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ABSTRACT
We formulate the Kirchhoff-Helmholtz representation theory for the combination
of seismic interferometry signals synthesized by cross-correlation and by cross-
convolution in acoustic media. The approach estimates the phase of the virtual reflec-
tions from the boundary encompassing a volume of interest and subtracts these virtual
reflections from the total seismic-interferometry wavefield. The reliability of the com-
bination result, relevant for seismic exploration, depends on the stationary-phase and
local completeness in partial coverage regions. The analysis shows the differences
in the phase of the corresponding seismic interferometry (by cross-correlation) and
virtual reflector (by cross-convolution) signals obtained by 2D and 3D formulations,
with synthetic examples performed to remove water layer multiples in ocean bottom
seismic (OBS) acoustic data.
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INTRODUCTIO N

In recent years virtual seismic methods have been intro-
duced to synthesize new seismic signals by processing traces
from a plurality of sources and receivers. These methods
need only field measurements and do not need to know
the subsurface velocity model. The commonly used seis-
mic interferometry by cross-correlation approach makes it
possible to reconstruct the Green’s function of the total
wavefield between receivers when receivers are completely
surrounded by sources (e.g., Snieder 2004; Bakulin and
Calvert 2006; Wapenaar and Fokkema 2006; Wapenaar,
Draganov and Robertsson 2008; Schuster 2009). The in-
terferometry method is also used by cross-convolution to
extrapolate the wavefield in open configurations with one
receiver outside the domain (Slob and Wapenaar 2007;
Halliday et al. 2010). The virtual reflector method based
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on integral cross-convolution (Poletto and Farina 2008; Po-
letto and Wapenaar 2009) makes it possible to reconstruct
the signal of a virtual reflector at receivers (sources) with
sources (receivers) included in the volume of interest. The vir-
tual reflector method needs impulsive or transient and known
sources.

An advantage of utilizing interferometry by cross-
correlation and by cross-convolution is that they can be used
to reconstruct the same reflection events for a data set recorded
(or emitted) at a boundary. This makes it possible to remove
boundary-related reflections present in both these virtual sig-
nals. Examples of water-layer multiple attenuation using the
virtual signals of synthetic ocean bottom seismic (OBS) data
with sources in the proximity of the sea-surface are discussed
by Poletto and Farina (2010b). The main goal of this pa-
per is to determine the phase relations between these virtual
results in 2D and 3D. We analyse the combination of the
interferometry-by-correlation and virtual reflector methods
(Poletto and Farina 2008, 2010a,b; Poletto, Wapenaar and
Bellezza 2010), formulating the Kirchhoff-Helmholtz integral
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Figure 1 Kirchhoff-Helmholtz representation concept. U and G rep-
resent the propagating wavefield and the Green’s function, respec-
tively. The wavefields in the volume encompassed by the surface So

are represented by integrating the crosscomposition of the wavefields
produced by the sources in A and B and measured on So.

representation of virtual signal combination in acoustic media
(Wapenaar and Fokkema 2006; Poletto and Wapenaar 2009).
The approach uses the same source/receiver geometries for
seismic interferometry and for the virtual reflector method.
Without loss of generality, we introduce the representation
models with sources surrounded by receivers (Fig. 1). It is
intended that, invoking reciprocity, this is equivalent of us-
ing receivers surrounded by sources, so that the results of
this analysis also hold when we interchange sources and
receivers.

The analysis shows that the estimate of the reflection wave-
fields by the virtual reflector method can be used to subtract
the reflections generated at the representation boundary from
the interferometry total wavefield, thus providing an estimate
of the Green’s function between points buried in a propagation
volume without reflections from the encompassing bound-
ary. This task is substantially achieved by cross-convolving
the Green’s function G, subject to boundary conditions at
the representation surface with a combination of the propa-
gating wavefield U and its time reversal expressed by U∗ in
the Fourier frequency domain, where ‘∗’ denotes the complex
conjugate. We observe that this approach can be seen in a
wider context than only for interferometry. For example, it
is similar to calculating simultaneous forward and backward
propagation of water-layer seismic multiples for the attenua-
tion of water-bottom multiples by wave-equation-based pre-

diction and subtraction (Wiggins 1988, 1999). The approach
is also similar to the approach proposed by Wapenaar (1993)
to describe forward and backward Kirchhoff-Helmholtz ex-
trapolation of downgoing and upgoing seismic waves in a
layered medium with curved interfaces, using model-based
Green’s functions. The method has applications in acoustics
and seismic exploration and may have other applications with
electromagnetic signals, etc.

The virtual-signal combination approach presented in this
paper does not require the propagation model. We show that
it can be useful for interferometry as well as when we select
events in one of the terms and that, in general, it can be used as
an approximation with the total wavefields for interferometry
representations.

