATIONS 

De Graaff (1984) discussed a single record pre-stack migration scheme for sub- 
critical angle events in 2-D inhomogeneous media, based on the one-way wave 
equations and ZO-imaging. In this section we discuss a single record pre-stack 
migration scheme which includes critical angle events, based on the WKBJ one-way 
wave equations for 1-D inhomogeneous media and PW-imaging. We follow the 
approach discussed in section 4. The scheme is based on inversion of the modeling 
scheme discussed in section 2. When interface related multiples as well as transmis- 
sion effects are neglected, then this modeling scheme can be summarized by 

P",G(ZO) = ~ ( z o ) R z o ~ ~ + ( z o ) ~  (5.la) 

where 

S(Zo) = c m - ( z o ,  z,)R(z,)@+(z,, zo). 
m 

(5.lb) 

The non-recursive operators m + ( z m ,  zo) and @-(zo, z,) are composed of many 
sub-operators @+[z, + (i  + 1)6, z, + id] and @-[z, + id, z, + (i + l )S]  for micro 
layers (see fig. l), which may represent either LG or WKBJ operators #+ and ",&-. 
The reflection operator R(z,) can either describe reflection at an interface z ,  
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between two macro layers, or total reflection &(z,) at a turning point z, inside a 
macro layer. According to this model, the forward extrapolated source wave follows 
from 

(5.2a) s"+(zm + id) = W+(zrn  + id, zo)s"+(zo) 

while the inverse extrapolated detected wave follows from 

P ( z ,  + id) = [d(zo)W-(zo, z, + id)] -1F&(Zo). (5.2b) 

From (5.1) and (5.2) it follows that the PW-impulse response may be written as 

X(zm + id) e F-(z, + iS)/s"+(z, + id) 

= [W-(zo, z, + i4-1X(z0)[W+(zm + id,  z0)]-', (5.3a) 

where X(zo) is implicitly defined by (5. la). (5.3a) describes non-recursive downward 
extrapolation of the PW-impulse response. Similarly, for 8[z, + (i + l)S] we may 
write 

S[z, + ( i  + l)d] = {W-[zo, z, + (i + l)d]}-~X(zO){W+[zm + (i + 1)d, zo]}-l, 

(5.3b) 

where 

W + [ Z ,  + (i + 1)6, zo] = W+[Z,  + (i + 1)d, z, + id]W+(Z, + id, zo), (5.3c) 

(5.3d) 

Using these results, we propose the following recursive single record pre-stack 
one-way migration scheme, which includes critical angle events : 

1. given the PW-impulse response f ( z ,  + id), then downward extrapolation can 
be applied, according to 

W-[z0, z, + (i + l)d] = W-(zo ,  z, + iS)W-[z, + id, z, + (i + l)d]. 

W[Z, + (i + l)d] 

= P [ z ,  + (i + 116, z, + idlS(z, + id)F+[z, + id, z, + (i + l ) ~ ] ,  (5.4a) 

with 

F"+[zm + id, z, + (i + l)d] = [@+I- '  = {m-[z, + id, z, + (i + 1)d]} *, (5.4b) 

P [ Z m  + (i + 1)d, z, + id] = [W-]-1 = {W+[Z, + (i + 1)6, z, + id]} *, (5.4c) 

where the symbol * refers to complex conjugation; 
2. PW-imaging can be applied, according to 

(5.5) 
Am 

< W [ P ~ ,  ~ y ,  zm + (i + l)dl> = - c' X C k x ,  k y ,  zm + ( i  + 1)6,01, 
2n 0 

where the symbol 1' denotes that the summation is carried out for constant p x  = 
kx/m and p y  = k,/m, and where Am represents the circular frequency sampling inter- 
val. 
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Steps 1 and 2, which describe the total migration procedure for one micro-layer, 

3. the procedure starts at z o ,  where x(zo) is estimated from the CSG, according 

%ZO) = C&Zo)l- '~,,(zo)~s"+(z,)l- ', (5.6a) 

should be applied recursively ; 

to 

(5.6b) 

and 

c@o)l- = [&,)I * /Cl W O )  I 2  + 03 .  (5.6~) 

and c2 represent stabilization constants. The scaling factors in (5.6b, c) may 

4. the procedure stops at the shallowest level where total reflection occurs, or at 

Here 
often be deleted because amplitude errors are less important than phase errors; 

the maximum depth z = zM if total reflection does not occur. 

