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ABSTRACT
Wavefield decomposition forms an important ingredient of various geophysical meth-
ods. An example of wavefield decomposition is the decomposition into upgoing
and downgoing wavefields and simultaneous decomposition into different wave/field
types. The multi-component field decomposition scheme makes use of the record-
ings of different field quantities (such as particle velocity and pressure). In practice,
different recordings can be obscured by different sensor characteristics, requiring cal-
ibration with an unknown calibration factor. Not all field quantities required for
multi-component field decomposition might be available, or they can suffer from dif-
ferent noise levels. The multi-depth-level decomposition approach makes use of field
quantities recorded at multiple depth levels, e.g., two horizontal boreholes closely
separated from each other, a combination of a single receiver array combined with
free-surface boundary conditions, or acquisition geometries with a high-density of
vertical boreholes. We theoretically describe the multi-depth-level decomposition ap-
proach in a unified form, showing that it can be applied to different kinds of fields in
dissipative, inhomogeneous, anisotropic media, e.g., acoustic, electromagnetic, elas-
todynamic, poroelastic, and seismoelectric fields. We express the one-way fields at
one depth level in terms of the observed fields at multiple depth levels, using extrapo-
lation operators that are dependent on the medium parameters between the two depth
levels. Lateral invariance at the depth level of decomposition allows us to carry out the
multi-depth-level decomposition in the horizontal wavenumber–frequency domain.
We illustrate the multi-depth-level decomposition scheme using two synthetic elasto-
dynamic examples. The first example uses particle velocity recordings at two depth
levels, whereas the second example combines recordings at one depth level with the
Dirichlet free-surface boundary condition of zero traction. Comparison with multi-
component decomposed fields shows a perfect match in both amplitude and phase for
both cases. The multi-depth-level decomposition scheme is fully customizable to the
desired acquisition geometry. The decomposition problem is in principle an inverse
problem. Notches may occur at certain frequencies, causing the multi-depth-level
composition matrix to become uninvertible, requiring additional notch filters. We
can add multi-depth-level free-surface boundary conditions as extra equations to the
multi-component composition matrix, thereby overdetermining this inverse problem.
The combined multi-component–multi-depth-level decomposition on a land data set
clearly shows improvements in the decomposition results, compared with the perfor-
mance of the multi-component decomposition scheme.
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INTRODUCTIO N

Separation of recorded fields into downgoing and upgoing
constituents is a technique that is used in many geophysi-
cal methods. Decomposed fields form the basis for various
surface-related multiple elimination and deghosting proce-
dures (e.g., Frijlink, Van Borselen, and Söellner 2011; Ma-
jdanski et al. 2011) and for depth imaging using primary
and multiple reflections (e.g., Muijs, Robertsson, and Hol-
liger 2007). Novel methodologies that make use of horizontal
downhole sensors, such as the virtual source method (e.g.,
Bakulin and Calvert 2006; Mehta et al. 2007; Alexandrov,
Bakulin, and Burnstad 2012) and multi-dimensional deconvo-
lution Wapenaar et al. 2011, rely on decomposing the seismic
field at depth.

The principle of decomposition can be applied to all kinds
of fields. However, applying field decomposition to a real data
set is often quite challenging. The multi-component (MC) field
decomposition scheme makes use of differently recorded field
components, e.g., both pressure (p) and vertical component
particle velocity (v3) data for a purely acoustic case (e.g., White
1965; Day et al. 2013).

In practice, recordings can be obscured by different sensor
characteristics, requiring calibration with an unknown cal-
ibration factor (e.g., Schalkwijk, Wapenaar, and Verschuur
2003; Day et al. 2013). A way to find the calibration fac-
tor for land data with buried receivers was described by
Alexandrov et al. (2014). They make use of auto-correlations
and cross-correlations between the geophone and hydrophone
data (with muted direct arrivals) and find the calibration fac-
tor by minimizing the auto-correlation energy in a time win-
dow placed around an estimated two-way travel time. In ad-
dition to the problem of an unknown calibration factor, the
noise levels might be different for different sensor types, re-
sulting in different data quality for different fields (Burnstad
et al. 2012). This can lead to unsatisfactory decomposed data.
Furthermore, not all field quantities required for MC field
decomposition might be available. Especially, when dealing
with more complex field phenomena (e.g., elastodynamic or
seismoelectric fields), the MC field decomposition requires
measuring many different field quantities. Let us focus for ex-
ample on the elastodynamic fields. Theory tells us that, for
decomposing non-normal incidence elastodynamic fields into
upgoing and downgoing compressional waves (P-waves) and
shear waves (S-waves), it is required to record, at a certain
desired decomposition receiver level, all three components of
the particle velocity fields and all three components of the
traction tensor (Wapenaar et al. 1990). Depending on the

setting and respective boundary conditions, certain compo-
nents might vanish. For example, considering a typical land
acquisition geometry with receivers placed at the Earth’s sur-
face, it is well known that the traction tensor is zero due to
the Dirichlet boundary condition. As a result, MC decom-
position can be carried out with three-component geophones
only (e.g., Dankbaar 1985; Nakata, Snieder, and Behm 2014).
At the seafloor (for example in marine ocean-bottom-cable
or ocean-bottom-node acquisition), only the shear tractions
vanish, such that four-component sensors are required (e.g.,
Schalkwijk et al. 2003; Amundsen and Reitan 1995). When
considering an acquisitional setting with receivers placed in
a horizontal or vertical borehole in the subsurface, all trac-
tion and particle velocity components are non-zero. For this
case, to carry out successful elastodynamic MC field decom-
position, registration of all six components is required. How-
ever, shear tractions are in general not recorded, leading to an
underdetermined problem (Van der Neut, El Allouche, and
Wapenaar 2010).

In recent years, we can notice an emerging acquisition
design in industry that makes use of horizontal downhole
sensor arrays (e.g., Bakulin et al. 2012a, b; Berron et al. 2012;
Cotton and Forgues 2012). Inspired by marine acquisition
designs that utilize recordings at multiple depth levels for suc-
cessful field decomposition (e.g., Moldoveanu et al. 2007;
Van Borselen, Fokkema, and Van den Berg 2013), we de-
velop a multi-depth-level (MDL) field decomposition scheme
for land acquisition. This MDL approach uses configurations
with field quantity information on multiple depth levels, e.g.,
two horizontal boreholes that are closely separated from each
other. Alternatively, a combination of a single receiver array
just below a free surface combined with the natural (Dirichlet)
free-surface boundary conditions could be considered as well.

The MDL decomposition scheme might provide solu-
tions to practical issues of the MC decomposition scheme
since the MDL decomposition scheme requires only specific
field quantities to be recorded, and fields with different re-
ceiver signatures or noise levels can be treated separately. In
modern seismic acquisition, it can be highly relevant to have
a configuration of two horizontal boreholes that are closely
separated from each other. Effectively, a similar acquisition
geometry, with recordings at multiple depth levels, can be
obtained by having a high density of vertical boreholes in a
certain area (e.g., Bakulin et al. 2012a, b). In the fields of
microseismic monitoring and passive interferometry, down-
hole sensors are often being deployed to reduce the noise
level (e.g., Maxwell et al. 2010; Almagro Vidal et al. 2011;
Xu et al. 2012). Applying the MDL decomposition scheme
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using a single horizontal sensor array in combination with the
free-surface Dirichlet boundary condition might be useful for
these scenarios.

Since the principle of decomposition is not limited to
acoustic fields only, we will present a unified MDL decompo-
sition scheme that can be applied to all kinds of fields. In the
appendices, we explicitly show how to apply the MDL theory
to acoustic, elastodynamic, poroelastic, electromagnetic, and
seismoelectric phenomena. Special attention is paid to possi-
ble issues concerning the measurability of certain fields in 2D
borehole configurations.

We will illustrate the MDL decomposition first with two
synthetic examples for a flux-normalized elastodynamic case.
However, the MDL decomposition problem cannot always
be solved. Depending on the acquisition design and the wave
velocities, the problem can be ill-posed at certain (notch) fre-
quencies. In practice, these problems can be circumvented by
designing appropriate notch filters (see, e.g., Appendix A for
the acoustic case). An alternative route is to integrate MC and
MDL decomposition, leading to a joint inverse problem that
can be solved in the least-squares sense, thereby combining the
best of both worlds. We refer to this approach as MC-MDL
decomposition. We demonstrate with a field data example
that MC-MDL decomposition can lead to better decompo-
sition results than pure MC decomposition since additional
data are utilized.

UNIF IED THEORY OF
MULTI -DEPTH-LEVEL F IELD
DECOMPOSITION

Our starting point is the following matrix–vector represen-
tation of the two-way wave equation in the space–frequency
domain (denoted by the hat), for a right-handed Cartesian
coordinate system where the positive x3-direction is pointing
downwards (depth), i.e.,

∂q̂(x, ω)
∂x3

= Â(x, ω)q̂(x, ω). (1)

Equation (1) expresses the vertical variations of the field quan-
tities in q̂(x, ω), in terms of the medium parameters and the
horizontal partial differentiation operators in matrix Â(x, ω)
acting on these field quantities (e.g., Woodhouse 1974; Ken-
nett 1983; Ursin 1983; Wapenaar and Grimbergen 1996).
The field quantities in q̂ are continuous across horizontal in-
terfaces. Considering the fact that in the Earth the major vari-
ations occur in the depth direction, it makes sense to take
the vertical axis as the direction of preference and separate

the vertical variations of the field from the horizontal varia-
tions of the same field. However, the coordinate system can
also be rotated, and alternative expressions can be derived
in for example curvilinear coordinates (Frijlink and Wape-
naar 2010). In equation (1), x is the space-coordinate vector
(x1, x2, x3), and ω represents radial frequency (we will omit
these terms now for notational convenience). Throughout this
paper, boldface symbols indicate vector or tensor quantities.
We use f̂ (xi , ω) = ∫ ∞

−∞ f (xi , t)e− jωtdt as the definition for the
forward temporal Fourier transform. Throughout this paper
we consider positive ω only.

The general two-way wave equation holds for different
kinds of fields in dissipative, inhomogeneous, anisotropic me-
dia, e.g., acoustic fields, electromagnetic wave and/or diffu-
sive fields, elastodynamic fields, poroelastic fields, and seis-
moelectric fields (Wapenaar, Slob, and Snieder 2008). We
can carry out the MDL decomposition in the space–frequency
domain, making use of pseudo-differential operators as il-
lustrated for an acoustic case in (Grimbergen, Dessing, and
Wapenaar 1998). However, already for the elastodynamic
system, this process is both mathematically and numeri-
cally quite tedious. In this paper, we will assume that the
medium is laterally invariant at the depth level of decompo-
sition. This assumption allows us to carry out the decom-
position in the horizontal wavenumber–frequency domain
(denoted by the tilde sign). We use the following definition
for the forward spatial Fourier transform: f̃ (k1, k2, x3, ω) =∫ ∞

−∞
∫ ∞

−∞ f̂ (xi , t)e jk1x1 e jk2x2 dx1dx2. The following general rela-
tion then holds between the recorded two-way fields and the
decomposed one-way fields,(

q̃1

q̃2

)
=

(
L̃+

1 L̃−
1

L̃+
2 L̃−

2

)(
p̃+

p̃−

)
, (2)

where the + sign indicates downgoing fields (in the posi-
tive x3-direction) and the − sign indicates upgoing fields. For
wavefields, p̃+ represents the one-way, decomposed downgo-
ing field and p̃− the one-way, decomposed upgoing field at
a certain level of decomposition. For diffusive fields, p̃+ is
the field that decays in the positive x3-direction and p̃− is the
field that decays in the negative x3-direction. Furthermore, L̃±

1

and L̃±
2 represent submatrices of the composition matrix L̃

that depend on the horizontal wavenumber and the medium
properties at the receiver level (e.g., Ursin 1983; Wapenaar
et al. 2008). Decomposed fields are not uniquely defined.
The fields can be normalized with respect to different quan-
tities. Depending on our wishes, we can retrieve the upgo-
ing and downgoing constituents of a particular field compo-
nent (e.g., pressure or particle velocity normalization). Most
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of the marine wavefield separation/deghosting schemes make
use of either pressure or vertical component particle velocity
normalization (e.g., Beasley et al. 2013a; Day et al. 2013).
However, in principle, any normalization of the composition
matrix will work. Throughout this paper, we will consider
a normalization based on power, referred to as power-flux-
normalized composition matrices. One of the advantages of
using power-flux-normalization is that favourable reciprocity
relations hold for the flux-normalized one-way fields (Frasier
1970; Wapenaar 1998). In equation (2), q̃1 represents a sub-
vector of the two-way field quantity vector q̃, being composed
from one-way fields by applying the L̃±

1 submatrices to the
one-way fields p̃±. Similarly, q̃2 is the subvector being com-
posed from one-way fields by applying the L̃±

2 submatrices
to the one-way fields p̃±. Note that, for both L̃ and q̃, the
subscripts 1 and 2 do not represent spatial directions.