THEORY

Virtual reflector representation

We formulate the representation for virtual wavefields prop-
agating in an arbitrary, inhomogeneous, acoustic medium.
We assume appropriate recording conditions for virtual sig-
nal reconstruction, with complete and partial distributions of
receivers around sources (or sources around receivers). For
simplicity, we assume unit source signals S(ω) in the Fourier
frequency domain, where ω is the angular frequency, so that
we can approximate

S(ω)S∗(ω) ∼= S(ω)S(ω) ∼= 1, (1)

i.e., we can neglect the source signature in the analysis
of cross-correlations and cross-convolutions (Poletto and
Farina 2010b). The virtual reflector (VR) signal between two
points A and B enclosed in a volume encompassed by a sur-
face So can be expressed in the Fourier frequency domain by
the Kirchhoff-Helmholtz integral representation (Poletto and
Wapenaar 2009)

U(A, B, ω) − G(B, A, ω) = 1
4π

∫
So

dSo⎡
⎣G(ro, A, ω)

∂U(ro, B, ω)
∂n

− U(ro, B, ω)
∂G(ro, A, ω)

∂n

⎤
⎦,

(2)

where U(ro, B, ω) is the scalar field from a source at point
B recorded along the ‘reflection’ surface So, ro is location
along the surface, G(ro, A, ω) is the Green’s function from
an arbitrary source point A to ro and, ∂/∂n is the normal dif-
ferentiation operator acting on ro at surface So (Fig. 1). The
scalar functions U and G are Fourier frequency transforms
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of causal functions. In equation (2), U and G can have, in
turn, equivalent propagation- and transfer-function meanings
but for different boundary conditions at surface So. Note
that here we use different symbols to represent U and G,
instead of U alone, to better distinguish between the contri-
butions related to the different boundary conditions. Assume
that the required boundary condition for G on So is rigid
with

∂G
∂n

= 0 (3)

(Neumann boundary condition, with reflection coefficient
R = +1). No reflecting boundary condition is set on So for
the free-space solution U. From equation (2) we have

U(A, B, ω) − G(B, A, ω)

= 1
4π

∫
So

dSoG(ro, A, ω)
∂U(ro, B, ω)

∂n
, (4)

which can be approximated by

U(A, B, ω) − G(B, A, ω)

= −iω
4πc

∫
So

dSoG(ro, A, ω) U(ro, B, ω) cos γ, (5)

where γ is the angle between the ray U(ro, B, ω) with re-
spect to the normal to So in ro and where we have used the
far-field normal-derivative approximation ∂/∂n∼= − iω cos γ /c
at So, where c is the acoustic velocity and i = √−1. The
function

VR(A, B, ω) = U(A, B, ω) − G(B, A, ω) (6)

is defined (Poletto and Wapenaar 2009) as the virtual-
reflector signal obtained by convolutional equation (5). By
construction, VR is the Fourier frequency transform of a
causal function. It contains only reflections, from the sur-
face So, of the unit-source signal propagated from the ori-
gin point B of function U and received in origin point A

of the wavefield G, or vice versa by reciprocity. No di-
rect arrivals between these source points are simulated by
equation (6).

To interpret the wavefields of equation (6), we simplify the
notation by neglecting – where not required – the explicit
dependence on ω in the scalar functions. Function G con-
tains the direct wave and the reflected (from So) wavefield
(Fig. 2). For a ‘ghost-model’ reflection (see the next example)
we have

G(B, A) = GD(B, A) + GR(B, A). (7)

Figure 2 Direct and reflected waves from source B of the propagated
wavefield U to the source of the Green’s function G, enclosed by the
surrounding surface So where the waves are measured.

Note that the reflection GR, represented in Fig. 2 by only one
raypath for simplicity, may also contain complex multiple
arrivals. The free-space function U contains only the direct
wave (since no reflecting boundary conditions are set for U

on So, however it may contain reflections if we assume non-
uniform media) and we have in equation (6)

U(A, B) = UD(A, B). (8)

Assuming the equivalence condition for the direct wavefields
of the propagating and of the Green’s functions, we have

GD(A, B) = UD(B, A). (9)

Moreover, using reciprocity for the representation of the
scalar function G gives

GR(A, B) = GR(B, A) (10)

and we obtain from equations (5) and (6) the virtual reflector
signal as the opposite of the ghost reflection (as in the ini-
tial virtual reflector definition given, apart from with a scalar
factor the sign is not relevant)

VR(A, B) = −GR(A, B). (11)

The virtual reflector representation of the boundary reflection
in terms of the wavefields measured on So becomes

GR(A, B, ω) ∼= iω
4πc

∫
So

dSo G(ro, A, ω) U(ro, B, ω) cos γ.
(12)
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Interferometry representation

To obtain the cross-correlation virtual signal corresponding
to the cross-convolution result of equation (12), we use in-
terferometry by cross-correlation with complete coverage in
the reciprocal sense, i.e., with source/receiver geometry inter-
changed with respect to the conventional one. The two sources
in A and B are surrounded by receivers located on the enclos-
ing surface So, as in Fig. 1 where we have a complete coverage
(say complete observation) condition. In other words, integra-
tion is performed on the receiver space. This gives the unusual
result of synthesizing a virtual seismic receiver at a source
position (Curtis et al. 2009; Poletto and Farina 2010a). We
assume unit sources of volume injection at the points A and B
(equation (1)).