Discussion 

In the procedure described above it is assumed that the CSG has been transformed 
to the wave number-frequency domain. Both the extrapolation (step 1) and imaging 
(step 2) take place in the wave number-frequency domain. Imaging for constant 
p = kx/w is visualized in fig. 5a, assuming a 2-D situation. Alternatively, the original 
CSG can be slant-stacked ( p ,  z-transformation), followed by a temporal Fourier 
transform, yielding the CSG in the ray parameter-frequency domain ( p ,  0). Now, in 
the operators for downward extrapolation (step l), k,  should be replaced by PO. 
Imaging for constant p (step 2) is visualized in fig. 5b. The final migration output of 
both approaches should be indentical and represent the reflectivity distribution in 

Fig. 5. Two approaches to the plane wave imaging principle. (a) Summation along lines of 
constant kJw in the k , ,  o-domain. (b) Summation along lines of constant p in the p ,  w- 
domain. 
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the ray parameter-depth domain ( p ,  z). Theoretically, the one-way wave equation 
migration scheme assumes the model of fig. 1. In practice, however, sufficient accu- 
racy is obtained when the generalized model of fig. 3 is assumed. Figure 6a rep- 

0 0: 2 0.3 0.4 0.5 0.6 ( 0 )  

p ( s / k m )  

0.2 0.3 0.4 0.5 0.6 

( b )  
Fig. 6. Critical angle data, migrated with the WKBJ one-way wave equations. (a) Slant- 
stacked CSG in p ,  z-domain. (b) Migrated CSG in p ,  z-domain. 

resents the slant-stacked CSG of fig. 4c, while fig. 6b shows the migrated data in the 
p ,  z-domain. The horizontal events (2, 4) represent the reflecting interfaces between 
the macro layers, while the curved events (1, 3) represent the angle dependent 
turning point effects [notice that the multiple reflected critical angle event (5) is not 
present in the migrated data because the migration procedure stops at the shal- 
lowest turning point; see step 41. A further interpretation of fig. 6b is presented in 
section 7. 

Finally, we remark that we derived this migration scheme from the simplified 
modeling scheme (5. l), where interface-related multiple reflections were neglected. In 
principle these multiples can be included in an iterative migration scheme based on 
the modeling scheme of section 2. A discussion is beyond the scope of this paper. 
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Berkhout (1982) gives an iterative migration scheme which properly handles multi- 
ple reflections of sub-critical angle events in 2-D and 3-D inhomogeneous media. An 
alternative approach to the multiple problem in migration is presented in the next 
section. 

6. PRE-STACK MIGRATION SCHEME BASED O N  T H E  TWO-WAY 
WAVE EQUATION 

We discuss a single-record pre-stack migration scheme which includes critical angle 
events based on the two-way wave equation. We consider both ZO-imaging and 
PW-imaging. We follow the approach discussed in section 4. The scheme is based 
on inversion of the modeling scheme discussed in section 3. 

In two-way wave field extrapolation techniques, upward and downward 
extrapolation are principally equivalent : 

(i) in upward extrapolation (modeling), downgoing waves are inversely extrapo- 
lated, while upgoing waves are forward-extrapolated simultaneously; 

(ii) in downward extrapolation (migration)7 downgoing waves are forward- 
extrapolated, while upgoing waves are inversely extrapolated simultaneously. 

This means that the two-way wave field extrapolation operators discussed in 
part I1 can be applied both for modeling and migration applications. Of course, care 
must be taken with respect to evanescent energy. For migration in the presence of 
noise, spatially band-limited operators should be used. The two-way operators in 
the space-frequency domain discussed in part I1 are all band-limited operators. 
When applying the two-way operators in the wave number-frequency domain, then 
extrapolation of evanescent energy should be suppressed for stability reasons. 