In the multi-component (MC) field decomposition
schemes, the downgoing and upgoing one-way fields can be
obtained by left-multiplying the two-way field vector with the
inverse of the composition matrix:(

p̃+

p̃−

)
=

(
L̃+

1 L̃−
1

L̃+
2 L̃−

2

)−1 (
q̃1

q̃2

)
. (3)

Here, additional regularization can be applied, or alterna-
tively, equation (3) can be solved for by a sparsity promoting
algorithm (Van der Neut and Herrmann 2012). When dealing
with a power-flux-normalized composition matrix, we can
express the inverse of the composition matrix in terms of the
transposes of the composition submatrices as follows:

L̃−1(kH) =
(

−L̃−
2 (−kH)t L̃−

1 (−kH)t

L̃+
2 (−kH)t −L̃+

1 (−kH)t

)
. (4)

Here, kH = (k1, k2) is the horizontal wavenumber vector. For
notational convenience, the x3 and ω arguments are omitted
here. Equation (4) generally holds, i.e., for both anisotropic
and isotropic media. In case of an isotropic medium, we can
organize the field quantities in q̃ in such a way that we obtain
an anti-blockdiagonal symmetry in the system matrix Ã. In
this case, the following properties hold for the composition
submatrices L̃−

1 = L̃+
1 and L̃−

2 = −L̃+
2 . As can be observed in

equation (3), in order to be able to perform the up/down
decomposition correctly, all two-way field components of q̃
must have been recorded.

In the multi-depth-level (MDL) decomposition scheme,
we express the one-way fields at one level in terms of the ob-
served fields at multiple levels. In this way, we require only a
certain selection of field quantities to be measured on multiple
depth levels for carrying out successful up/down decomposi-

tion. With closely we here mean a distance over which it is
reasonable to assume a homogeneous domain between the
two depth levels or where smooth velocity variations can oc-
cur and the propagators need to be correctly estimated from
the data. It is important that no reflectors are present be-
tween the two depth levels. Let us first illustrate the principle
of MDL decomposition in terms of the governing matrix–
vector equations. We start by defining equation (2) in terms
of multiple depth levels. In this paper, we will develop MDL
decomposition for the minimum requirement of two different
depth levels, x3;A and x3;B, where x3;A < x3;B. However, when
information at more depth levels is available, this can help sta-
bilizing the decomposition procedure (Van der Neut, Bakulin,
and Alexandrov 2013). We start expressing the decomposed
downgoing and upgoing power-flux-normalized fields at one
depth level in terms of the observed fields at multiple levels.
We do so by extrapolating one-way fields from one depth level
to another, i.e.,

p̃+
B = W̃+(x3;B, x3;A)p̃+

A (5)

p̃−
B = F̃−(x3;B, x3;A)p̃−

A. (6)

When using these extrapolation operators, it is implic-
itly assumed that the medium between the two depth levels
is source free and homogeneous. For all kinds of fields, the
inverse extrapolation operator F̃−(x3;B, x3;A) in equation (6) is
closely related to the forward propagator W̃+(x3;B, x3;A) as

F̃−(x3;B, x3;A) = (W̃+(x3;B, x3;A))−1. (7)

When we are dealing with purely propagating waves in a
lossless medium, the following relation holds:

F̃−(x3;B, x3;A) = (W̃+(x3;B, x3;A))∗. (8)

Here, the asterix (∗) denotes complex conjugation. The
forward extrapolation operator W̃+(x3;B, x3;A) extrapolates
the downgoing (+) fields downwards, from depth level
x3;A to depth level x3;B. The inverse extrapolation operator
F̃−(x3;B, x3;A) extrapolates the upgoing fields (-) downwards
from depth level x3;A to depth level x3;B. The downgoing and
upgoing forward extrapolation operators W̃+(x3;B, x3;A) and
W̃−(x3;A, x3;B) are defined as

W̃+(x3;B, x3;A) = W̃−(x3;A, x3;B) = exp(− jH̃|x3;B − x3;A|) (9)

where − jH̃ represents an n-by-n diagonal matrix containing
the eigenvalues for each of the n-wavetypes present in the sys-
tem under consideration (for example n = 3 for the elastody-
namic case, where the P-wave and S-wave are the wavetypes
under consideration). Note that equation (9) is a symbolic
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notation (due to the use of a matrix in the argument of the
exponent). Effectively, the exponent of each of the individual
elements in diagonal matrix H̃ is taken. Since we are dealing
with laterally invariant media, H̃ is a purely diagonal matrix
with elements that correspond to the vertical wavenumbers
k3;w and that can be defined for each wavetype w as

k3;w =
√

ω2

ĉ2
w

− κ2. (10)

Here, the radial wavenumber is defined as κ =
√

k2
1 + k2

2, ω

denotes the radial frequency, and ĉw represents the complex,
frequency-dependent velocity for each field type (Wapenaar
and Berkhout 1989) (i.e., in its general form, it includes atten-
uation). Note that it is crucial to define the sign of the field
extrapolation operators in such a way that evanescent and
diffusive fields decay. The sign of the square root in equation
(10) should be therefore chosen accordingly. Let us look for
example at electromagnetic fields. Similar to (Amundsen et al.

2006), we can express the complex electromagnetic velocity
as

ĉ = 1√
με̄

, (11)

where

ε̄ = ε + σ

jω
(12)

is the complex electric permittivity, consisting of the electric
permittivity ε, the electric conductivity σ , and the magnetic
permeability μ, which is often taken equal to the magnetic
permeability in free space, i.e., μ0 = 4π · 10−7. Examining
equations (11) and (12) more closely, we can distinguish three
different scenarios depending on the medium parameters and
the frequencies under consideration. When the term σ

jω >> ε,
which is effectively the case for very low frequencies (and/or
high conductivity values), we can neglect the first (electric
permittivity) term, and the expression for the complex elec-
tric permittivity becomes purely imaginary. We refer to this
case as purely diffusive fields (Fig. 1a). We can observe that
the k3-values in this case start at a -45◦ angle in the complex
plane (opposite real and imaginary parts) for κ = 0 and that
both the real and imaginary parts of k3 decrease with increas-
ing κ-values. Going towards higher frequencies (and/or lower
conductivity values), the first term becomes more important,
and we are dealing with a ‘mixed’ scenario; this scenario oc-
curs for wave propagation in a medium with losses (Fig. 1b).
In this case, the k3-value for κ = 0 is almost purely real and
moves with increasing values for κ via combinations of non-
zero real and imaginary parts of k3 towards an almost purely

imaginary k3-value. Finally, when we reach a frequency band-
width that results in σ

jω << ε, we can neglect the second term,
and the expression for the complex velocity becomes purely
real in the limit. This scenario occurs for wave propagation in
lossless media (Fig. 1c). Here, k3 is in the limiting case purely
real for κ = 0 and remains purely real with increasing values
for κ until κ2 = ω2

ĉ2
w

, which can be described as

k3;w =
√

ω2

ĉ2
w

− κ2, for κ2 ≤ ω2

ĉ2
w

. (13)

When κ then further increases,

k3;w = − j

√
κ2 − ω2

ĉ2
w

, for κ2 >
ω2

ĉ2
w

(14)

holds, resulting in purely imaginary k3-values in the limiting
case. So in this scenario, we can basically distinguish these two
separate cases (for our definition of the Fourier transform).

What can be clearly observed in Fig. 1 is that, for the first
and second cases (purely diffusive fields and wave propagation
with losses), it is sufficient to constrain the sign of the square
root such that the imaginary part of k3 < 0. For the third case,
since we have obtained equations (13) and (14) by taking lim

σ↓0
,

k3 actually still has a very small imaginary part for propagating
waves. Hence, by constraining the sign of the imaginary part
(equation (14)), the sign of the real part (equation (13)) is still
automatically determined as well.

If σ is exactly equal to zero (and ω exactly real valued),
an ambiguous situation is created for the third case of wave
propagation in lossless media. To overcome this ambiguity,
we then need to constrain the signs of both the real and imag-
inary parts of k3. Note that in this case, equation (13) results
in a purely real-valued k3, and that equation (14) yields a
purely imaginary k3. Since we want the real part of the ar-
guments of the exponents in equation (9) to be negative (in
order to avoid that the exponents blow up), we take the neg-
ative sign of the square root in equation (14). We choose
the correct sign for the real part (equation (13)) based on
the fact that we desire that the phase decreases with increas-
ing distance, whereas the amplitude stays constant. One can
physically link these choices to the fact that, for propagating
waves in lossless media, the amplitude remains constant (no
losses), whereas the phase is decreasing with increasing dis-
tance. On the contrary, for evanescent fields in lossless media,
the phase remains constant, whereas the amplitude is decreas-
ing with increasing distance. Please note that the first case of
purely diffusive fields, as described above, is in principle also
a limiting case, where the lim

ε↓0
is taken, resulting in an almost

C© 2015 European Association of Geoscientists & Engineers, Geophysical Prospecting, 64, 361–391



366 N. Grobbe et al.

Im k3

Re k3

к=0

increasing к

(a)

Im k3

Re k3

к=0

increasing к

(b)

Im k3

Re k3
к=0

increasing к

(c)

Figure 1 Real and imaginary parts of k3 in the complex plane. (a) Purely diffusive fields. Only the sign of the imaginary part of k3 needs to be
constrained. (b) Wave propagation with losses. Only the sign of the imaginary part of k3 needs to be constrained. (c) Wave propagation without
losses. In this case the sign of both the real and imaginary parts of k3 need to be constrained.

purely imaginary complex velocity. However, for this case, re-
gardless of whether we consider the limiting case or whether
we take ε exactly equal to zero, constraining the sign of the
imaginary part is always sufficient to constrain the problem,
as can be observed in Fig. 1(a).

Imagine now a field situation where we have obtained
only q̃2 field quantity recordings, at different depth levels.
According to equation (2) we can express the two-way field
quantities of q̃2 recorded at depth level x3;A in terms of the
one-way upgoing and downgoing fields as

(
L̃+

2 L̃−
2

) (
p̃+

A

p̃−
A

)
= q̃2;A (15)

and for the recordings at depth level x3;B

(
L̃+

2 L̃−
2

) (
p̃+

B

p̃−
B

)
= q̃2;B. (16)

Note that the subscripts A and B have been omitted in the
composition submatrices since we have already assumed that
the medium is homogeneous between those two depth levels.
If recordings at more than two depth levels are available, this
procedure can be extended for all possible depth levels. By
using equations (5) and (6), we can express the one-way fields
for depth level x3;B also in terms of the one-way fields for level
x3;A, i.e.,

(
L̃+

2 W̃+ L̃−
2 F̃−

) (
p̃+

A

p̃−
A

)
= q̃2;B. (17)

Combining equations (15) and (17) in terms of the one-way
fields at depth level x3;A, we obtain

(
L̃+

2 L̃−
2

L̃+
2 W̃+ L̃−

2 F̃−

)(
p̃+

A

p̃−
A

)
=

(
q̃2;A

q̃2;B

)
, (18)

or more general

S̃

(
p̃+

A

p̃−
A

)
=

(
q̃2;A

q̃2;B

)
. (19)

Here, S̃ represents the MDL composition matrix. When we as-
sume that the medium properties between the levels are known
(e.g., from borehole data), the extrapolators can be computed.
Alternatively, one might be interested to estimate the extrap-
olation operators directly from the data. One way of doing
this is via direct-field interferometry. For a discussion on in-
terferometric propagator estimation, the reader is referred to
Van der Neut et al. 2013. We have now obtained an expres-
sion relating the one-way fields at depth level x3;A via the MDL
composition matrix S̃ to the recorded two-way field quantities
of the subvector q̃2 at both depth levels x3;A and x3;B. By mul-
tiplying both the left-hand and right-hand sides of equation
(19) with the inverse of the MDL composition matrix S̃−1,
the one-way upgoing and downgoing flux-normalized fields
(for each wavetype (e.g., P-waves and S-waves in the elasto-
dynamic case)) at depth level x3;A can be obtained, i.e.,

(
p̃+

A

p̃−
A

)
=

(
L̃+

2 L̃−
2

L̃+
2 W̃+ L̃−

2 F̃−

)−1 (
q̃2;A

q̃2;B

)
(20)

= S̃−1

(
q̃2;A

q̃2;B

)
.