We obtain the estimate of the wavefields by using the
acoustic reciprocity theorem of correlation type. To obtain
this formulation, we modify equation (18) of Wapenaar and
Fokkema (2006) for a lossless, constant density medium by
using the modified Green’s function G = (1/ iωρ)Ĝ, where ρ

is the medium density, which gives

U(A, B) − G∗(B, A) = 1
4π

∫
So

dSo⎡
⎣G∗(ro, A)

∂U(ro, B)
∂n

− U(ro, B)
∂G∗(ro, A)

∂n

⎤
⎦, (13)

where ‘∗’ denotes the complex conjugate. Note that in the
present form, U and G in equation (13) may again obey dif-
ferent boundary conditions at So, similar as in equation (2).
Equation (13) is similar to equation (2), with the relevant
difference that while the result of equation (2) is the Fourier
frequency transform of a causal signal, the result of equa-
tion (13) is the sum of the Fourier frequency transforms of
one causal and one anticausal signal. For convenience, we
take the complex conjugate of equation (13), which becomes

U∗(A, B) − G(B, A) = 1
4π

∫
So

dSo⎡
⎣G(ro, A)

∂U∗(ro, B)
∂n

− U∗(ro, B)
∂G(ro, A)

∂n

⎤
⎦. (14)

Using the reflecting boundary condition expressed by equa-
tion (3) for G on So, we obtain

U∗(A, B) − G(B, A) = 1
4π

∫
So

dSoG(ro, A)
∂U∗(ro, B)

∂n
, (15)

and we can approximate

G(B, A, ω) − U∗(A, B, ω)

= −iω
4πc

∫
So

dSoG(ro, A, ω) U∗(ro, B, ω) cos γ. (16)

Virtual signals combination

In this section we discuss the combinations of the interfer-
ometry and virtual reflector wavefields expressed by equa-
tions (16) and (12). In the conventional seismic interferome-
try representation both the crosscorrelated functions are mea-
sured wavefields, while in the virtual reflector synthesis one
crossconvolved term is the free-space solution. Moreover, the
seismic exploration interferometry signals are usually illumi-
nated only by surface sources (except for the situation of
passive sources, e.g., Draganov, Wapenaar and Thorbecke
2006), so that the illumination of the free-boundary from
below is poor, except in special cases, like with marine mul-
tiples. The joint use of these virtual results poses the problem
to properly define their boundary conditions, which are in-
tended to be different in separate applications for the virtual
reflector method and interferometry. Different approaches
can be adopted to perform the combination process. The
first one is to use the measured wavefield on So in place of
the free boundary solution term as an approximation for
the virtual reflector representation (Poletto and Wapenaar
2009). This approach may cause distortions in the higher
order virtual reflections (Poletto and Farina 2010b). The sec-
ond approach consists in selecting only the direct wavefield in
one of the cross-composed terms for both the integral repre-
sentations. We may observe that this approach is commonly
used to mitigate spurious arrivals in seismic interferometry.
This result is achieved by time-gating the traces to preserve
only the energy of the direct arrivals in one of the cross-
correlated terms (e.g., Bakulin and Calvert 2006).

The combination of the virtual reflector and interferom-
etry equations allows us to subtract the reflected wavefield
from the interferometry signal (Poletto and Farina 2010a),
provided that they are obtained with similar source-receiver
geometry. With complete coverage, the seismic interferome-
try signal contains the total wavefield, composed of the direct
and reflected wavefields. Using equation (7) and subtracting
equation (12) from (16) gives

GD(A, B, ω) − U∗(A, B, ω) ∼= −iω
4πc

∫
So

dSoG(ro, A, ω)

[
U∗(ro, B, ω) + U(ro, B, ω)

]
cos γ, (17)

C© 2011 European Association of Geoscientists & Engineers, Geophysical Prospecting, 60, 838–854



842 F. Poletto et al.

which is equivalent to calculating the combination of the
cross-correlation and cross-convolution integrals as proposed
by Poletto and Farina (2008). In other words, we obtain an
estimate of the direct wavefield GD(A, B, t) between B and A
without reflections from So by inverse Fourier transforming
equation (17) and taking the causal part. Equation (17) is ob-
tained for the rigid (Neumann) boundary condition at So. The
approach can be generalized for arbitrary reflection condi-
tions. More in general, the combination of the virtual signals
can be expressed by cross-composing the signals measured on
So in the form (Poletto and Farina 2008)

C(A, B, ω) = −iω
4πc

∫
So

dSoG(ro, A, ω)

[
α U∗(ro, B, ω) + β U(ro, B, ω)

]
, (18)

where the combination weights α and β can be functions of
ω to compensate for non-ideal source properties and may de-
pend also on ro when information on the reflector properties
are available for the representation of the scattered wave-
fields (Poletto and Wapenaar 2009). The joint application by
equation (18) exploits its utility when corresponding reflec-
tion events are reconstructed both by the virtual reflector and
by the interferometry methods. We have previously discussed
basic aspects related to the limitations and to the approxima-
tions of the approach: essentially for the different boundary
conditions on the representation surface and for the differ-
ent coverage usable to reconstruct the reflected wavefields.
Relevant examples may be found as related to acoustic ap-
plications, e.g., to determine and separate the reflections in
a cavity. Other examples find their utility in the framework
of exploration seismics. In this context, the presence of reflec-
tions like multiples, e.g., water layer multiples, may contribute
to increase coverage and play a key role in the wavefield repre-
sentation for virtual signal combination purposes. This is rel-
evant since the estimation, processing and separation of mul-
tiple reflections is one of the key targets in seismic exploration
applications.