We assume that the macro subsurface model may be well approximated by the 
computational model of fig. 7. In layer i + 1, the medium properties pi+ l  can 
be described as the sum of constant reference properties C i + l ,  p i + l  and inhomoge- 
neous deviation properties Aci+ Api+  1.  For this computationally convenient sub- 
surface model we propose the following recursive single record pre-stack two-way 
migration scheme: 

-' 

7.. I 

I 
-1+1 I 

Fig. 7. A computationally convenient subsurface model for the two-way wave equation 
migration scheme which includes critical angle events. 
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1. given the total field Q(zi), then downward extrapolation can be applied 
according to 

(6.la) 

Q = [ P ,  p - ’  a ,PIT = [ P ,  -jwl/zlT. (6.lb) 

2. the total wave field can be decomposed into downgoing and upgoing waves 

P(z i+ , )  = Lp’(zi+l)Q(zi+l),  (6.2a) 

The operator W is discussed below; 

according to 

with 

P = [P+, F I T .  (6.2b) 

The operator L-’  is discussed below. The downgoing source wave S + ( z , + , )  can be 
retrieved from the downgoing wave P + ( z i + J  by means of a “first arrival time 
window”; 

3. for imaging we consider two cases: 

(i) ZO-imaging can be applied according to 

(6.3a) 

where 

X ( X ,  Y ,  z i+ l ,  CO) 2 P-(x ,  Y ,  z i+ l ,  m)/S+(x,  Y ,  z i+ l ,  0) (6.3b) 

in some stable sense. The summation is carried out for constant x and y ;  
(ii) PW-imaging can be applied, according to 

(6.4a) 

where 

(6.4b) 

in some stable sense. The symbol E’ denotes that the summation is carried 
out for constant px = k,/co and p y  = k,/w. 

Steps 1, 2 and 3, which describe the total migration procedure for one micro- 

4. the procedure starts at z = z o ,  where the boundary condition Q(zo) follows 

(i) At a reflection free surface zo we may write 

* -%, k , ,  z i + ’ ,  U)  2 P - ( k , ,  k , ,  zi+’,  w)/S”+(kx7 k , ,  z ~ + ~ ,  4 

layer, should be applied recursively ; 

from the CSG and the source signature. We consider two cases: 

Q(zo) = L(zo)P(zo), (6.5a) 
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where 

P(Z0) = C P + ( Z O ) ,  P-(zo)lT. (6.5b) 

The operator L is discussed below. P+(zo) represents the downgoing source 
wave S+(zo), while P-(zo)  is obtained from PcsG(z0) by inverting the spatial 
convolution 

(6.5~) p&G(x, y ,  z O ,  0) = D(x, y ,  z O ,  U) * p-(x, y ,  z O ,  0) 

in some stable sense, where D(zo) describes the pressure detector properties; 
(ii) at a pressure free surface zo we may write 

Q k o )  = CP(zo), -.M W0)I '. (6.6a) 

Here P(zo) represents the pressure source S(zo), while T/,(zo) is obtained from 
E, csG(zo) by inverting the spatial convolution 

(6.6b) 

in some stable sense, where D(zo) describes the particle velocity detector 
properties ; 

K, C S G ( X ,  y ,  zO > = D(& y ,  zO 9 U)  * K(x? y ,  z O  3 0) 

5. the procedure stops at z = z,; 
6. in case of laterally varying reflection properties, steps 1, 2, 3(i), 4 and 5, which 

describe the total migration procedure for one CSG, should be repeated for all 
CSG's. The individual migration results can be summed afterward (true CDP- 
stacking), optionally after a residual NMO correction if the input velocity model is 
in error. 

The computational diagram of this scheme is presented in fig. 8. 