In other words, the two-way field system under consider-
ation has now been decomposed (for depth level x3;A), using
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only q̃2 field recordings at two depth levels. We can invert
the modified composition matrix S̃ numerically at each fre-
quency and horizontal wavenumber individually. Additional
regularization can be applied to solve the inverse problem.
Note that, in this decomposition procedure, we treat the dif-
ferent vertical arrays simultaneously. The benefit of this pro-
cedure is that, instead of decomposing only for the plane-wave
normal-incidence (wavenumber k1 = 0) events, we decompose
for all the angles of incidence. A drawback of this procedure is
that since we treat everything in the horizontal wavenumber–
frequency domain, our horizontal spatial sampling must fulfill
the Nyquist sampling criterion. Be aware that the inversion of
the composition matrix in equation (20) might not always be
stable, due to the occurrence of notches at certain frequen-
cies. The matrix inversion is unstable, when the determinant
of the composition matrix is equal to zero. In other words,
for certain frequency–wavenumber combinations and certain
velocities and depths, the field extrapolation operators can
obtain a value that makes the rows of matrix S̃ no longer lin-
early independent (Van der Neut et al. 2013). Looking at the
definitions of the field extrapolation operators (equations (9)
and (10)), it can be seen that the notch frequencies are highly
dependent on the vertical distance between the receiver arrays
(Day et al. 2013). The notch problem is further addressed
in Appendix A, using the acoustic representation of the field
data example of this paper. Bear in mind that similar notch
problems can occur for all wave and diffusion phenomena
captured in this unified MDL scheme.

In addition to the notch problems, alternative insta-
bilities can occur for example at the critical angles in the
wavenumber–frequency spectrum. This is because, at the crit-
ical angle, k3 = 0, and elements of the composition matrix
L̃ can contain divisions by k3. The MDL decomposition of
equation (20) will be illustrated with Synthetic Elastodynamic
Example 1.

Depending on the data acquisition geometry under con-
sideration, one might prefer to express the one-way fields at
depth level x3;A in terms of the one-way fields at depth level
x3;B. This can be beneficial for example in passive geome-
tries with the (earthquake or microseismic) sources below the
lowest receiver level x3;B. Slightly different to the basic case
described above in equations (5) and (6), we then express the
upgoing and downgoing fields at x3;A in terms of the upgoing
and downgoing fields at x3;B as

p̃+
A = F̃+(x3;A, x3;B)p̃+

B (21)

p̃−
A = W̃−(x3;A, x3;B)p̃−

B, (22)

where

F̃+(x3;A, x3;B) = (W̃−(x3;A, x3;B))−1. (23)

Again, in the case of purely propagating waves,

F̃+(x3;A, x3;B) = (W̃−(x3;A, x3;B))∗ (24)

holds. The MDL decomposition procedure can be further
modified according to one’s preferences. For example, combi-
nations of the field subvectors q̃1 and q̃2 and the corresponding
submatrices of the composition matrix L̃ might be useful. For
example, when a certain depth level, in our case x3;A since
x3;A < x3;B, coincides with the free surface of the Earth (or for
example the ocean-bottom), the boundary conditions at that
level might imply that certain field quantities in either q̃1 or
q̃2 are equal to zero.

Let us consider this specific case, where we move depth
level x3;A upwards such that it coincides with the Earth’s free
surface and where we assume that the (passive) source is lo-
cated in the subsurface. We now assume that the field quan-
tity subvector q̃1 is zero at the free surface due to the Dirichlet
boundary condition. Hence, we do not explicitly need phys-
ical receivers at depth level x3;A. We combine this constraint
with the physical recordings of field quantity subvector q̃2 at
depth level x3;B.

Analogous to equation (20), we can then obtain the one-
way upgoing and downgoing fields at depth level x3;B, by
solving(

p̃+
B

p̃−
B

)
=

(
L̃+

1 F̃+ L̃−
1 W̃−

L̃+
2 L̃−

2

)−1 (
q̃1;A = 0

q̃2;B

)

= S̃−1

(
q̃1;A = 0

q̃2;B

)
. (25)

Alternatively, one could derive explicit expressions for
p̃+

B and p̃−
B using analytical expressions for the inverse of the

composition matrix, yielding

p̃+
B =

[
L̃+

2 − L̃−
2 {L̃−

1 W̃−}−1L̃+
1 F̃+

]−1
q̃2;B (26)

p̃−
B =

[
L̃−

2 − L̃+
2 {L̃+

1 F̃+}−1L̃−
1 W̃−

]−1
q̃2;B. (27)

The system of the wave/field phenomenon under con-
sideration has now been decomposed (for depth level x3;B),
using only the field quantity recordings of field subvector q̃2

measured at depth level x3;B, combined with the fact that the
field quantities of the subvector q̃1 at level x3;A are zero. Note
that if x3;A=x3;B, equation (25) reduces to the MC decom-
position scheme of equation (3). The application of equation
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(25) will be illustrated with Synthetic Elastodynamic Example
2. Interesting to mention is the similarity between equation
(25) and deghosting procedures (e.g., Fokkema and Van den
Berg 1993; Frijlink et al. 2011). However, in equation (25),
the deghosting procedure is expressed more generally, holding
for all kinds of fields.

We can summarize the MDL decomposition theory using
a general notation, distinguishing between decomposition at
the upper depth level and decomposition at the lower depth
level (hereby still assuming that x3;A < x3;B). For the decompo-
sition at the upper level, we would like to express the one-way
fields at level x3;B in terms of the one-way fields at x3,A, i.e,(

L̃+
j L̃−

j

L̃+
k W̃+ L̃−

k F̃−

) (
p̃+

A

p̃−
A

)
=

(
q̃ j ;A

q̃k;B

)
, (28)

where j and k can take up the values 1 or 2, and j is not
necessarily equal to k. Similarly, for the decomposition at the
lower level, we express the one-way fields at level x3;A in terms
of the one-way fields at x3,B, i.e,(

L̃+
j F̃+ L̃−

j W̃−

L̃+
k L̃−

k

) (
p̃+

B

p̃−
B

)
=

(
q̃ j ;A

q̃k;B

)
. (29)

Equations (28) and (29) form the basis of the MDL field
decomposition scheme. Theoretically, one can even set up the
decomposition problem in a similar way as equations (28) and
(29) but then trying to obtain one-way fields at both depth
levels, e.g., p̃+

B and p̃−
A.

When looking at equations (28) and (29), we can ob-
serve that, in order to successfully carry out MDL up/down
field decomposition, we either need field quantity recordings
at at least two depth levels x3;A and x3;B, or recordings at one
depth level x3;B combined with boundary conditions at depth
level x3;A. One can imagine that, instead of measuring the
full field quantity subvectors q̃1 or q̃2 and their correspond-
ing submatrices L̃1,2, one wishes to select only a few, easily
measurable or well-constrained field quantities of q̃1 and q̃2

to solve the decomposition problem. By selecting the desired
rows of the composition submatrices corresponding with the
selected field quantities, the MDL decomposition can be car-
ried out. Be aware that this can only be done if the selected
rows that compose the matrix S̃ have sufficient rank. In other
words, the matrix to be inverted should not be rank-deficient.
If the matrix is full rank, the custom character of the adapted
composition matrix S̃ will not cause any additional problems
since the decomposition matrix is obtained via numerical in-
version. The customly defined combinations of measured or
boundary condition-defined field quantities and selected com-
position submatrix rows are not explicitly defined in the gen-

eral scheme of equations (28) and (29). Here, we only want
to point out the possibility of these kinds of combinations.

Please remain aware that the equations above are
defined in the horizontal wavenumber–frequency domain,
implicitly assuming lateral invariance at the depth level of
decomposition. A similar scheme can be developed in the
space–frequency domain for inhomogeneous media, using
pseudo-differential operators (e.g., Fishman, McCoy, and
Wales 1987; Grimbergen et al. 1998; Wapenaar, Dillen, and
Fokkema 2001; Wapenaar et al. 2008). However, already
for the elastodynamic case, the space-frequency derivations
become quite a tedious exercise, both analytically and
numerically.

Now that we have obtained a unified MDL decompo-
sition scheme, we can apply the scheme to different wave
phenomena. The Appendices A–E show in more detail how
to apply the scheme when dealing with acoustic, elastody-
namic, poroelastic, electromagnetic, and seismoelectric fields.
Throughout this paper, we will consider geometries where
horizontal boreholes are located in the subsurface. The MDL
decomposition scheme is then applied to obtain up/down field
separation. In addition to up/down decomposition, the scheme
also decomposes the field quantities into its different wave
modes. One can theoretically imagine that, when considering
surface measurements at several horizontal spatial locations
and rotating the geometry of the MDL scheme, one might also
apply the MDL decomposition principles to field left/right de-
composition.

We will start illustrating the principle of the MDL decom-
position scheme further with two synthetic flux-normalized
elastodynamic examples. In this case, q̃1 = −τ̃ 3, and q̃2 = ṽ,
and the flux-normalized composition matrix L̃ is chosen ac-
cording to Wapenaar et al. (2008). Here, τ̃ 3 represents the
traction vector acting at a horizontal plane, and ṽ denotes the
particle velocity vector. Note that, for these two synthetic ex-
amples, no approximations regarding amplitudes have been
made. After the synthetic elastodynamic examples, we will
present an acoustic representation of a field land data ex-
ample where the MC and MDL decomposition schemes are
combined.

Before we look in closer detail to the examples, let us
make some final but crucial remarks regarding borehole mea-
surements. First of all, one can imagine that, if the receivers are
placed in a horizontal borehole, this results in a ‘line’ measure-
ment. Let us for example consider a horizontal borehole in the
x1-direction. Then, when we consider propagation/diffusion
in a 3D medium, out-of-plane waves/fields are still taken into
account; hence, variations of a certain field quantity in the
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x2-direction are still considered (e.g., Bleistein, Cohen, and
Hagin 1987; Bleistein 1987). This is called the 2.5D situa-
tion. In contrast, we can consider a purely 2D situation where
effective line sources in, for example, the x2-direction are con-
sidered. In this situation, the field quantity components have
no variations with respect to the x2-direction. The resulting
data are referred to as 2D (e.g., Bleistein et al. 1987; Bleistein
1987). In the 2D scenario, natural mode separation can oc-
cur for elastodynamic (P-SV and SH mode), electromagnetic
(TE and TM mode), or seismoelectric (SH-TE and P-SV-TM
mode) phenomena.

In addition, the type of borehole also plays a crucial role.
For example, if the borehole has a concrete casing and is filled
with a fluid, this has consequences for the receivers and types
of fields that can be recorded. For example, theoretically, no
shear waves will be measurable inside the borehole if it is
fluid-filled. Certain field quantities might then be zero at for
example depth level x3;B, whereas the field quantity is theoret-
ically non-zero and measurable (in absence of the borehole).
However, in practice, shear waves are routinely measured in
for example vertical seismic profiling and logging using sen-
sors in a fluid-filled borehole (e.g., Cheng and Toksöz 1981).
In this paper, we will develop everything from an ideal the-
oretical point of view. Keep in mind that, in reality the situ-
ation is far more complex. Fluid-filled boreholes modify the
responses as, for example, formulated by Peng, Cheng, and
Toksöz (2003). This does not necessarily mean that the MDL
decomposition scheme does not work. On the contrary, hav-
ing for example shear wave measurements available in fluid-
filled boreholes might help the MDL decomposition scheme
(it does need additional calibration).

In case of electromagnetic fields, metallic borehole cas-
ings can cause problems as well. In the following synthetic
examples, we assume that the receivers are buried on a hor-
izontal line in the subsurface but not placed in a fluid-filled
borehole. In the field data example presented afterwards, the
receivers are similarly placed in the subsurface. We will use
an acoustic scheme for decomposing this data set.