In this work we assume that the above mentioned boundary
and illumination (recording) coverage conditions required to
synthesize the boundary reflections are satisfied, at least for
selected events, in both the seismic interferometry and virtual
reflector data, and we focus our analysis to the comparison of
the wavefields obtained with the representation theory. This
is done with the main purpose to formulate and verify the
combination theory (acoustic case) based on the Kirchhoff-
Helmholtz integral representation.

SYNTHETIC EXAMPLES

We use synthetic examples to analyse the phase for the repre-
sentation and combination of the virtual wavefields in 2D and
3D geometries, in which we assume complete coverage as an
approximation. This is realized by a plane layer model, which
is, in some way, equivalent to the case of a closed acoustic
cavity (Poletto and Farina 2010a). The representation inte-
grals are expressed by discrete trace-stacking equations, with
the normal-incidence-ray approximation (cos γ = 1), without
the phase factors (iω) and ( − iω) of equations (12) and (16).
Taking into account the appropriate phase differences, this
approximation of the Green’s function does not entail the va-
lidity of the combination results. The analysis shows that the
spatial-propagation operators take different forms in 2D and
3D.

2D acoustic model

We first analyse the combination of the virtual signals in 2D
models. Synthetic seismograms are computed by a 2D finite-
difference acoustic code. We simulate the signal propagation
using two different models (Table 1) with the same source
and receiver geometrical configurations. In the first applica-
tion the entire model is a uniform background medium with
acoustic velocity of 2000 m/s. In the second application the
homogeneous background medium is bounded at the top and
at the bottom by a strong-contrast medium (Fig. 3).

In both the unbounded and bounded models, two sources
SA and SB are used in the background medium at the points
A(2000, 2000) and B(2000, 900), respectively. The signals of
the sources SA and SB are recorded by two horizontal lines of
receivers positioned at a depth of 500 m (top line) and 3500 m
(bottom line), respectively. These recording lines are located
in correspondence of the boundaries of the contrast medium
where we simulate the representation surface So. Here So ≡
top line ∪ bottom line. In addition to the receivers on the

Table 1 2D acoustic model parameters

Horizontal dimension X 4000 m
Vertical dimension Z 4000 m
Pixel dimension 	x = 	z 2 m
Source (zero-phase) wavelet Ricker
Source peak frequency 40 Hz
Output sampling time 1 ms
Propagation time 4 s
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Figure 3 Acoustic model. The first horizontal layer (grey zone) rep-
resents the top contrast medium from 0–500 m depth. The second
horizontal layer is the background medium from 500–3500 m depth.
The third horizontal layer is the bottom contrast medium, from
3500–4000 m depth. The background medium velocity is 2000 m/s.
The strong-contrast medium (grey zone) velocity is 20 000 m/s.
Two sources are used in A(2000,2000) and B(2000,900). Receiver
lines (dots) are located on So at the top and bottom reflecting
interfaces.

representation surface So, the signals of the two sources are
recorded by a vertical line of receivers passing in A and B for
the control of the Green’s function between the source points
A and B.

Figure 4 shows the synthetic shots from the sources in A
and B and recorded by the top and bottom line in the model
with the contrast medium. These data are used for the combi-
nation of the interferometry by cross-correlation and virtual
reflector signals. Figure 5 shows the traces of the vertical con-
trol receiver line passing in A and B with the source in B in
the model with the contrast medium.

Before analysing the combination to separate the reflections
in the model with the contrast medium, we analyse the direct
wavefields in the background uniform model to evidence the
basic differences in the propagated and composed wavefields.
Figure 6 shows the input source (a zero-phase Ricker wavelet),
the signal recorded at the source point B, i.e., the wavefield
at the source sampled in space with the approximation of the
grid spacing, and the signal propagated from B and recorded
at the point A in the uniform model without boundary. This
example shows that the wavelets in the 2D direct-modelled
and propagated fields from the zero-phase source are non-zero

phase ones. The signals are displayed in different time win-
dows for comparison purposes. In the following examples the
data of the uniform model are used for cross-convolution and
cross-correlation, by composing the traces recorded at the top
line. To obtain the cross-correlation trace, the signal from the
source at A is cross-convolved with the time-reversal of the
signal from the source at B. Figure 7 shows the individual (i.e.,
before surface-representation stacking) cross-correlation and
cross-convolution signals for the central trace (at 2000 m)
of the top recording line. The signals are displayed in dif-
ferent time windows for comparison purposes. We observe
some important differences in the waveforms of the cross-
composed traces a) and c), with phase-rotation effects that
are discussed in more detail in the next section on result
interpretation.