Discussion 
For the configuration shown in fig. 7, operator W in step 1 represents the first order 
finite difference two-term operator Wi2) in the space-frequency domain, given by 
(5.8) in part 11. In this operator sub-critical as well as critical angle events are 
properly incorporated. For the special situation that lateral variations of the 
medium properties may be neglected, then step 1 should preferably be applied in the 
wave number-frequency domain, with operator %' given by (3.12) in part 11. The 
decomposition operator L-'  in step 2 is given by (2.6d) in part 11. Unfortunately, 
this operator converges slowly and critical angle events are not incorporated. 
However, in practice it will often be sufficient to apply the decomposition in the 
wave number-frequency domain for the reference medium only, with operator z- ' 
given by (3.3d) in part 11. When critical angle events must be incorporated in the 
decomposition as well, then operator g-',  given by (3.14e) in part I1 should be 
used. It should be noted that errors in the decomposed wave field P do not contrib- 
ute to deeper depth levels, since the total field Q is downward extrapolated indepen- 
dently in step 1. 

In step 2 the downgoing source wave should be resolved from the total down- 
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Mocro 
subsurface - 

Shot records 

I 

Downward extrapolation of 
total wave field 

I Decomposition of 
total wave field I 

I Next frequency 

Image for current depth 

I Next shot record 

I Residual N M O A  Combine all migrated 
(optional) shot records 

Fig. 8. Computational diagram of the shot record oriented pre-stack migration scheme, 
based on the two-way wave equation. 

going wave in order to avoid imaging of multiple reflections. This will be demon- 
strated in an example below. 

The imaging procedure in step 3 should be stabilized. This can be accomplished 
by approximating the ZO-impulse response according to 

or by approximating the PW-impulse response according to 

(6.7a) 

(6.7b) 

where cr represents a stabilization constant. For many practical applications ampli- 
tude errors are less important than phase errors so the scaling in (6.7a, b) may be 
deleted in the ZO-impulse response according to 
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Notice that (6.8) is the frequency domain representation for the correlation of the 
downgoing source wave and the reflected upgoing waves. The composition operator 
L in step 4(i) is given by (2.6b) in part 11. For many practical applications, operation 
(6.5a) may be applied in the wave number-frequency domain, with given by (3.3b) 
in part 11. Notice that at a pressure-free surface the composition algorithm is not 
required [step 4(ii)]. 

In case of single detector elements, D(x, y ,  z,, w) = 6(x) G(y)D(co), so convolu- 
tions (6.5~) and (6.6b) may be replaced by multiplications. In this case P-(z,) follows 
from 

at a reflection-free surface [step 4(i)], while V,(z,) follows from 

(6.9a) 

(6.9b) 

at a pressure-free surface [step 4(ii)], where r~ represents a stabilization constant. 
The performance of the algorithm is demonstrated with some simple two- 

dimensional numerical examples. For simplicity we consider PW-imaging in 1-D 
inhomogeneous media. In this case the whole procedure can be applied in the 
ray-parameter frequency domain ( p ,  w). 

Consider the medium shown in fig. 9a, which is bounded by a pressure-free 
surface at 2 , .  The boundary condition a(z,)  = [l?(z,), - j oE(zo ) lT  is shown in 
fig. 9b for one constant p,-value (constant k x / o ) ,  such that sin Q(z,) = p o  c(zo) = 0.5, 
that is, for one oblique plane wave with incidence angle Q(z,) = 30". Here p(z,) 
represents the pressure source wave at zo while &z,) represents the detected particle 
velocity at z,. For clarity the data are shown in the ray-parameter intercept-time 
domain ( p , ,  z). Notice that besides the primary reflections many multiples are 
present. The downward-extrapolated data p(z)  are shown in fig. 9c for all z ,  again in 
the ( p o 7  z) domain. A similar picture could be shown for R(z).  Notice the strong 
resemblance with a Vertical Seismic Profile (VSP) recorded in a vertical bore hole. 
The decomposed data s ' ( z )  and P"-(z) are shown in fig. 9d and e, respectively. 
Notice that the downward-extrapolated upgoing waves p - ( z )  are terminated at the 
reflectors; no upgoing waves are present in the lower half-space. This is a typical 
property of the two-way approach. Finally the imaged result is shown in fig. 9f. 
Notice that the image shows the two reflectors. Multiple energy is not imaged 
because the downgoing source wave S + ( z )  and the upgoing multiple reflected waves 
in P-(z)  do not correlate. 