Synthetic elastodynamic example 1: configuration with two
receiver depth levels

To illustrate the MDL decomposition approach, we will ap-
ply the method to a synthetic elastodynamic example, using
equation (20). We make use of a 2D elastodynamic finite-
difference model (Thorbecke and Draganov 2011), where re-
ceivers are being placed at two depth levels x3;A = 1000 m
and x3;B = 1010 m, below a strongly reflecting salt body

(see Fig. 2). We consider the plane spanned by x1 and x3.
Hence, the fields in the x2-direction in the field vector of Ap-
pendix C decouple. The P-wave and S-wave velocities for the
layer in which the receivers are located are 2500 m/s and 1800
m/s, respectively. The density of the layer is 1500 kg/m3. The
source is a monopole pressure source with a peak frequency of
20 Hz. We use the more stable, alternative 2D versions of the
power-flux-normalized composition matrix L̃, as presented by
Wapenaar et al. (2008). Figure 3 represents the original shot
records as recorded at depth level x3;A, with the two-way phys-
ical field quantities τ13, τ33, v1, and v3. Due to the complexity
of the model, upgoing and downgoing events are interfering.
Furthermore, the presence of the strongly reflecting salt body
results in strong differences in amplitudes between downgoing
and upgoing events.

We now carry out both MC and MDL field decomposi-
tion, resulting in the decomposed fields of Fig. 4, where the
MC decomposed one-way fields are shown in black and the
MDL decomposed fields in red (dashed). There is an excel-
lent match in both amplitude and phase. In other words, the
MDL decomposition scheme manages to retrieve the correct
one-way fields at x3;A using only particle velocities at x3;A and
x3;B. There is a difference for the first upgoing P-wave event
(Fig. 4c). The MC decomposition scheme shows a (black)
event where this event is absent for the MDL decomposition
scheme. Evaluation turns out that this is leakage from the
strong downgoing P-wave energy. This is most likely caused
by small numerical errors in the computed pressure fields (in
combination with the large relative strength of this downgo-
ing event), which had to be interpolated in time and space to
align with the particle velocity fields, because a staggered grid
has been used in the finite difference code (Virieux 1986).
The MDL decomposition scheme does not suffer from this
problem since it only uses particle velocity data.

For the MDL decomposition, we have carried out a
damped least squares inversion of the customized composi-
tion matrix S̃, using a Tikhonov regularization with a damp-
ing factor of 1e−4 of the maximum amplitude of S̃S̃†. Here the
dagger sign denotes the complex conjugate transpose.

It is very nice to see the effect of the strongly reflect-
ing salt body. One can observe in the downgoing fields (for
both P- and S-waves) three pronounced downgoing events,
corresponding to the direct downgoing field and the internal
multiples within the salt layer. Also when looking at the two-
way input data, one can clearly see that the upgoing fields are
obscured due to the presence of the salt body. However, after
decomposition, the upgoing fields are clearly distinguishable
and similar results are obtained for the MC decomposition
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Figure 2 Geometry of synthetic elastodynamic example 1. (a) The colors represent P-wave velocities in m/s. (b) The colors represent S-wave
velocities in m/s. (c) The colors represent density values in kg/m3.

and the MDL decomposition methods. In addition, the MC
and MDL decomposition schemes are handling the interfer-
ence between upgoing and downgoing fields equally well.

Note that for a 2.5D scenario, τ̃23 and ṽ2 should be mea-
sured for MC decomposition, and only ṽ2 should be measured
additionally for MDL decomposition. Similar results are then
to be expected.

Synthetic elastodynamic example 2: Configuration with a
single horizontal sensor array below a free surface

As mentioned above, the MDL decomposition procedure is
fully customizable according to one’s preferences. Here we
will consider a special case, moving depth level x3;A upwards
such that it coincides with the Earth’s free surface. Effectively,
we have an acquisition geometry consisting of a single hori-
zontal sensor array combined with a free-surface constraint.
We will use equation (25) as the governing equation of the
MDL decomposition scheme matching the acquisition geom-
etry under consideration. Again, a 2D finite-difference elas-
todynamic model will be used, with receivers placed only at
x3;B, at 5 m depth. We first consider a homogeneous medium.
The P-wave velocity of the medium is 2000 m/s, the S-wave
velocity 1400 m/s, and the density is 1000 kg/m3. A 45◦ (anti-
clockwise) oriented dipole force source with a peak frequency
of 20 Hz, buried at 2000 m depth, is considered the (passive)
source. The only upgoing fields to be expected are one up-
going P-wave and one upgoing SV-wave. At the free surface,
P-SV field conversion can occur (Aki and Richards 1980).
Therefore, we expect two downgoing P-wave events (P-P and
SV-P) and two downgoing SV-wave events (P-SV and SV-SV).

The originally recorded two-way fields are presented in
Fig. 5. Due to the 45◦ anti-clockwise diagonally oriented
force source, the recorded fields reveal asymmetric amplitudes

along the hyperbolas. We again compare the results of the
MC decomposition and the MDL decomposition approach in
Fig. 6. The black lines represent the one-way fields at depth
level x3;B obtained via MC decomposition. In this case, both
stress and particle velocity measurements were required. The
MDL decomposition results are displayed in red (dashed).
These up/down and wave mode decomposed fields were ob-
tained using only particle velocity recordings at x3;B combined
with the free-surface Dirichlet boundary condition of zero
traction. One can clearly observe that the MDL approach, us-
ing now only particle velocity data at one depth level, again
retrieves the correct one-way fields. There is a perfect match
in both phase and amplitude. In addition, the decomposition
results show indeed only the expected one-way fields, i.e.,
one upgoing P-wave events, and two downgoing SV-wave,
two downgoing P-wave events, and two downgoing SV-wave
events. Again, by measuring additionally τ̃23 and ṽ2 for MC
decomposition and only ṽ2 as extra quantity for MDL de-
composition, similar results are to be expected for the 2.5D
scenario.

The downgoing field can be interpreted as the elastody-
namic free-surface ghost of the upgoing field. The proposed
algorithm can therefore be used for elastodynamic deghost-
ing. This can be very useful for passive data processing,
for instance for passive seismic interferometry (Draganov,
Wapenaar, and Thorbecke 2006; Xu et al. 2012). In ad-
dition, decomposition has been used in combination with
multi-dimensional deconvolution of passive recordings at the
surface (Nakata et al. 2014). Using MDL decomposition,
similar multi-dimensional deconvolution procedures can be
carried out on passive data with receivers located in the
subsurface (which might lead to a better signal-to-noise ratio
of the recordings) (Almagro Vidal et al. 2014; Almagro Vidal
and Wapenaar 2014).
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Figure 3 Original shot records registered at depth level x3;A = 1000 m. (a) Two-way data −τ13. (b) Two-way data −τ33. (c) Two-way data v1.
(d) Two-way data v3.

So far, we have only considered scenarios where the cor-
rect velocity has been used at the decomposition level as well as
for extrapolating the fields between the different depth levels.
We will now investigate the sensitivity of the MDL decom-
position scheme to errors in the velocity model. We therefore
consider the same acquisition geometry as described for the
homogeneous example above but now with a velocity model
that experiences a horizontal gradient from −20% velocity er-
ror to +20% velocity error with respect to the homogeneous
P- and S-wave velocities (see Fig. 7). The resulting two-way
data are presented in Fig. 8. We apply MC and MDL de-
composition using the homogeneous velocities. In this way,
the effects of using erroneous velocities on both the MC and
MDL decomposition scheme are investigated.

The results of both decomposition schemes are displayed
in Fig. 9. In black, the results of MC decomposition using

an erroneous velocity at the depth level of decomposition are
displayed. In red dash, the results of applying MDL decompo-
sition with erroneous velocities at the depth level of decompo-
sition and for the extrapolation operators are displayed. We
can observe that the downgoing P-field and S-field are cor-
rectly resolved and equally-well in terms of both phase and
amplitude. The upgoing P-field and S-field show leakage of
downgoing energy (indicated by the arrows) but again, the
amount of leakage is comparable for the MC and MDL de-
composition schemes. However, please note that it is crucial
to have properly dealt with the notch problems (due to, for
example, notch filters) or that the distance over which extrap-
olation takes place is small enough to avoid notches that over-
lap with the data bandwidth. If this is namely not the case, the
undesired notch effects on the decomposition results will be-
come more pronounced when using incorrect velocity models.
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Figure 4 Comparison between the MC decomposition results in black and the MDL decomposition results in red (dashed). (a) Downgoing
P-waves. (b) Downgoing S-waves. (c) Upgoing P-waves. (d) Upgoing S-waves.

Since we are here effectively considering a laterally vary-
ing medium, which is a realistic scenario for (near-surface)
land data, we know that, theoretically, the applied hor-
izontal wavenumber–frequency decomposition approach is
not valid. We predict that the leakage (for both decom-
position schemes) can be avoided when carrying out the
field decomposition in the space–frequency domain (e.g.,
Grimbergen et al. 1998).

For the MDL decomposition, we have carried out a
damped least-squares inversion of the customized composi-
tion matrix S̃, using a Tikhonov regularization with a damping
factor of 1e−4 of the maximum amplitude of S̃S̃†.

MC-MDL acoustic decomposition applied to a field land
data set

Theory of the MC-MDL decomposition

Following the MC decomposition procedure, upgoing and
downgoing one-way fields can be obtained by inverting the
forward problem of equation (2). In the MDL decomposi-
tion scheme, the decomposition problem is treated slightly
different. We have seen that, using field extrapolation opera-
tors, we can express the one-way fields at one depth level in
terms of the observed fields at multiple levels. The synthetic
elastodynamic examples have shown that the MDL up/down
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Figure 5 Original shot records for a homogeneous model registered at depth level x3;B = 5 m. (a) Two-way data −τ13. (b) Two-way data −τ33.
(c) Two-way data v1. (d) Two-way data v3.

decomposition obtains correct one-way fields in both ampli-
tude and phase. However, as discussed in Appendix A for
acoustic fields, the MDL inversion can suffer from notches
at certain frequencies. The MC decomposition scheme does
not suffer from these notches but might suffer from different
sensor characteristics (Schalkwijk et al. 2003) or the fact that
differently recorded field quantities might not be of similar
quality due to different noise levels (Burnstad et al. 2012).
The success of the MDL decomposition scheme on synthetic
data combined with the discussion of the notch problems has
led to the idea of combining the MC decomposition scheme
with the MDL decomposition schemes (MC-MDL), thereby
combining the best of both worlds. We will investigate this
idea by applying it to an acoustic representation of a real land

data set recorded in Annerveen, the Netherlands. Here, the
aim is to perform up/down field separation at depth level x3;B.

We start by looking at the decomposition problem as an
inverse problem. Using equation (2) as the basic equation, we
try to improve the decomposition with an additional inversion
constraint: the free-surface condition from the MDL decom-
position scheme, where depth level x3;A coincides with the free
surface. This corresponds to the Annerveen acquisition geom-
etry, where x3;A = 0 m, and x3;B = 50 m. This leads to the
following overdetermined inverse problem:

⎛
⎜⎝

q̃1;B

q̃2;B

0

⎞
⎟⎠ =

⎛
⎜⎜⎝

L̃+
1;B L̃−

1;B

L̃+
2;B L̃−

2;B

L̃+
1;AF̃+ L̃−

1;AW̃−

⎞
⎟⎟⎠

(
p̃+

B

p̃−
B

)
. (30)
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Figure 6 Comparison between the MC decomposition results in black and the MDL decomposition results in red (dashed) for the homogeneous
model. (a) Downgoing P-waves. (b) Downgoing S-waves. (c) Upgoing P-waves. (d) Upgoing S-waves.