2D signal analysis and combination

In general, the virtual reflector method and interferome-
try may have different stationary-phase regions (Poletto and
Farina 2008, 2010a). In this example they present the same
stationary region at the central position (2000 m) of the
top line. Figure 8 shows the cross-convolution and cross-
correlation gathers of the top line (uniform model without
boundary), which are displayed before stacking for stationary-
phase analysis. The virtual reflector and interferometry obey
different, elliptic and hyperbolic, stationary phase conditions
(Poletto and Farina 2010a), arising in the surface integration
of the terms U(ro, A)U(ro, B) and U(ro, A)U∗(ro, B). We may
observe that this difference corresponds to upward convexity
and concavity, respectively, in the signals of the stationary-
phase gathers of Fig. 8.

In Fig. 9 we show the cross-composed signals of the uniform
(no contrast medium) model before (trace at central-line posi-
tion 2000 m) and after stacking of the cross-composed traces
obtained on the representation surface (top recording line).
Some differences in the waveforms obtained by 2D-wavefield
propagation and representation integrals are discussed in the
next section.

We use the model with top and bottom boundaries to ob-
tain the virtual reflections also in the interferometry signals.
Figure 10 shows the stationary travelpaths in the model with
boundaries. The virtual signal estimation and the subtraction
result are shown for selected events in Fig. 11, where we see (a)
the interferometry signal containing the direct arrival between
B and A and the top-layer reflection, (b) the virtual reflector
signal from the top layer, and (c) the subtraction result. Some
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Figure 4 Synthetic 2D signals calculated in the acoustic model with boundaries (with contrast layers). Gathers are displayed under sampled
with one trace every 25 traces for representation purposes. (a) Signals of the source in B recorded by the top line. (b) Signals of the source in B
recorded by the bottom line. (c) Signals of the source in A recorded by the top line. (d) Signals of the source in A recorded by the bottom line.
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Figure 5 Synthetic 2D signals calculated in the acoustic model with
boundaries (with contrast layers). The control receivers line passing
in the source points A (depth 2000 m) and B (depth 900 m). The
source is in B.

Figure 6 a) Zero phase Ricker source wavelet and control receiver
signals calculated in the 2D acoustic model without boundaries (no
contrast layers) and recorded (b) at the source point B and (c) at the
point A.

lateral-trace tapering was applied to mitigate artefacts due to
lateral-model dimensions.

3D acoustic model

Synthetic seismograms are computed by a 3D pseudospectral
acoustic code (Carcione 2007), using a geometry similar to

that of the 2D example. However, in the 3D case, the model
dimensions and the source-signal central frequency were mod-
ified to optimize the calculation times and take into account
model-size constraints, taking into account the aliasing condi-
tion in the larger 3D grid and the stationary conditions for the
representation of seismic interferometry and virtual reflector
signals, which may also be affected by artefacts due to lateral
border effects.

We simulate the signal propagation using two different
models (Table 2 and Table 3) with the same source geometri-
cal configuration. In the first application the entire model is a
uniform background medium of acoustic velocity 2000 m/s. In
the second application the homogeneous background medium
is bounded at the top and at the bottom by a strong-contrast
medium.

In this last case the first horizontal layer represents the top
contrast medium from 0–500 m depth. The second horizon-
tal layer is the background medium from 500–3500 m depth.
The third horizontal layer is the bottom contrast medium,
from 3500–3960 m depth. The acoustic velocity of the strong-
contrast medium is 20 000 m/s. In the uniform model two
sources SA and SB are used in the background medium at the
points A = (990, 990, 2000) and B = (990, 990, 900), respec-
tively. In the non-uniform model (with a contrast medium) the
sources SA and SB are used in the background medium at the
points A = (1800, 1800, 2000) and B = (1800, 1800, 900), re-
spectively. The difference in the dimensions of these models is
due to the need to reduce side-border effects in the synthesis of
the virtual reflections obtained by (SI) crosscorrelation, which
have less moveout variations than the corresponding virtual
reflector signals in the stationary gathers before stacking.

The uniform 3D model was used only to analyse the wave-
forms in the direct arrivals. As in the 2D case, the signals of the
sources SA and SB are recorded by two horizontal planes of re-
ceivers positioned at a depth of 500 m (top plane for both the
models), 2500 m (bottom plane for the uniform background
model) and 3500 m (bottom plane for the model with a con-
trast medium). The recording planes at 500 m and 3500 m are
located in correspondence of the boundaries of the contrast
medium where we simulate the representation surface So. Also
here So ≡ top plane ∪ bottom plane.

Figure 12 shows the stationary signal analysis for a
vertical section of the 3D datasets obtained by cross-
convolution and cross-correlation in the uniform (no
boundary) 3D model. We may observe that both the cross-
convolution and cross-correlation wavelets before stack-
ing are a close approximation of a zero phase sig-
nal (for comparison, see Figs. 8 and 9 where the
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Figure 7 Signals calculated in the 2D acoustic model without boundaries (no contrast layers). a) Cross-correlated and c) cross-convolved traces
(at central position 2000 m). b) Hilbert transform of the cross-correlated trace. d) Negative polarity cross-convolved trace.