Consider the continuously layered medium shown in fig. 10a and b, with a 
reflection-free surface at z,. For one oblique plane wave with incidence angle 
O(zo) = 45", the downward-extrapolated data p(z) are shown in fig. 1Oc. The decom- 
posed data .@+(z) and @-(z)  are shown in fig. 10d and e, respectively. Finally, the 
imaged result is shown in fig. 1Of. Notice that the image shows the turning point for 
the critical angle event under consideration. 

Notice that in both examples the imaged results (figs 9f and 10f) represent one 
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Fig. 10. Example of pre-stack two-way wave equation migration, including critical angle 
events. (a) Depth dependent velocity function c(z). (b) Continuously layered medium with ray 
representation of a critical angle event. (c) Downward extrapolated data &). (d) Downgoing 
wave @'(z). (e) Upgoing wave @-(z). (f) PW-imaged result. 

angle of incidence only. If the procedure would be repeated for all angles of inci- 
dence then image representations similar to fig. 6b would be obtained. 

The pre-stack migration scheme based on the two-way wave equation shows 
higher flexibility (2-D and 3 - 0  inhomogeneous media) than the modeling scheme 
presented in section 3 (1-D inhomogeneous media). This is due to the fact that the 
objective of migration (impulse response at zero offset and zero time) is simpler than 
that of modeling (impulse response for all offsets and all times). Notice the following 
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advantages of the pre-stack two-way wave equation migration scheme over conven- 
tional one-way schemes: 

(i) use of the square root operator is avoided; 
(ii) a true CDP-stack is accomplished; 

(iii) transmission effects are included; 
(iv) critical angle events may be properly handled; 
(v) multiple reflected waves may be properly handled. 

It is shown by Wapenaar, Kinneging and Berkhout (1986b) that converted waves 
may be properly handled as well. For a proper handling of multiple reflected (and 
converted) waves, accurate knowledge of the subsurface model is required. As in 
conventional multiple elimination schemes, a small mispositioning of the major 
reflecting boundaries may result in an increase of undesired reflection events, so the 
scheme should preferably be applied iteratively. On the other hand, the generation 
of undesired reflection events may be avoided by spatially filtering (smoothing) the 
abrupt changes in the subsurface model before migration. Of course, multiple reflec- 
ted (and converted) waves will then no longer be properly handled. 

7. VELOCITY INVERSION SCHEME 
A typical property of many inversion techniques is that the abrupt changes of the 
medium properties are retrieved from the data while inversion of the gradual 
changes is highly inaccurate. The reason for this is that most inversion techniques 
make use of sub-critical angle data only, which contain only average propagat ion 
information of the gradual transition zones: waves reflected by a major boundary 
below a gradual transition zone are transmitted through this zone. Local rejlection 
information of a gradual transition zone may be obtained by involving critical angle 
events in the inversion process: critical angle waves are reflected at turning points 
inside a gradual transition zone. We discuss a simple 1-D velocity inversion scheme 
which includes critical angle events. 

Consider again the migrated data of fig. 6b. As in section 5, the curved lines in 
the ray parameter-depth domain ( p ,  z) represent the angle dependent turning point 
effects. For the ray parameter we may write with Snell's law 

p = sin B(z,)/c(z,) = sin B(z)/c(z), (7.la) 

where O(z) represents the depth-dependent propagation angle. At a turning point 
propagation is horizontal [O(zi) = 90'1, so 

(7.lb) 

This means that the turning point reflection curves in the migrated data of fig. 6b 
may be interpreted as (reciprocal) velocity profiles in the slowness-depth domain 
(c-', z) (see also fig. llc). In other words, velocity information of a gradual tran- 
sition zone may be obtained directly from migrated data which contain critical 
angle events. Unfortunately, this velocity information should be available before- 
hand in order to perform the migration properly. Using an incorrect input velocity 
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Fig. 11. Recursive velocity inversion. (a) The first macro layer is undermigrated. (b) The first 
macro layer is correctly migrated, the second macro layer is undermigrated. (c) Both macro- 
layers are correctly migrated. 