For our field data example, we will consider scalar versions of
equation (2), referred to as the MC decomposition problem,
and equation (30), referred to as the MC-MDL decomposi-
tion problem. Here, q̃1 = p̃, i.e., acoustic pressure field, and
q̃2 = ṽ3, i.e., vertical component of the particle velocity (see
also Appendix A for an extensive discussion on acoustic MDL
field decomposition). The flux-normalized scalars L̃±

1 and L̃±
2 ,

as well as the scalar field extrapolation operators W̃− and
F̃ +, are taken as defined by Wapenaar (1998). For clarity,
the subscripts A and B have been added in equation (30).
However, as discussed earlier, we assume that the medium
between depth levels x3;A and x3;B is homogeneous. Although
the distance between x3;A and x3;B is only 50 m and taking
into account the near-surface geology of this specific part of
the Netherlands, this seems a valid assumption. Due to this

assumption, we can omit the subscripts of the composition
submatrices. As can be observed, the added row in equation
(30) overdetermines the inverse problem but does not require
additionally recorded fields. The added equation makes use
of the Dirichlet free-surface boundary condition, i.e., the pres-
sure at the free surface equals zero. We will now investigate
whether this overdetermined inverse problem improves the
decomposition results of the Annerveen data set. The inverse
problem will be solved in the least squares sense. Again, other
approaches, such as sparsity promotion (Van der Neut and
Herrmann 2012), could also be considered. For both the MC
and MC-MDL decomposition, we have carried out a damped
least squares inversion of the (customized) composition ma-
trix S̃, using a Tikhonov regularization with a damping factor
of 1e−4 of the maximum amplitude of S̃S̃†.
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Figure 7 Geometry of synthetic elastodynamic example 2 with velocity variations of -20% to +20% with respect to the homogeneous velocities.
(a) The colors represent P-wave velocities in m/s. (b) The colors represent S-wave velocities in m/s.

Up/down decomposition results of the Annerveen data set.

The data have been acquired on land in Annerveen, located in
the North of the Netherlands. One receiver array consisting
of 96 receivers with a spacing of 11.75 m was buried at 50 m
depth. In addition, 144 shots were fired at 4 m depth with a
source spacing of 11.75 m, alternating positions with respect
to the receiver positions. The receivers have registered both
the pressure and vertical-component particle velocity fields.

Several initial data processing steps need to be performed
before we carry out the field decomposition. We use standard
filtering techniques to filter out the surface waves. In addi-
tion, all dead traces are removed. Since we are dealing with a
pseudo-2D data set, we correct the amplitudes by multiplying
with the square root of time. In addition, the data show quite
a variety in amplitudes for different shots. Therefore, we carry
out a shot normalization, where we normalize the shot gathers
with the power of each shot. Since the MC-MDL decomposi-
tion scheme assumes depth level x3;A to be coinciding with the
free surface of the Earth and depth level x3;B corresponding to
the receiver level at 50 m depth, one can directly notice that
our source in this configuration is located between the two
depth levels. The theory does not account for this configura-
tion. This has to do with the fact that, in the derivation of the
field extrapolation operators (Wapenaar 1998), it is assumed
that no sources are located between the depth levels. How-
ever, by removing the incident fields from the data set (i.e.,
direct field and direct source ghost), the MC-MDL decompo-
sition can still be applied to the remaining reflected data set.
We remove these direct fields by applying a time gate, which
has been selected by visual inspection (Fig. 10).

We carry out the visual inspection looking at an average
over ten adjacent common-source gathers. The underlying as-
sumption of this approach is that the Earth is laterally invari-
ant over the distance of these ten shots, which is a reasonable
assumption considering the area of interest.

The crucial parameter for our acoustic MC-MDL decom-
position that needs to be determined is the P-wave velocity in
the layer between depth levels x3;A and x3;B. The P-wave veloc-
ity determines, via the vertical wavenumber k3, the forward
and inverse extrapolation operators W̃− and F̃ +, respectively.
Furthermore, the P-wave velocity is an important constituent
in the composition matrix L̃ (Wapenaar 1998). Here, we de-
termine the P-wave velocity by looking at the arrival time dif-
ference between a strong upgoing reflection, and its receiver
side ghost. To identify these two events, we make use of the
two individual pressure and particle velocity data sets, and
exploit our knowledge about polarity reversal of registered
events. Effectively, this means that p and v3 have opposite
polarity for the first upgoing reflection but identical polarities
for the later arriving receiver side ghost. This can be clearly
observed in Fig. 10, indicated by the two arrows. Based on
the zero-offset time difference between those two events and
knowing the propagation pathlength (2 × 50 = 100 m), the
P-wave velocity can be estimated. Our best estimate of the
P-wave velocity is cP = 1639 m/s. Exact knowledge of the
density is not required since it appears as a scalar that occurs
in each element of the composition matrix. To precondition
the inversion, we scale composition matrix element L̃2 from
Wapenaar (1998) with the impedance (with the density taken
as 1 kg/m3), resulting in a better-posed inverse problem.
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Figure 8 Original shot records registered at depth level x3;B = 5 m, for the velocity model with velocity variations of -20% to +20% with
respect to the homogeneous velocities. (a) Two-way data −τ13. (b) Two-way data −τ33. (c) Two-way data v1. (d) Two-way data v3.

We start with the MC field decomposition, according
to equation (2). Since both the pressure and particle velocity
data are involved simultaneously in the MC decomposition
schemes, we want to make sure that the sensors are correctly
calibrated. Therefore, we focus on a clear event in the two-way
recorded data set and select a data window around this event.
We select the top black box, as indicated in Fig. 11. The event
in this data window is a purely upgoing event. We therefore
want to minimize the downgoing energy in this data window.
We use a least-squares minimization subtraction algorithm
to find the correct scaling factor between the pressure and
particle velocity data that minimizes the downgoing energy
and to scale the data accordingly. We now carry out the MC
decomposition, resulting in the decomposed flux-normalized
one-way fields shown in Fig. 12(a, b).

Next, we focus on the MC-MDL decomposition. Look-
ing at row 3 of equation (30), we observe that the following
relation must hold at the free surface:

L̃+
1 F̃ + p̃+

B = −L̃−
1 W̃− p̃−

B . (31)

This equation also holds for an individual event. We en-
force equation (31) to hold by selecting a certain upgoing
event and its corresponding downgoing event, indicated with
the two boxes in Fig. 11. The term L̃+

1 p̃+
B then corresponds

to the selected downgoing event in the two-way pressure
data set, illustrated by the dark green boxes in Fig. 11, and
L̃−

1 p̃−
B to the selected upgoing event in the two-way pressure

data set, indicated by the black boxes in Fig. 11. We will
propagate the two-way data set, including the selected upgo-
ing event, forward (in the propagation direction) to the free
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Figure 9 Comparison between the MC decomposition results in black and the MDL decomposition results in red (dashed) for the velocity
model with velocity variations of -20% to +20% with respect to the homogeneous velocities. (a) Downgoing P-waves. (b) Downgoing S-waves.
(c) Upgoing P-waves. (d) Upgoing S-waves.

surface using W̃−. Secondly, we will propagate the two-way
data set, including the selected downgoing event, backward
(against the propagation direction) to the free surface. Here,
equation (31) must hold. We now calibrate the two shifted
two-way events at the free surface with each other, using a
least squares minimization subtraction algorithm on the se-
lected event. A similar minimization problem has been de-
fined for the vertical-component particle velocity field. Both
minimization problems are solved for simultaneously. We
then apply this calibration factor to the composition ma-
trix element containing F̃ +, corresponding to the downgo-
ing fields (see equation (30)). The overall weight of the extra
equation in the inversion can be further tuned according to
preference.

We are now all set to carry out the MC-MDL field decom-
position. The decomposition is carried out by least squares in
version of equation (30).

Figures 12(a) and 12(b) display the upgoing and down-
going MC decomposed fields. The results of the overde-
termined MC-MDL decomposition problem are shown in
Figures 12(c) and (d). What can be clearly observed is that
by adding the extra constraint to the inversion (the third
row in the composition matrix of equation (30)), we have
improved the decomposition results, especially for the down-
going fields (compare Fig. 12b and d). In addition, it can
be observed that the MC decomposition result has vertical
‘white’ bands at certain offsets, corresponding to dead or
noisy traces in the two-way recorded data. Our MC-MDL
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Figure 10 Average over ten common-source gathers. The black line represents the start of the Hanning taper, separating incident fields from
reflected fields, and has a taper length of ten samples downwards. The black arrows indicate a strong upgoing reflection and its receiver side
ghost. We make use of our knowledge of polarity reversal between the two data sets to estimate the P-wave velocity. (a) Pressure data p. (b)
Vertical component particle velocity data v3.
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Figure 11 Two-way reflected data. The boxes represent selected windows for data calibration. The black boxes is used for calibrating p̃ and
ṽ3 in MC decomposition. The black and the dark green boxs are used for up/down calibration in the MDL decomposition scheme. (a) Pressure
data p. (b) Vertical component particle velocity data v3.

decomposition result does not show these ‘white’ bands so
strongly. This is due the applied field extrapolation operators
in the wavenumber–frequency domain, implicitly yielding an
interpolation between the traces.

D I S C U S S I O N

We have shown that the MDL decomposition scheme cor-
rectly decomposes different kinds of fields. However, the
MDL scheme might suffer from invertibility issues due to the
presence of notches. The notch problems have been investi-
gated more closely for an acoustic example (Appendix A). We

have shown that notch filters can be designed such that the
MDL field decomposition for the acoustic case can still be
carried out using only pressure or particle velocity recordings.
Similar notch filters might be required for the other field phe-
nomena treated in the appendices. The notch filters remove
certain (notch) frequencies from the data. Which frequencies
are missing depends on which data set is used for the de-
composition. Since, for the acoustic case, the pressure and
vertical-component particle velocity data are complementary
to each other, combining the two data sets will result again in
full-bandwidth decomposed fields.
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Figure 12 Comparison of the decomposition results of the Annerveen land data set. (a) MC decomposed upgoing fields. (b) MC decomposed
downgoing fields. (c) MC-MDL decomposed upgoing fields. (d) MC-MDL decomposed downgoing fields.

A way to avoid suffering from notches in the frequency
spectrum of the data is to carry out deghosting in the space–
time domain. Using single-component measurements only
(e.g., only pressure data), Beasley et al. (2013a, b) showed
that, by using the wave equation to simulate upgoing and
downgoing wavefield propagation between the receiver level
and the water surface, wavefield separation can be achieved.
In addition, Robertsson and Amundsen (2014) showed that,
by using finite-difference modeling to predict ghosts from
upgoing waves (after removal of the direct wave) and by
instantaneously injecting these predicted ghosts, destructive
interference takes place with the recorded ghosts. In this way,
successful deghosting in the space–time domain is achieved,
without suffering from notches. Furthermore, Amundsen and
Robertsson (2014) have presented a similar method for
deghosting in the space–time domain that relies on multi-
component (MC) recordings. An important challenge of these

space–time domain decomposition approaches based on wave
propagation is the fact that they require unaliased data and
hence fine receiver sampling (Beasley et al. 2013a). For 3D
deghosting, this fine sampling is also required in the cross-line
direction. In order for the method to work, the water veloc-
ity, receiver depth, and receiver positions must be known.
However, these are mainly challenges that also hold for most
other deghosting procedures (including our MDL decomposi-
tion scheme). If one would like to apply a similar space–time
domain approach to land data, the fact that the velocities are
required to be known might be problematic, and one should
carefully investigate the sensitivity of this method to the use
of incorrect velocity models. The same holds for the MDL
decomposition scheme, for which we investigated the velocity
sensitivity in Synthetic Elastodynamic Example 2.

As we discussed in Appendix A, we can straightforwardly
add the pressure and vertical-component particle velocity data
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(with some calibration factor) to obtain the full-frequency
spectrum decomposed fields. Alternatively, one might for ex-
ample prefer to combine the two data sets in a very late
stage. One possible way would be via multi-dimensional de-
convolution (Wapenaar et al. 2008). The multi-dimensional
deconvolution method can be useful, for example, for surface-
and sea bottom-related multiple elimination (Wapenaar and
Verschuur 1996; Amundsen 1999). Via multi-dimensional
deconvolution, which makes use of upgoing and downgo-
ing (flux-normalized) fields, the reflection response of the
medium below a certain depth level can be obtained, as if the
medium above this depth level was homogeneous. The multi-
dimensional deconvolution procedure can be applied to differ-
ent types of fields (Amundsen and Holvik 2004; Holvik and
Amundsen 2005; Van der Neut et al. 2010; Wapenaar et al.