Figure 8 Signals calculated in the 2D acoustic model without boundaries (no contrast layers). Stationary phase analysis before stacking for a)
virtual-reflector cross-convolutions and b) interferometry cross-correlations. These data are sampled every 	x = 2 m. In these figures the traces
are represented every 50 m. Upward convexity (VR) and concavity (SI) cause different phases in the signals of the stacked traces.
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Figure 9 Signals calculated in the 2D acoustic model without boundaries (no contrast layers). Cross-correlated traces a) before (central position)
and b) after line stack. Cross-convolved traces c) before (central position) and d) after line stack. e) Negative polarity cross-correlated stacked
trace.

Figure 10 Stationary travelpaths of interferometry (left side) and virtual reflector (right side) in the 2D model with a contrast medium.

cross-correlation and cross-convolution wavelets before stack
are different). With 3D data we can use different approaches
to perform the stacking of the data recorded in the horizontal-
plane dimensions (Fig. 13). The traces obtained by stack-
ing the cross-convolved and cross-correlated traces of the
3D data set are shown with opposite polarity in Fig. 14.
The reason of the opposite polarity, as for the 2D case,
is discussed in the next section. Here, the virtual wavelets
represent the direct seismic interferometry and the virtual
reflector signals. These signals are contained in different time
windows, and are aligned in the figure for representation pur-
poses only.

Finally, Fig. 15 shows the results of the virtual-signal com-
bination for selected events in the 3D model with boundaries
similar to the 2D result of Fig. 11. These results are obtained
using a surface representation integral. Figure 15 shows, from
left to right, the interferometry signal, containing direct and
top-boundary reflections, the virtual signal and the combina-

tion result. Some non-physical event due to lateral 3D model
artefacts was removed by muting (instead of tapering).

RESULTS INTERPRETATION

We explain as follows the discrepancies in the representations
of the acoustic wavefields in the 2D and 3D models. We un-
derline the following main aspects.

Interpretation of the phase of the 2D results

In the theory the source signal is assumed to be zero phase
(equation (1)). This is true for the injected input Ricker
wavelet of the 2D synthetic example (Fig. 6a). However
the control wavelet recorded at source position (b) has a
different phase (also the signal in (c)). Moreover, in the
cross-correlations and cross-convolutions before stack (equiv-
alent to surface integration) of Fig. 7 we observe that the
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Figure 11 The traces represent a time window of the 2D virtual signals
(selected events) in the model with boundaries. From left to right we
have: SI, VR and combination, after scaling the virtual reflector signal
by the reflection coefficient R = 0.8182. The first event is the direct
arrival from B to A. The second event is the virtual signal from B
to the top boundary and then reflected to A. The reflection event is
subtracted in the last trace, a result of the combination.

Table 2 3D (uniform) model parameters

Horizontal dimension X 1980 m
Horizontal dimension Y 1980 m
Vertical dimension Z 3060 m
Pixel dimension 	x = 	y = 	z 10 m
Source (zero-phase) wavelet Ricker
Source peak frequency 30 Hz
Output sampling time 1 ms
Propagation time 3 s

cross-correlation trace (a) and the cross-convolution trace (c)
are different. Trace (b) is the Hilbert transform of the cross-
correlation signal. It is nearly equal to the negative polarity
cross-convolution trace (d). We interpret the 2D results as fol-
lows. We use a zero-phase monopole source in the 2D acous-
tic model, which is equivalent to a line source. The far-field
Green’s causal function of this source can be expressed in the
Fourier frequency domain as

G(2D)(r, ω) = exp [−i(ωr/c + π

4 )]√
8πωr/c

, (19)

Table 3 3D (bounded) model parameters

Horizontal dimension X 3600 m
Horizontal dimension Y 3600 m
Vertical dimension Z 3960 m
Pixel dimension 	x = 	y = 	z 10 m
Source (zero-phase) wavelet Ricker
Source peak frequency 30 Hz
Output sampling time 1 ms
Propagation time 3 s

where r is the radial distance from the source. Hence, the prop-
agated signal signature recorded at the 2D receiver lines on So

contains a −π /4 phase. This phase rotation disappears in the
cross-correlation. It becomes −π /2 in the cross-convolution.

The next step is stacking over the (top) receiver line. We
observe that (as expected) this causes another change in the
signal phase (Fig. 9). We interpret this as follows: the integra-
tion in 2D produces a change in the phase of π /4 for cross-
correlation, but results in −π /4 for cross-convolution. This is
in agreement with the observation of stationary-phase convex-
ity and concavity in Fig. 8 (the different distortion effect can
be easily observed by integrating a trial zero-phase wavelet).
This causes another π /2 relative difference in the stacked sig-
nals. Therefore the total phase difference is π , i.e., opposite
polarity. This is what we observe if we compare Fig. 9(d) and
9(e).