profile for migration yields an incorrect (reciprocal) output velocity profile in the 
slowness-depth domain. The velocity inversion procedure described in this section 
aims at deriving the true velocity profile from the input and output velocity profiles 
in a non-iterative way. Clayton and McMechan (1981) proposed an inversion 
scheme, based on iterative migration, where the migration input velocity profile in 
step k + 1 is equal to the average of the input and output velocity profiles in step k. 
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In their migration algorithm use is made of the one-way phase shift operator. The 
inversion scheme is terminated when the output velocity profile matches the input 
velocity profile. 

Based on the migration schemes presented, we propose the following recursive 
velocity inversion scheme: 

1. given the downward extrapolated data at interface z,, migration can be 
applied for macro layer m + 1, according to the algorithm described in sections 5 or 
6, using an estimated migration input velocity profile ch+ l(z). 

2. the output velocity profile C ~ + ~ ( Z )  can be measured from the migrated data, 
for instance by means of coherence calculations. From ch+ l(z) and ck + l(z) the true 
velocity c(z) may be estimated We consider two cases: 

(i) as in the non-recursive procedure of Clayton and McMechan (1981) we may 
write for our recursive inversion procedure 

Ern+l(z) = tCcL+l(z) + ck+l(z)I* (7.2a) 

Notice that this relation is biased (see appendix I). Steps 1 and 2(i) should be 
applied iteratively, with [ch+ l(z)]new = [E,, l(z)]o,d. The iterative procedure 
stops when 

(7.2b) 

where E represents a threshold level; 
(ii) if c;+”,(z) is linear within the macro layer, the unbiased true velocity follows 

directly from C;+~(Z) and C ~ + ~ ( Z ) ,  as is shown in appendix I. Here it is 
assumed that c,+ l(z,) is known. This value can be obtained directly from the 
downward-extrapolated data at interface z,; 

3. after the velocity profile ern+ l(z) has been determined, the data can be 
downward-extrapolated to interface z,+ 1, using either a one-way or a two-way 
wave field extrapolation operator including critical angle events. 

Steps 1, 2 and 3, which describe the total inversion procedure for macro-layer 
m + 1, should be applied recursively; 

4. the procedure starts at z = zo ,  assuming an initial estimate c‘(z) is available 
for all z; 

5. the procedure stops at z = zM. 

Discussion 
Compared to the scheme proposed by Clayton and McMechan (1981), notice the 
following refinements : 

(i) sub-critical as well as critical angle events are properly incorporated both in 
the migration step (step 1) and in the downward extrapolation step (step 3); 

(ii) because the scheme is applied recursively for macro layers, less iteration steps 
are required, particularly as the biased (7.2a) is not applied for the entire 
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medium, but for macro-layers only [step 2(i)]. Under a special assumption, 
convergence already occurs after one iteration step [step 2(ii)]. 

Figure l l a  shows the first macro layer of the migrated CSG of fig. 4c. As the 
migration velocity was too low, the input and output velocity profiles do not match. 
Following the procedure described in appendix I, the true velocity profile for the 
first macro layer can be found directly. In fig. l lb ,  the first macro-layer was 
migrated, using the correct velocity profile, while the second macro-layer was under- 
migrated. Again the true velocity can be found directly from the input and output 
velocity profiles. Finally, fig. 1 l c  shows the correctly migrated data for both macro- 
layers. Notice that the migrated sub-critically reflected energy is perfectly aligned, 
which indicates the correctness of the average velocity of the macro-layers. In addi- 
tion, notice that the output velocity profile represented by the migrated critically 
reflected energy matches the input velocity profile for the entire depth range. This 
accounts for the correctness of the local velocity inside the macro-layers as well. 

The l-D velocity inversion scheme presented provides indispensable background 
medium information for linearized multidimensional inversion techniques, as pro- 
posed by Berkhout (1984). 