2008). Instead of adding the pressure and vertical-component
particle velocity data to obtain full-frequency spectrum de-
composed fields, we can alternatively combine these two data
sets smoothly at the stage of multi-dimensional deconvolu-
tion, thereby exploiting the benefit of treating the two data
sets separately until a very late stage of the imaging work-
flow. Despite the problem of the notches, one of the benefits
of applying MDL decomposition based on either pressure or
vertical-component particle velocity data independently (for
the acoustic case) is that sensor calibration (as is needed for
MC decomposition) is not required. Combining these two
data sets in the stage of multi-dimensional deconvolution also
avoids the need of sensor calibration since the same sensor
calibration functions act on both the upgoing and downgo-
ing fields. Therefore, they will occur at both the left-hand
and right-hand sides of the multi-dimensional deconvolution
equations to be solved and will drop out of the equations
automatically.

The MDL decomposition scheme makes use of recordings
at multiple depth levels. So far, we have shown land data ex-
amples, where recordings in a horizontal borehole (or record-
ings using a high-density of vertical boreholes) on land were
used. More generally speaking, the MDL scheme needs record-
ings at multiple depth levels, applicable to any medium. One
can think of combining for example marine (dual) streamer
data with ocean-bottom-node data.

CONCLUSIONS

Applying field decomposition to a real data set is often quite
challenging. The multi-component (MC) field decomposition
scheme makes use of differently recorded field components,
e.g., both pressure (p) and vertical-component particle veloc-

ity (v3) data in a purely acoustic case. In practice, recordings
can be obscured by different sensor characteristics, requiring
calibration with an unknown calibration factor. In addition,
not all field quantities required for MC field decomposition
might be available, and they may not always be of similar
quality due to different noise levels. In particular, when deal-
ing with more complex field phenomena (e.g., elastodynamic
or seismoelectric fields), the MC field up/down decomposition
requires measuring many different field quantities.

We have presented a multi-depth-level (MDL) field de-
composition scheme for land acquisition that is inspired by
marine acquisition designs that make use of recordings at
multiple depth levels for successful field decomposition. Our
MDL decomposition approach makes use of configurations
with field quantity information on multiple depth levels, e.g.,
two horizontal boreholes that are closely separated from each
other, or a combination of a single receiver array just below
a free surface, thereby exploiting the natural (Dirichlet) free-
surface boundary conditions.

We have theoretically described the MDL decomposition
approach in a unified form, showing that, in principle, it can
be applied to different kinds of fields in dissipative, inho-
mogeneous, anisotropic media, such as for example acoustic
fields, electromagnetic fields, elastodynamic systems, poroe-
lastic fields, and seismoelectric fields. The theoretical details
of decomposing each of these types of fields, for laterally in-
variant media at the depth level of decomposition, are given
in the Appendices A–E.

Assuming that the medium is laterally invariant at the
depth level of decomposition allows us to carry out the MDL
decomposition in the horizontal wavenumber–frequency do-
main. We have illustrated the MDL decomposition scheme
using two synthetic elastodynamic modeling examples. We
have first demonstrated that the MDL decomposition scheme
leads to correctly retrieved power-flux-normalized one-way
fields, for both P- and S-waves, using only particle velocity
recordings at two depth levels. Secondly, we showed that,
when we have particle velocity recordings at one depth level,
in combination with the free-surface Dirichlet boundary con-
dition of zero traction, we can correctly decompose the data
into one-way fields as well. Comparison with MC obtained
decomposed fields shows a perfect match in both amplitude
and phase for both cases.

We have additionally tested the effects of using erroneous
velocities on both the MC and MDL decomposition schemes.
For the considered example, we observed that the downgo-
ing P- and S- fields are correctly and equally well resolved
in terms of both phase and amplitude. The upgoing P- and
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S- fields show leakage of downgoing energy, but the amount
of leakage is comparable for the MC and MDL decomposi-
tion schemes. Please note that it is crucial to have properly
dealt with possible notch problems. Otherwise, the undesired
notch effects on the decomposition results will become more
pronounced when using incorrect velocity models.

We have shown that the MDL decomposition scheme is
fully customizable to the acquisition geometry and measured
field quantities under consideration. Care must be taken that
the customized composition matrix to be inverted is always of
sufficient rank. However, depending on the acquisition design
and wave velocities under consideration, notches may occur
at certain frequencies, causing the customizable MDL compo-
sition matrix to become uninvertible. Additional notch filters
are then required.

The success of the MDL decomposition scheme on the
synthetic elastodynamic data, combined with the problem of
the notches, has led to the idea of combining the MC and
MDL decomposition schemes. The decomposition problem is
in principle an inverse problem. By adding an extra equation
of the MDL decomposition scheme to the MC composition
matrix, we can overdetermine the inverse problem and hereby
better constrain the inversion. Since this equation makes use
of the Dirichlet free-surface boundary condition, where for
the acoustic case the pressure at the free surface equals zero,
we do not require additionally recorded fields for this extra
inversion constraint. Comparison of the results of this overde-
termined MC-MDL decomposition scheme with the results of
the conventional MC field decomposition clearly showed im-
provements in the obtained one-way flux-normalized fields,
especially for the downgoing fields.
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APPENDIX A

ACOUSTIC F IELD DECOMPOSITION,
NOTCHES AND FILTERS

In this appendix we closely investigate the notch
patterns for an acoustic case and show that acoustic MDL
decomposition can also be carried out using only pressure

or vertical-component particle velocity data, in combination
with notch filters. We use a scalar version of equation (2) as
the basic starting equation for field decomposition, where we
take q̃1 = p̃ and q̃2 = ṽ3. Here, p̃ corresponds to the acoustic
pressure field, and ṽ3 denotes the vertical-component particle
velocity field. We will focus on single horizontal downhole
sensor arrays combined with a free-surface constraint, which
corresponds to the acquisition geometry of our presented field
data example. Let us consider two scalar versions of equation
(29), where level x3;A coincides with the free surface and level
x3;B is located at some arbitrary shallow depth level, mea-
suring either pressure or vertical-component particle velocity
fields. We locate the source for example at the free surface.
This leads to(

p̃+
B

p̃−
B

)
=

(
L̃+

1 F̃ + L̃−
1 W̃−

L̃+
1 L̃−

1

)−1 (
q̃1,A

q̃1,B

)
(A1)

= S̃−1
p

(
q̃1,A

q̃1,B

)
,

where, as defined above, q̃1 = p̃ and to

(
p̃+

B

p̃−
B

)
=

(
L̃+

1 F̃ + L̃−
1 W̃−

L̃+
2 L̃−

2

)−1 (
q̃1,A

q̃2,B

)
(A2)

= S̃−1
v3

(
q̃1,A

q̃2,B

)
,

where q̃2 = ṽ3. As can be seen, the same downgoing and up-
going decomposed fields at depth level x3;B can be obtained in
two independent ways. We can either apply the inverse of the
MDL composition matrix S̃−1

p to a zero value of the pressure
field at level x3;A combined with a measured pressure field at
x3;B (equation (A1)), or apply the inverse S̃−1

v3
to a zero pressure

field at level x3;A combined with a measured vertical particle
velocity at level x3;B (equation (A2)). Here, L̃1

±
and L̃2

±
are

again taken as defined in Wapenaar (1998). However, notches
occuring at certain notch frequencies can cause the S̃ matrix
to become uninvertible. In both our elastodynamic synthetic
examples, the distance was small enough to avoid suffering
from notches when solving the inverse problem. However,
for certain distances, notches will occur at certain frequen-
cies overlapping with the data band. In these cases, additional
notch filters are required in order to be able to invert the MDL
composition matrices correctly. In our field data example, we
combined MC with MDL decomposition, such that we did not
suffer from the notches. Alternatively, the following approach
could be taken.
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From a mathematical point of view, we expect the notches
to occur in those situations where the determinant of the com-
position matrix to be inverted S̃p;v3

becomes zero (or close to
zero). By evaluating when the determinant becomes zero (or
close to zero), we can analytically obtain information about
the specific notch frequency patterns at which the matrix be-
comes uninvertible (or poorly invertible). Starting from equa-
tion (A1), we can determine the notch patterns for the pressure
data. We can see that in the case of a zero-determinant, the
following equation holds:

L̃+
1 L̃−

1

[
F̃ + − W̃−] = 0. (A3)

In addition to the the zero-solutions for L̃±
1 (or for L̃±

2 in case
of equation (A2)), the term in between the square brackets
can be zero. Considering propagating waves, we can apply
equation (24) leading to

L̃+
1 L̃−

1

[(
W̃−)∗ − W̃−

]
= 0. (A4)

Rewriting the term in the square brackets using Euler’s
formula yields the following relation describing the notch
patterns(

W̃−)∗ − W̃− = −2 j	{W̃−} (A5)

= −2 j sin
(−k3|x3;B − x3;A|) = 0.

When we start from equation (A2), we can obtain the
notch patterns for the vertical-component particle velocity
data in a similar way. We can use the following properties
L̃−

1 = L̃+
1 and L̃−

2 = −L̃+
2 . This leads to the following zero-

determinant condition:

L̃±
1 L̃+

2

[−F̃ + − W̃−] = 0. (A6)

Considering propagating waves, we can again apply equation
(24) leading to

L̃±
1 L̃+

2 [−(W̃−)∗ − W̃−] = 0. (A7)

Rewriting the term in the square brackets using Euler’s for-
mula yields the following relation describing the notch pat-
terns

− (W̃−)∗ − W̃− = −2
{W̃−} (A8)

= −2 cos
(−k3|x3;B − x3;A|) = 0.

We can clearly observe that the notch patterns for the pressure
and vertical-component particle velocity data follow a com-
plementary trigonometric pattern (sine or cosine) with iden-
tical argument. This complementary pattern has been widely

exploited for marine/ocean-bottom-cable deghosting proce-
dures (e.g., Day et al. 2013).

As an alternative approach, as known from inverse the-
ory, the condition numbers can provide us with information
about the invertibility of a certain matrix. The condition num-
ber represents the ratio between the largest and smallest singu-
lar values of the matrix. High condition numbers indicate that
the matrix is poorly conditioned and therefore difficult to in-
vert (Van der Neut et al. 2013). Investigating the invertibility
of S̃p,v3

by looking at 1/(Condition Number) clearly shows us
the locations of the notches for both the pressure and vertical-
component particle velocity data (see Figures 13(a) and 13(b),
respectively). Since we here display the inverse of the condi-
tion numbers, low values correspond to the notch frequencies
for that specific type of data. One can see that the two types
of data are indeed complementary to each other. In other
words, where a notch occurs for the pressure data at a cer-
tain frequency-wavenumber combination, the particle velocity
field can provide the data and vice versa.

We have designed two filters that follow these notch pat-
terns and are also complementary to each other. To exploit the
fact that the filters should be complementary to each other,
we have used sin2(a) + cos2(a) = 1. In this way, we try to
find a certain a that matches the notch patterns, such that
a maximum contribution is given to the maximum ampli-
tudes in the inverse condition number plots (corresponding to
low condition numbers and good matrix invertibility) and a
minimum contribution is given to the minimum amplitudes
in the inverse condition number plots. Using the analytical
solutions of equations (A5) and (A8), we have found that
a = k3(x3;B − x3;A) exactly follows the moveout patterns in the
wavenumber–frequency plots. The notch filters are therefore
taken as wp = sin2(k3(x3;B − x3;A)) and wv3

= 1 − wp, for the
pressure field and vertical-component particle velocity field
data, respectively (see Fig. 14).

Applying these filters to the MDL decomposition matri-
ces S̃−1

p,v3
avoids suffering from the notches in the MDL decom-

position. In this way, the acoustic field up/down decomposi-
tion can be carried out using either solely pressure recordings
at x3;B combined with a free-surface, zero-pressure constraint
or solely vertical-component particle velocity recordings at
x3;B combined with a free-surface, zero-pressure constraint
(equations (A1) and (A2), respectively). The MDL decom-
position results obtained by using either solely pressure field
data or solely vertical-component particle velocity data are
presented in Fig. 15 and 16, respectively.