Interpretation of the phase of the 3D results

We interpret the 3D results as follows. We use a zero-phase
monopole source in the 3D acoustic model, which is equiv-
alent to a point source. The Green’s causal function of this
source can be expressed in the Fourier frequency domain as

G(3D)(r, ω) = exp [−i(ωr/c)]
4πr

. (20)

This means that there is no phase distortion introduced in
the signals recorded at the 3D receiver lines on So. Hence the
cross-convolutions and cross-correlations contain zero-phase
signals, as a good approximation (Fig. 12).

The next step is stacking over the (top) receiver line. We
observe that (as expected) this causes another change in the
signal phase (Fig. 14). We interpret this as follows: the in-
tegration in 3D produces a change in the phase of −π /2 for
cross-correlation, but results in π /2 for cross-convolution, due
to the different convexity properties of the stationary curves
(Fig. 12). Also in this case, as in 2D but for different rea-
sons, this causes a total relative phase rotation of π in the
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Figure 12 Signals calculated in the 3D acoustic model without boundaries (no contrast layers). Stationary phase analysis for a) virtual-reflector
cross-convolutions and b) interferometry cross-correlations. These data are sampled with a larger space interval (	x = 10 m) with respect to
the corresponding 2D example of Fig. 8 (where 	x = 2 m) because of the computational cost. In the figure the traces are represented every 50 m
to observe better the waveforms of the individual signals.

Figure 13 Top views of the 3D model with a) the surface and b) line
integrals, which give different phase contributions in the synthesis of
the virtual signals.

signals given by the simple correlation/convolution and stack-
ing algorithms and the result is opposite polarity between cor-
responding events in the cross-correlated and cross-convolved
signals, as in Fig. 14 where we compare direct and top-
boundary reflection for waveform analysis.

S U M M A R Y A N D D I S C U S S I O N

We calculate and analyse different phases of the virtual re-
flector and seismic interferometry signals in 2D and 3D. Note
that the factors (iω) (in equation (12)) and ( − iω) (in equa-
tion (16)) are necessary to end up with the correct phase of
the retrieved Green’s function. For example: in the 2D cross-
correlation the integral causes a π /4 phase shift. Then the
factor ( − iω) causes −π /2. Together this gives −π /4, which is
indeed the correct phase of the 2D retrieved Green’s function.
Again, in the 3D cross-correlation the surface integral causes
π /2. Then the factor ( − iω) causes −π /2. Together this gives 0,
which is indeed the correct phase of the 3D retrieved Green’s
function.

We summarize below the phase differences for the combi-
nation purposes with the virtual reflector and seismic inter-
ferometry stacking equations (
kGkUk) and (
kGkU∗

k ), with
index k over the same domain of sources or, reciprocally,
receivers.
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Figure 14 (a) Interferometry direct signal and (b) virtual reflector
(VR) signal (opposite polarity) obtained by surface integration in
the 3D acoustic model without boundaries, and shown for signal-
waveform analysis purposes.

� In 2D acoustic data (synthetic by line source) we obtain
seismic interferometry and virtual reflector waveforms with
opposite (π phase) polarity. This is due to two composite
effects: the phase difference is due to the opposite (π /4)
and ( − π /4) phases of the integrals; another −π /2 phase
difference is due to the −π /4 phase of the far-field Green’s
function from a line source, thus giving 0 for correlation
and −π /2 for convolution. The total phase difference is π =
π /4 − ( − π /4 − π /2).

� In 3D acoustic data, by a surface representation integral,
the signature of the Green’s function from a point source
is zero-phase. An opposite sign comes in the virtual sig-
nals from the differential phase shift π = π /2 − ( − π /2)
introduced by the surface-representation integrals.

� In 3D acoustic data, by a line representation integral, the
signature of the Green’s function from a point source is
zero-phase. A π /2 phase (Hilbert transform) comes from
the differential phase shift π /2 = π /4 − ( − π /4) introduced
by the line-representation integrals. Figure 16 shows the

Figure 15 The traces represent a time window of the 3D virtual sig-
nals (selected events) obtained by surface integral in the model with
boundaries. From left to right we have: SI, VR, and combination,
after scaling the virtual reflector signal by the reflection coefficient
R = 0.8182. The first event is the direct arrival from B to A. The
second event is the virtual signal from B to the top boundary and then
reflected to A. The reflection event is subtracted in the last trace, a
result of the combination.

3D result obtained using a line integral for representation
and Hilbert transforming the virtual reflector data before
combination (compare with Fig. 15).

EXAMPLE OF SE ISMIC S IGNAL
COMBINATION IN A 3D OCEAN BOTTOM
SEISMIC M ODEL

Advantages and possible applications of the virtual-reflector
and seismic-interferometry combination method are illus-
trated and discussed for example in Poletto and Farina
(2010b). Here we use a similar ocean bottom seismic (OBS)
marine application and analyse the combination of virtual
signals in a 3D acoustic model by using multiple energy to
illuminate the interferometry signals from the sea bottom.