8. CONCLUSIONS A N D  DISCUSSION 

In principle, there are two approaches to modify the wave equation such that wave 
field depth extrapolation operators can be derived : 

(i) decomposition into two first-order one-way wave equations for P+ and P - ,  

(ii) reformulation into a first-order two-way matrix wave equation for 

In parts I and I1 we discussed the theoretical aspects of both approaches. In this 
part we discussed the applications in modeling, migration and inversion. 

respectively ; 

( P ,  p - dP/dz)T .  

8.A. Z-D inhomogeneous media (c  = c(z), p = p(z)) 

We have introduced a pre-stack modeling scheme which includes critical angle 
events, based on the WKBJ one-way wave equations (section 2). The model assump- 
tion is shown in fig. 1. We also discussed a pre-stack modeling scheme which 
includes critical angle events, based on the two-way wave equation (section 3). The 
model assumption indicated in fig. 3 is less restrictive than that indicated in fig. 1. 
Therefore, for critical angle modeling applications in l-D inhomogeneous media we 
propose to make use of the two-way wave equation modeling scheme. The signifi- 
cance of the one-way wave equation modeling scheme is of theoretical nature: 

(1) it provides the basis for the pre-stack migration scheme which includes criti- 
cal angle events based on the WKBJ one-way wave equations (section 5); 

(2) optionally, only primaries may be modeled, which is not possible with the 
two-way wave equation modeling scheme. 
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Also we introduced a pre-stack migration scheme, which includes critical angle 
events, based on the two-way wave equation (section 6) .  The latter scheme properly 
handles multiple reflections, but accurate knowledge of the subsurface model is 
required, which should be obtained iteratively. Therefore, for critical angle migra- 
tion applications in 1-D inhomogeneous media we propose to make use of the 
WKBJ one-way wave equation migration scheme (section 5). 

Finally, we discussed a velocity inversion scheme for 1-D inhomogeneous media. 
Based on above conclusions we propose to use the one-way wave equation migra- 
tion scheme for the inversion per macro layer (steps 1 and 2). Once the velocity has 

Inhomogeneous 

Two-way wave 

equation (section 3) 
.Critical angle events 

0 Multiple reflections 

WKBJ one-way wave 
equations (section 5) 

0 Critical angle events 

0 Multiple reflections 
( in  iterative made) 

Inhomogeneous 

' One-wayltwo-way wave 
equations (section 7 )  

0 Critical angle events 

0 Multiple reflections 

( a )  

Pre-stack migration ( I  1 

Two-way wave equation for 

smoothed subsurface 
models (section 6 )  '1 0 Steep dips 

CDP-stacking U 

1 Pre-stack migration ( I  I )  

Two-way wave equation in 

iterative mode (section 6) 
0 Critical angle events 

Multiple reflections 

0 CDP- stacking 

Fig. 12. Practical applications of the modeling, migration and inversion schemes, discussed in 
this paper. (a) Methods particularly oriented to critical angle events in piece-wise contin- 
uously layered media. (b) Pre-stack migration in arbitrary inhomogeneous media. 
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been properly determined for the current macro-layer, we propose to use the 
two-way wave field extrapolation operator for the downward extrapolation to the 
next macro-layer interface (step 3), such that interface related multiple reflections 
are properly handled. 

8.B. 2-0 and 3-0 inhomogeneous media [c = c(x, y ,  z), p = p(x, y ,  z)] 
We introduced a pre-stack migration scheme which includes critical angle events, 
based on the two-way wave equation (section 6). The scheme properly handles 
multiple reflections, but accurate knowledge of the subsurface model is required ; in 
practical applications it should be obtained iteratively. 

When inversion for multiple reflections is not required we propose to make use 
of the two-way wave equation migration scheme for smoothed 2-D or 3-D inhomo- 
geneous subsurface models. A very good performance with respect to steep dips may 
be expected because the square root operator is avoided, while true CDP-stacking is 
accomplished. 