Since we have applied specific notch filters to each of the
two data sets, certain frequencies are missing in the resulting
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Figure 13 Wavenumber–frequency domain plots indicating the invertibility of the matrices S̃p and S̃v3
. The plots show the inverse of the

condition numbers for (a) the pressure field data, and (b) the vertical-component particle velocity data.
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Figure 14 Designed notch filters to deal with the notch frequencies and hence overcoming the invertibility issues of S̃p and S̃v3
. (a) Notch filter

for the pressure field data. (b) Notch filter for the vertical-component particle velocity data.

decomposed data. Which frequencies are missing depends on
which data set is used for the decomposition. However, since
the pressure field data and particle velocity field data are com-
plementary to each other, combining them will result again in
full-frequency spectrum decomposed fields. Combining these
two data sets can be performed at various stages. A straight-
forward way of combining pressure and particle velocity data
is to add them. This addition can be designed in any desired
way. One can for example normalize the two data sets by
the norm of the energy of each data set, before adding them
up. The underlying assumption is then that the total energy
in the two data sets should be identical. The result of this
addition is shown in Fig. 17. Comparing Fig. 15, 16 and 17
with the MC or MC-MDL results of Fig. 12, again shows

that similar results can be obtained by using only pressure or
vertical-component particle velocity data.

Despite the drawback of the notches, the introduced in-
dependence between the pressure and vertical-component par-
ticle velocity recordings has an additional benefit. As is well
known for field data, differently recorded field quantities can
have different receiver signatures superimposed. Each receiver
modifies the recorded field via a specific transfer function
when converting it to a voltage (El Allouche 2011). Since
we can treat certain field quantities separately in the MDL
decomposition scheme ( p̃ and ṽz for the acoustic case), a com-
pensation for these sensor characteristics is not required. The
same transfer functions act on both the upgoing and downgo-
ing fields.
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Figure 15 MDL decomposition results of the
Annerveen data set using only pressure record-
ings at x3;B combined with a free-surface, zero-
pressure constraint and after applying the de-
signed notch filter. (a) MDL upgoing fields using
only pressure field data and a free-surface zero-
pressure constraint. (b) MDL downgoing fields
using only pressure field data and a free-surface
zero-pressure constraint.
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Figure 16 MDL decomposition results of the An-
nerveen data set using only vertical-component
particle velocity data at x3;B combined with a
free-surface, zero-pressure constraint and after
applying the designed notch filter. (a) MDL up-
going fields using only vertical-component par-
ticle velocity field data and a free-surface zero-
pressure constraint. (b) MDL downgoing fields
using only vertical-component particle velocity
data and a free-surface zero-pressure constraint.
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Figure 17 Summed MDL decomposition re-
sults of the Annerveen data set using only pres-
sure recordings at x3;B or vertical-component
particle velocity recordings at x3;B. (a) Up-
going fields, by summing Figures 15(a) and
16(a). (b) Downgoing fields, by summing Fig-
ures 15(b) and 16(b).

APPENDIX B

ELECTROMAGNETIC F IELD
DECOMPOSITION

We start by capturing the electromagnetic problem in
the format of equation (1). When considering a medium that

is invariant in two directions, it can be useful to decouple
the total 3D system into two independent electromagnetic
propagation modes: the transverse electric (TE) mode and
the transverse magnetic (TM) mode, resulting in mode field
vectors (Nabighian 1987). In 2D (when defining line sources
in the crossline (x2−) direction), the mode separation occurs
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naturally. Since the eigenvectors of the full electromagnetic
system in laterally invariant media are well known (Slob
2009), we here skip the theory of mode separation and
directly describe how to apply the multi-depth level (MDL)
field decomposition scheme to arbitrary subsurface geome-
tries, just like the acoustic and elastodynamic systems treated
in this paper.

Following Slob (2009), we might define the electromag-
netic field vector q̃ in this case as:

q̃ =
(

q̃1

q̃2

)
=

⎛
⎜⎜⎜⎝

Ẽ1

Ẽ2

H̃2

−H̃1

⎞
⎟⎟⎟⎠ . (B1)

The whole electromagnetic system is described if we
know four out of the six existing electromagnetic field quan-
tities (Ẽi and H̃i ). Recordings in a horizontal borehole result
in recordings on a ‘line’. Let us take the x1-direction as the
direction of our borehole, and refer to this direction as the
inline direction. Not all components of the electric field can
be measured in a borehole. In the above described case, only
the inline electric field (Ẽ1) can be measured in the borehole.
Using coils, we can additionally measure

jωB̃3 = −ẼH = jωμ0μRH̃3 (B2)

jωB̃α = jωμ0μRH̃α, (B3)

where the subscript α can take the values 1 and 2. Here,
B̃k (with k =1,2 or 3) denotes the different field components
of the averaged magnetic flux density. The coils can directly
measure the time derivative of these magnetic flux densities.
In addition for Earth materials, the relative magnetic perme-
ability μR ≈ 1, and the magnetic permeability for vacuum μ0

is a known constant. The quantity ẼH denotes the TE mode
gradient of the electric field, which can be composed from the
rotation of the horizontal-component electric field quantities
Ẽ1 and Ẽ2 via

ẼH = − jk1 Ẽ2 + jk2 Ẽ1. (B4)

At depth, the TE mode gradient of the electric field is pro-
portional to the vertical-component magnetic field H̃3. We
see that we can measure at least four components in an
x1-oriented borehole, where the magnetic fields are directly
measured with coils and the electric fields (Ẽ1) with elec-
trodes. In the space–frequency domain, a few electrodes in
the x2-direction might be sufficient to measure the spatial
derivative in the x2-direction of the inline electric field in
the x1-direction (space–frequency version of equation (B4)).

Since we also know jωB̂3 (space–frequency version of equa-
tion (B2)), we can calculate the derivative of Ê2 in the x1-
direction using the space–frequency versions of equations (B2)
and (B4). Together with the space–frequency version of equa-
tion (B3), we have access to the required four electromagnetic
components of our field vector. However, in the horizontal
wavenumber–frequency domain, we encounter some practi-
cal issues. Suppose we can measure the spatial derivative of
Ê1 in the x2-direction. Transforming this field to the hor-
izontal wavenumber–frequency domain to determine jk2 Ẽ1

requires much more spatial measurements in the x2-direction.
This is practically impossible since we typically only have one
borehole with limited borehole size in the x2-direction. Hence,
for an x1-oriented borehole, we can only transform to the k1-
domain. Equation (B4) shows that we then need to measure
Ẽ2, which is practically also impossible due to limited bore-
hole size in this direction.

The system can still be solved in the horizontal
wavenumber–frequency domain, in case of a purely 2D sit-
uation. In this case, mode separation occurs naturally. The
TE-mode field vector then reads

q̃H =
(

q̃H
1

q̃H
2

)
=

(
Ẽ2

−H̃1

)
, (B5)

and the TM-mode field vector consists of

q̃V =
(

q̃V
1

q̃V
2

)
=

(
Ẽ1

H̃2

)
, (B6)

Now, no gradients are required to obtain the necessary fields.
When we have an acquisition geometry where the sources
are located directly above an x1-oriented borehole, Ẽ2 and
H̃1 are zero in the (x1, x3) plane, leaving us with only a TM-
mode electromagnetic system, which is the desired mode in
electromagnetic acquisition for hydrocarbon exploration.

When using these 2D field vectors for the MDL decom-
position, it can be easily seen that sufficient field quantities
are measurable to carry out field decomposition. The com-
position matrix L̃ belonging to these 2D field vectors can be
easily derived from the 3D version as presented in Slob 2009.
The MDL theory in this paper was presented in the horizontal
wavenumber–frequency domain. When rewriting the system
in terms of operators, the same MDL scheme can be applied
in the space–frequency domain for laterally varying media at
the level of decomposition. An example of how to apply these
spatial operators for the electromagnetic case can be found in
Van Stralen (1997).

From the presented MDL decomposition scheme, we
know that we either need to measure q̃1 or q̃2. Depending on
the acquisition geometry, we either look at MDL recordings
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or a single-level recording combined with free-surface con-
straints. None of the presented field quantities in either q̃H,V

1

or q̃H,V
2 have a zero-value free-surface boundary constraint.

Hence, in order to apply the MDL decomposition scheme
to electromagnetic phenomena, we need recordings at at
least two depth levels. Whether the borehole is fluid filled
or whether the receivers are buried in the subsurface does
not make a difference for the electromagnetic case since
all tangential field components are continuous at a hori-
zontal fluid-solid interface (Nabighian 1987, reprint 2008).
However, the borehole wall should be non-metallic.

APPENDIX C

ELASTODYNAMI C FI E LD DEC OMPOSI TION

In the elastodynamic case, we organize the two-way
field vector as follows:

q̃ =
(

q̃1

q̃2

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−τ̃13

−τ̃23

−τ̃33

ṽ1

ṽ2

ṽ3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (C1)

Hence, q̃1 = −τ̃ 3, and q̃2 = ṽ. Since the eigenvectors for
arbitrary, laterally invariant subsurface geometries are well
known for the elastodynamic system, we will here not consider
the mode separation in independent SH and P-SV propagation
modes. Our synthetic elastodynamic examples were based on
2D modelling. In this case, all x2-directed field quantities in
q̃ and corresponding eigenvector elements in L̃ decouple (and
do not exist in our 2D example). In equation (C1), we have
organized the field quantities in such a way that the field
quantities that are likely to be measured (the particle velocity
in q̃2) are separated from the ones that are unlikely to be
measured (traction components acting on a horizontal plane in
q̃1). Alternatively, we can organize the field quantities in such
a way that the system matrix Ã obtains an anti-blockdiagonal
symmetry for isotropic media (Ursin 1983):

q̃ =
(

q̃1

q̃2

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ṽ3

−τ̃13

−τ̃23

−τ̃33

ṽ1

ṽ2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (C2)

Once the eigenvectors are known for a certain field vector or-
dering (e.g., in equation (C1)), one can easily reorganize the

field quantities and eigenvector matrix elements using permu-
tation matrices (Wapenaar and Berkhout 1989).

For laterally varying media at the level of decomposition,
all expressions need to be evaluated in the space–frequency do-
main and the use of pseudo-differential operators is required.
An example of how to properly use these operators is given
in e.g., Grimbergen et al. 1998; or Wapenaar et al. 2008, for
a 3D acoustic and electromagnetic case, with 2D numerical
examples. Elastodynamically, the derivation becomes already
much more tedious (Wapenaar and Grimbergen 1996). In ad-
dition, coding everything numerically correct in the space–
frequency domain might introduce new challenges. In the
space–frequency domain, we need to be able to determine
the derivative in the x2-direction (when considering a bore-
hole in the x1-direction), just like for the electromagnetic case
discussed previously. Also for pseudo-differential operators,
a two-point measurement might not be sufficient to deter-
mine these derivatives. Therefore, multiple parallel boreholes
(x1-oriented boreholes parallel in the x2-direction) might be
required. A high density of vertical boreholes (e.g., Bakulin
et al. 2012a, b), might be of use here as well. A practical solu-
tion might be to assume the medium is purely 2D and hence
has no variations in the x2-direction.

APPENDIX D

SEISMOELECTRIC A ND POROELASTIC
F IELD DECOMPOSITION

Seismoelectric phenomena deal with the coupling
that occurs between seismic and electromagnetic fields, when
those fields propagate through a fluid-filled porous medium.
The governing equations as derived by Pride (1994), show
that this complex physical phenomenon can be described by
Biot’s poroelasticity equations coupled to Maxwell’s electro-
magnetic equations via a coupling coefficient L̂. The theory
as derived by Pride (1994) holds for fluid-saturated porous
media, which we will focus on in this appendix. Recently, the
theory has been extended to partially saturated porous me-
dia (Warden et al. 2013). Since the necessary changes for this
extension do not directly affect the eigenvectors of the seismo-
electric system, the theory as presented in this appendix can
still be applied.

One can capture the seismoelectric phenomenon in the
format of equation (1) (Haartsen and Pride 1997). When
considering a medium that is invariant in two directions,
the total system can be separated into two independent
propagation modes SH-TE and P-SV-TM. In 2D, this
mode separation occurs naturally. The full, mode-coupled
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eigenvector sets of the seismoelectric system for any arbitrary
subsurface geometry are not known yet. We here focus on the
known eigenvectors for the mode separated seismoelectric
system (Pride and Haartsen 1996; Haartsen and Pride 1997;
Grobbe and Slob 2013). In the SH-TE mode, the horizontally
polarized shear waves are coupled to the transverse electric
(TE) fields, whereas in the P-SV-TM propagation mode the
pressure waves (fast and slow) are coupled to the transverse
magnetic (TM) fields via the vertically polarized shear
waves. Here, Pf ast describes the fast compressional wave (the
P-wave in the elastodynamic system), and Pslow describes the
diffusive Biot slow compressional field (associated with an
out-of-phase pore-fluid movement compared with the porous
material; Kelder 1998).