Synthetic seismograms are computed by a 3D pseudospec-
tral acoustic code. The model (Table 4) is made up of
horizontal layers, with a water layer 600 m thick with an
acoustic velocity cp = 1500 m/s, which lies on a 800 m
formation layer with cp = 2800 m/s, which, in turn, lies on a
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Figure 16 The traces represent a time window of the 3D virtual sig-
nals (selected events) obtained by a line integral in the model with
boundaries. We may observe a difference in the amplitude of the re-
flected signal with respect to Fig. 15, interpreted as a non complete
reconstruction for propagation effects when using the 2D integral in
3D. From left to right we have: seismic interferometry (SI), virtual re-
flector (VR) and combination, after Hilbert transforming and scaling
the virtual reflector signal. The first event is the direct arrival from B
to A. The second event is the virtual signal from B to the top boundary
and then reflected to A. The reflection event is subtracted in the last
trace, a result of the combination.

Table 4 3D OBS model parameters

Horizontal dimension X 3900 m
Horizontal dimension Y 3900 m
Vertical dimension Z 2040 m
Pixel dimension 	x = 	y = 	z 10 m
Source (zero-phase) wavelet Ricker
Source peak frequency 30 Hz
Output sampling time 1 ms
Propagation time 4 s

440 m formation layer with cp = 4800 m/s. The water layer is
bounded at the top by 200 m of vacuum (simulated by a very
low velocity medium).

A pressure source is used at the centre of the model in the
first pixel of the water layer at the point S = (1950, 1950,
210). To save computational costs (in terms of computing
time and memory), we calculated the shots that are input for

Figure 17 Marine model used for 3D representation and signal com-
bination. The arrows show the stationary seismic interferometry and
virtual reflector raypaths. M indicates the water-layer reflection and
P denotes a primary reflection.

Figure 18 Marine synthetic data used for 3D representation. Example
of direct modeled data, 2D section from a 3D dataset. P indicates a
primary reflection and M a water layer multiple.
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Figure 19 Virtual signals of the 3D marine model with line-integral representation. The virtual reflector data are Hilbert transformed, scaled
and compared to the seismic interferometry data. The panel on the right side shows the result of the combination, where the multiple M is
removed.

Figure 20 Virtual signals of the 3D marine model with surface-integral representation. The virtual reflector data are scaled and compared to
the seismic interferometry data. The panel on the right side shows the result of the combination, where the multiple M is removed.
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interferometry and the virtual reflector method by extract-
ing and reorganizing the trace gathers obtained with a single
numerical simulation in the horizontally layered model. With
this approach, we simulate a two-dimensional array of sources
located at different positions at the water surface in models
with smaller lateral dimensions (with side dimensions approx-
imately half the original ones).

The signals are recorded by receivers located at the sea-
bottom, to simulate an ocean bottom seismic dataset. Fig-
ure 17 shows a side view of the marine model, with stationary
travelpaths for interferometry and virtual reflector wavefields.
Figure 18 shows an example of a 2D cross-section of the shot
in the 3D model.

The virtual signals are both calculated by integrating (stack-
ing) in the domain of the sources, at the representation surface
S, the cross-correlations and cross-convolutions of the signals
of couples of receivers. This application is similar to the 2D ex-
ample of water-layer multiples removal by a virtual wavefield
combination of selected events shown by Poletto and Farina
(2010b) (they discussed the approaches based on a selection
of events before and after virtual reflector convolution) and
it is analysed here for wavefield representation purposes in a
3D acoustic model.

Figure 19 shows the result of the 3D signal combination in
selected time windows, with the line-representation integral.
In this case we apply a Hilbert transform before subtracting
the virtual reflector signals. The agreement of the multiple re-
flection (M) in the seismic interferometry and virtual reflector
signals is good and after combination the primary reflection
(P) is preserved with an improved S/N.

Figure 20 shows the full-3D application similar to that of
Fig. 19 but using the surface-integral representation. In these
examples, some noise is present in the form of interferome-
try artefacts, side-border modelling and end-point truncation
effects. These effects are more important because of the lim-
ited dimensions of the 3D model for very high computational
costs. We attenuated in part this noise by tapering the input
signals to smooth the truncation effects and by windowing
the virtual signals to mitigate the interferometry spurious
events. However, some residual noise is still present in the
final results. Also in this case the subtraction of the water-layer
multiple (M) in the right panel is good, especially at short off-
sets where the coverage conditions for the reconstruction of
the virtual signals are more complete. The primary reflection
(P) is preserved with improved S/N. In this case we apply the
opposite-phase rotation taking also into account the changes
of phase introduced by the surface-source ghost and the free-
surface reflection coefficient.

CONCLUSIONS

We present the 2D and 3D phase analysis for the integral
representation and combination of virtual signals in an arbi-
trary, inhomogeneous acoustic medium. The analysis of the
virtual boundary reflections shows that, beyond a reflection
coefficient operator, the combination coefficients of the rep-
resentation integrals depend on initial source waveform, and
propagation Green’s function distortions. Different results are
obtained for virtual data representation and subtraction in
2D and 3D. An opposite-sign coefficient is calculated both
for combination of 2D and 3D data, but for different reasons.
The phase of the virtual signals is analysed in examples of sub-
traction of common boundary reflections in redatumed virtual
signals with complete coverage conditions. The method can be
used with real seismic data propagated in 3D, with different
phase shifts for line-integral and surface-integral representa-
tions, e.g., like with marine data.
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