Above conclusions are summarized in fig. 12. Note that we have addressed depth 
techniques only, i.e., those algorithms which are based on extrapolating along the 
depth coordinate. An interesting alternative approach to two-way wave field 
extrapolation is discussed by Baysal, Kosloff and Sherwood (1984). They present 
post-stack modeling and migration schemes for 2-D inhomogeneous media which 
make use of recursive traveltime steps rather than depth steps. The principle of time 
extrapolation can easily be used for pre-stack modeling in 2-D (and 3-D) inhomoge- 
neous media. A discussion is beyond the scope of this paper. The reader is referred 
to Kosloff and Baysal (1982). However, for pre-stack migration in 2-D and 3-D 
inhomogeneous media we prefer to make use of the depth extrapolation scheme, as 
discussed in this paper (section 6),  because it allows simultaneous forward and 
inverse extrapolation of downgoing and upgoing waves (primaries as well as 
multiples), respectively, which is essential for a proper imaging principle. 
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A P P E N D I X  I 

A DIRECT VELOCITY INVERSION SCHEME ASSUMING c-’(z) I S  
L I N E A R  I N  A M A C R O - L A Y E R  

We discuss the details of step 2(ii) of the inversion scheme presented in section 7. We 
assume that the data are downward-extrapolated to z,, and we abbreviate c,, l(z) 
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and C,+~(Z,) to c(z) and co,  respectively. According to Aki and Richards (1980), the 
intercept time z, corresponding to a critical angle event described by ray parameter 
p ,  can be expressed as 

(AI.l) 

where the turning point depth z,(p) follows from p = l/c(zJ. Migrating critical angle 
data, using an estimated velocity profile c‘(z), yields an apparent turning point depth 
z:(p) which satisfies the following integral equation : 

(AI.2) 

The underlying philosophy for this equation is that the turning point image is 
obtained when the intercept time z is consumed by means of downward extrapo- 
lation of the data. In the following we present a solution of (AI.2), assuming 

c-’(z) = c,2[l - az], a > 0. (AI.3a) 

Furthermore, we assume that the data are migrated, using migration velocity c’(z), 
such that 

(AI. 3 b) [c‘(z)] - = c, 2( 1 - a’z), 0 < a‘ I a. 

Finally, we assume that the output velocity profile c”(z) satisfies 

[C”(z)]-2 = c02[l - a”z], a” 2 a. (A1.3~) 

Notice that, with p = l/c(zJ, the corresponding turning point depths follow from 

(AI.4a) 

(AI.4b) 

q p )  = [l - C;p2]/a”. (A1.4~) 

Given the input and output parameters a’ and a”, respectively, the true value a 
follows from (AI.2)<AI.4), according to 

(AI.5) 

Now the true velocity is obtained by substituting this value in (AI.3a). 
Notice that even for 11 - a‘/a“ I -g 1 we may not write a x $a’ + a”), so (7.2a) is 

biased, even for small gradients, which follows from rewriting (AI.3) for small gra- 
dients. 
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ERRATA 

WAVE FIELD EXTRAPOLATION TECHNIQUES 
FOR INHOMOGENEOUS MEDIA WHICH INCLUDE 

CRITICAL ANGLE EVENTS, PARTS 1-111 

by C.P .A.  W A P E N A A R  and A . J .  BERKHOUT 

Part I :  Methods Using the One-way Wave Equations, vol. 33, no. 8, December 

Page 1153, relation (7.4b): P- should read as 8-. 
Part 11: Methods Using the Two-way Equation, vol. 34, no. 2, April 1986, pp. 

Page 156: relations (3.6a) and (3.6b) should read as 

1985, pp. 1138-1159. 

147-179. 

@(z, z,,) = I + L(X Az)Z-' + 4 E(X Az)Z-'L(X Az)Z-' + . . ., 
W(Z, z,,) = Z[I + (X Az) + 4 (X Az)' + 

(3.6a) 

(3.6b) 

Part 111: Applications in Modeling, Migration and Inversion, vol. 34, no. 2, April 
1986, pp. 18C207. 
Page 184, last line: (3.9) should read as (3.12). 
Page 190-197: the symbol * should read as a superscript (denoting complex 
conjugation) in the following relations: (5.4), (5.6), (6.7), (6.8) and (6.9). 

E-' .  
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