Starting with equation (2), the field vector q̃ can be or-
ganized in different ways. We can follow the field quantity
ordening as presented by Haartsen and Pride (1997). Alterna-
tively, we here follow the system as used by Grobbe and Slob
(2013). The two main differences with the scheme of Haartsen
and Pride (1997) are that Grobbe and Slob (2013) have power-
flux-normalized their derived eigenvectors and have adjusted
the system to correctly model situations where the seismoelec-
tric coupling coefficient is set to zero (i.e., when the poroelastic
system decouples from the electromagnetic system). In addi-
tion, Grobbe and Slob (2013) have used an opposite definition
of the Fourier transform (the same one as is used in this paper)
compared with Haartsen and Pride (1997), and they have used
particle velocity field vectors instead of displacement vectors.

We can treat the two modes separately in equations (1)
and (2). The field vectors for both the SH-TE (superscript H)
and P-SV-TM (superscript V) modes then read

q̃H =
(

q̃H
1

q̃H
2

)
=

⎛
⎜⎜⎜⎜⎜⎝

ṽs,H
norm

ẼH
norm

τ̃ b,H
norm

−H̃H
norm

⎞
⎟⎟⎟⎟⎟⎠ (D1)

and

q̃V =
(

q̃V
1

q̃V
2

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ṽs
3

w̃3

τ̃ b,V
norm

H̃V
norm

τ̃ b
33

− p̃ f

ṽs,V
norm

ẼV
norm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (D2)

The superscript (H or V) indicates that certain field quantities
are mode quantities. This means that the two modes need to
be combined in 3D to obtain the true physical field quantities.
We have normalized the field quantities of the SH-TE and
P-SV-TM mode with a factor − jκ, such that, at the left-hand
side and right-hand side of the equation, the same physical
quantities are written. The different mode quantities are then
defined as follows:

ṽs,H
norm = k1

κ
ṽs

2 − k2

κ
ṽs

1 (D3)

τ̃ b,H
norm = k1

κ
τ̃ b

23 − k2

κ
τ̃ b

13 (D4)

ẼH
norm = k1

κ
Ẽ2 − k2

κ
Ẽ1 (D5)

H̃H
norm = k1

κ
H̃1 + k2

κ
H̃2 (D6)

ṽs,V
norm = k1

κ
ṽs

1 + k2

κ
ṽs

2 (D7)

τ̃ b,V
norm = k1

κ
τ̃ b

13 + k2

κ
τ̃ b

23 (D8)

ẼV
norm = k1

κ
Ẽ1 + k2

κ
Ẽ2 (D9)

H̃V
norm = k1

κ
H̃2 − k2

κ
H̃1. (D10)

This normalization additionally aims to obtain a certain sym-
metry in the P-SV-TM system matrix ÃV that helps to deter-
mine the power-flux-normalized eigenvectors of the composi-
tion matrix L̃V. In the above, ṽs

i (with i = 1,2 or 3) denotes
the phase-averaged solid particle velocity field components,
w̃3 the vertical-component of the Biot filtration velocity, p̃ f

the phase-averaged fluid pressure, τ̃ b
i3 the bulk-averaged stress

components in the x3-direction, and Ẽα and H̃α the horizontal
components of the electric field and magnetic field, respec-
tively (with α= 1 or 2).

We know that for multi-component (MC) field decom-
position, all field quantities in q̃ must be measured. For seis-
moelectrics, a huge amount of field quantities needs to be
measured. In reality, not all field quantities can be measured
(e.g., certain stress field components or the filtration velocity
are not measurable). They also might be obscured by different
sensor characteristics or noise levels. Finally, requiring to mea-
sure many different quantities in the field makes the operation
financially and practically unfavourable.
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From equations (28) and (29), we know that the MDL
scheme is customizable. We can select those field quantities
that are easily measurable in reality or that are well-defined
by certain boundary conditions. We thereby need to take care
that the customized composition matrix is of sufficient rank
and notch problems are properly taken care of.

We focus on a single horizontal sensor array at depth lev-
els x3;B, and x3;A coinciding with the free surface. If we make
use of the dynamic boundary conditions (Aki and Richards
1980), this implies that all stress components go to zero at the
free surface: τ̃ b;H,V = 0, and p̃ f = 0. Constraining the stress
implies that the particle velocity fields (kinematic boundary
conditions) are then ‘free’ variables. In addition, at the free
surface, continuity of the horizontal components of the elec-
tromagnetic field quantities holds. We can carry out multi-
depth level (MDL) decomposition by having measurements of
either q̃1 or q̃2 at x3;B, with the field quantity subvector at
x3;A being equal to zero. In the case of the SH-TE system, this
means that we need at least two field quantities equal to zero
and have two measured quantities. For the P-SV-TM system,
we need four field quantities equal to zero and four measured
quantities.

For controlled-source electromagnetics (CSEM), the TM-
mode magnetic field H̃V can be taken zero at the Earth’s
surface under the diffusive field approximation (Nabighian
1987). Looking at the P-SV-TM system, we can now see
that we have four quantities that are zero at the free sur-
face (the stress quantities, pore-fluid pressure, and the P-SV-
TM mode magnetic field). At the measurement level x3;B, we
then need to select four quantities that we can measure, for
example ṽs

3, ẼV
norm, p̃ f , H̃V

norm, or ṽs,V
norm. Two of those quanti-

ties are directly measurable in the borehole ṽs
3 and p̃ f . From

the electromagnetic scenario, we concluded that, due to lim-
ited borehole dimensions, we can only transform to the k1-
domain (for an x1-oriented borehole). Therefore, all combined
mode quantities in the horizontal wavenumber–frequency do-
main are hard to obtain since they all require an additional
transformation to the k2-domain. A difference between the
mode electric fields and for example the mode particle velocity
fields is that the Ẽ2 component is additionally not measurable
in an x1-directed borehole due to the limited borehole size,
whereas both the ṽs

1 and ṽs
2 particle velocity components are

measurable.
When we carry out the field decomposition in the space–

frequency domain, we can determine the spatial derivatives
with respect to the x1-direction and possibly also with respect
to the x2-direction. We can then obtain the four required field
quantities to carry out the MDL decomposition: v̂s

3 and p̂ f

and v̂s,V
norm and ĤV

norm. However, for this we need to be able
to derive correct pseudo-differential operators, which will be
extremely tedious for this complex physical phenomenon.

It is good to be aware that certain seismoelectric source–
receiver combinations (e.g., looking at a horizontal electric
field in the x1-direction Ẽ1 due to a vertical seismic bulk force
source f̃ b

3) are purely described by the P-SV-TM propaga-
tion mode (Grobbe and Slob 2013). Hence, for these recorded
source–receiver combinations, MDL decomposition accord-
ing to the P-SV-TM mode only is sufficient.

For the SH-TE case, we see that only the stress field τ̃ b,H

is zero at the free surface. The second required quantity at x3;A

should then be measured. Therefore, we can place for example
a vertical magnetic coil at the free surface and measure ẼH.
Combining surface and buried measurements is, for practical
purposes, not so attractive since surface measurements suffer
too much from low fidelity, significant noise (e.g., surface
waves or power line noise), and low repeatability. However,
when x3;A coincides with the Earth’s surface, we are for our
measurements not limited in any horizontal spatial direction.
At depth level x3;B, we can then select two field quantities
we would like to measure to solve the MDL decomposition
problem for the SH-TE mode. Since ẼH is directly measurable
(equation (B2)), this is a logical choice. However, when trying
to obtain the mode quantities H̃H and ṽH, the same issues
are encountered as discussed above for the P-SV-TM case.
Luckily, as discussed in the other appendices, we can still
solve the seismoelectric MDL decomposition problem in the
horizontal wavenumber–frequency domain in case of a purely
2D situation.

When we look at the dual depth horizontal sensor arrays,
we can select the desired measurable field quantities for each
mode at both depth levels x3;A and x3;B and adjust the com-
position matrix S̃ accordingly. The issues in obtaining certain
field quantities due to limited borehole size now play a role at
both depth levels.

Sometimes the mode splitting into SH-TE and P-SV-TM
propagation modes might not be useful or even not appli-
cable, e.g., when we are considering anisotropic media or in
non-layered Earth systems. Alternatively, we can take the field
vector as defined in Wapenaar and Fokkema (2004), where
all physical field quantities are directly present. However, this
system is probably redundant, and the decomposition prob-
lem might be solvable with less field quantities (comparable
to the electromagnetic case of Appendix B). Theoretically,
we can describe the field decomposition starting from equa-
tion (2). However, the composition matrix L̃ consisting of
the eigenvectors of the full non-mode separated system of
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seismoelectric equations is not yet derived. Furthermore, the
equations should be explicitly extended for anisotropic media.
Nevertheless, if we assume that we know the corresponding
eigenvectors of the system of equations, we can select desired
measured field quantities and carry out MDL decomposition
according to the presented scheme. In this case, we do not
suffer from separate modes and mode quantities that need to
be combined via spatial derivatives and hence not from issues
when transforming to the horizontal wavenumber–frequency
domain.

The poroelastic system can be considered a special case
of the seismoelectric system. If the seismoelectric coupling
coefficient L̂ is equal to zero there is no coupling between
the poroelastic system and the electromagnetic system. In this
case, we can treat the electromagnetic system and the poroe-
lastic system separately (Grobbe et al. 2014).

We can obtain the mode-separated poroelastic field vec-
tors directly from the seismoelectric field vectors by omitting
the electromagnetic field quantities from equations (D1) and
(D2) and keeping the order of the mechanical field quantities
the same.

So, starting from the seismoelectric eigenvectors used by
Grobbe and Slob (2013), removing the columns belonging to
the TE and TM mode electromagnetic fields and putting the
coupling coefficient to zero results in the poroelastic eigen-
vectors corresponding to this poroelastic field vector order-
ing. Alternatively, Jocker et al. (2004) derived and presented
the poroelastic eigenvectors for a 2D scenario. As discussed
earlier, when we have line recordings in a borehole, this
results effectively in a 2.5D or 2D scenario. For the 2.5D
scenario, we again encounter the same issues in obtaining
the mode quantities due to the limited size of a borehole.
In 2D, the mode separation in SH and P-SV modes occurs
naturally, assuming line sources in the x2-direction. In 2D,
the MDL decomposition problem can straightforwardly be
solved similar to the scenarios discussed for seismoelectric
fields.

Alternatively to mode separation, the full poroelastic sys-
tem and corresponding eigenvectors for arbitrary subsurface
geometries can be used. However, to our knowledge, the
eigenvector system forming the composition matrix for 3D
poroelastic fields is not yet published. If these eigenvectors
are known, we can select desired measured field quantities.
Measurements of four field quantities, e.g., three-component
particle velocity recordings in combination with pore fluid
pressure measurements, would be sufficient to solve the MDL
decomposition problem for poroelastic fields.
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Day A., Klüver, T., Söllner W., Hocine T. and Carlson D., 2013.
Wavefield-separation methods for dual-sensor towed-streamer
data. Geophysics 78(2), WA55–WA70.

Draganov D., Wapenaar K. and Thorbecke J., 2006. Seismic interfer-
ometry: reconstructing the earth’s reflection response. Geophysics
71(4), SI61–SI70.

El Allouche N. 2011. Converted waves in shallow marine environ-
ments: modelling and field experiments. Ph.D. thesis, Delft Univer-
sity of Technology, Netherlands.

Fishman L., McCoy J.J. and Wales S.C., 1987. Factorization and
path integration of the Helmholtz equation: Numerical algorithms.
Journal of the Acoustical Society of America 81, 1355–1376.

Fokkema J.T. and Van den Berg P.M. 1993. Seismic Applications of
Acoustic Reciprocity. Elsevier Science Publishers B.V.

Frasier C.W., 1970. Discrete time solution of plane P-SV waves in a
plane layered medium. Geophysics 35, 197–219.

Frijlink M. and Wapenaar K., 2010. Reciprocity theorems for one-
way wave fields in curvilinear coordinate systems. SIAM Journal
on Imaging Sciences 3, 390–415.

Frijlink M., Van Borselen R. and Söellner W., 2011. The free surface
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