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S U M M A R Y
Constructing an image of the Earth subsurface from acoustic wave reflections has previously
been described as a recursive downward redatuming of sources and receivers. Most of the
methods that have been presented involve reflectivity and propagators associated with one-
way wavefield components. In this paper, we consider the reflectivity relation between two-
way wavefield components, each a solution of a Helmholtz equation. To construct forward and
inverse propagators, and a reflection operator, the invariant-embedding technique is followed,
using Dirichlet-to-Neumann maps. Employing bilinear and sesquilinear forms, the forward-
and inverse-scattering problems, respectively, are treated analogously. Through these math-
ematical constructs, the relationship between a causality radiation condition and symmetry,
with respect to a bilinear form, is associated with the requirement of an anticausality radiation
condition with respect to a sesquilinear form. Using reciprocity, sources and receivers are reda-
tumed recursively to the reflector, employing left- and right-operating adjoint propagators. The
exposition of the proposed method is formal, that is numerical applications are not derived.
The key to applications lies in the explicit representation, characterization and approxima-
tion of the relevant operators (symbols) and fundamental solutions (path integrals). Existing
constructive work which could be applied to the proposed method are referred to in the text.

Key words: Dirichlet-to-Neumann map, Helmholtz equation, imaging, inverse scattering,
migration, reciprocity, reflectivity, wavefield propagator.

1 I N T RO D U C T I O N

In Berkhout (1985) acoustic wave propagation and reflection in discretized space is represented by matrix operations. According to this model
the reflected wavefield from an acoustic contrast is obtained by multiplying a multisource wavefields matrix by a product of three matrices.
Evaluating this product from the right to the left, modelling a surface seismic experiment, the first matrix propagates the source wavefields
downward to the reflector, the second matrix reflects these and the third matrix propagates the reflected wavefields upward to the measurement
surface. Because the wavefields are considered in the temporal frequency domain, forward wavefields propagation is recursive with respect
to depth. This means that propagation can be handled incrementlly through the medium by ordered matrix multiplications. Inversion for the
reflection matrix is also represented by a three-matrix product. The measured wavefield matrix, in which each column represents a different
common source gather, is then multiplied from the right and the left with an approximate inverse-propagation matrix, which is the Hermitian
of the forward-propagation matrix.

In Wapenaar (1996a) Berkhout’s model is generalized to R
3 for one-way wavefields employing operators for matrices. Wavefield

decomposition into one-way wavefields (Weston 1988; de Hoop 1996; Wapenaar & Grimbergen 1996) follows from a factorization of the
two-way Helmholtz wave equation. Propagation in the marching direction, determined by the square-root Helmholtz operator, is then separated
from scattering from medium variations in the same direction. The total scattering from an acoustic contrast is represented by an integral over
the marching coordinate, which can be expanded in a Bremmer’s series of singular scattering events (de Hoop 1996).

In this paper we generalize Berkhout’s approach to R
3 for two-way wavefields obeying the Helmholtz equation. The wavefield propagators

are derived following the invariant embedding approach of Bellman & Vasudevan (1986), as generalized by Haines & de Hoop (1996). The
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Acoustic reflectivity 107

method yields a Riccati equation for the Dirichlet-to-Neumann (D-t-N) operators, which map the acoustic pressure to the particle velocity
component in the marching direction. Wavefield decomposition into an incident and a scattered wavefield, reflection and propagation operators
are given in terms of two D-t-N operator solutions (Fishman et al. 1997). Each two-way wavefield component obeys an evolution equation,
its directionality defined globally. The total scattering from an acoustic contrast is described by a global reflectivity operator, in contrast to
the local one-way approach, where the latter method necessitates an integration over the contrast (Fishman 2002, 2004).

Using the semi-group property of the propagators the two-way wavefields solutions of the evolution equations are naturally expressed
as a product integral of exponentials (DeWitt-Morette et al. 1979; Dollard & Friedman 1979; Fishman et al. 1997). The product integral is to
the product what the integral is to the sum (Dollard & Friedman 1979), with the difference that the infinitisimal summations are commutative
whereas the infinitesimal products are not.

We start with the derivation of the acoustic vector wave equation from its scalar form by identifying a general wavefield or marching
direction. A wavefield decomposition into an incident and scattered wavefield is introduced, associated with a medium perturbation superposed
on a background medium. The vector wave equations for these wavefield components and Green’s vector-valued functions are given. Next, the
reciprocity theorems of the time-convolution and time-correlation types are introduced, for example, Fokkema & van den Berg (1993), as a
bilinear and a sesquilinear form, respectively (Lang 1993). These latter mathematical constructs, and their symmetry properties, are explained
in the appendices. Using the bilinear form for the forward problem enables to derive the inverse problem analogously in terms of sesquilinear
forms. Applications of the reciprocity theorems yield wavefield representations for the incident, scattered and total wavefields. Taking limits,
we obtain from these representations the D-t-N operators, and subsequently, the reflection operator. Identification of symmetry, related to a
radiation boundary condition, yields the forward propagators, that act either on the left or on the right of a wavefield component, propagating
either receivers or sources, respectively. The left- and right inverse propagators, which give the kernel of the reflection operator from the
data, are approximated by the adjoint of the forward propagators (e.g. Wapenaar 1996a, for one-way wavefields). Finally, the propagators
are shown to represent product integrals of complex exponentials, containing the D-t-N operator in the phase term. The generators of the
semi-group propagators and the D-t-N operators are shown to be solutions of non-linear operator Riccati equations (Haines & de Hoop 1996;
Lu & McLaughlin 1996; Fishman et al. 1997, 1998).

Numerical solutions for operations on functions can be obtained by an appropriate approximation and discretization of the operator symbol
through the operator kernel. Employing the pseudo-differential operator calculus, the relation between a pseudo-differential D-t-N operator
and its symbol can be obtained as a function of the transverse space coordinates and the Fourier dual transverse wavenumber coordinates,
together constituting the transverse phase space (Fishman & McCoy 1984a,b; Grubb 1996; Fishman et al. 2000). This calculus generalizes
previous methods where medium parameters are assumed to be locally constant, enabling a reduction to an ordinary differential equation by
Fourier transform over the transverse coordinates (Grubb 1996). Approximations and numerical solutions based on the operator calculus are
not discussed in this paper. Constructions of square-root Helmholtz operator symbols can be found in Fishman (1992) and Fishman et al.
(2000), for the defocussing and focussing quadratic profile, respectively, and in Fishman (2002), for the Dirac delta, discontinuity (two-layer),
and three-layer profiles. For the uniform high-frequency asymptotic constructions see Fishman et al. (1997), de Hoop & Gautesen (2000,
2003) and Le Rousseau & de Hoop (2001). For the exact constructions of the scattering (reflection and transmissions) and D-t-N operator
symbols in the transversely homogeneous limit see Fishman (1994) and Fishman et al. (1998).

2 WAV E F I E L D E Q UAT I O N S

In the following section the wavefield equations are introduced in their scalar and vectorial forms. In the vectorial form, see e.g. de Hoop (1992)
and Wapenaar (1996b), the medium parameters are grouped in a symplectic matrix operator. A standard scattering formalism, in terms of a
background medium and a superposed medium perturbation, yields the vectorial wavefield equations for the incident and scattered wavefields.
With respect to the background medium, two vectorial Green’s functions are introduced, one originating from a monopole volume-injection
source and the other from a dipole force source.

2.1 The acoustic scalar wavefield equations

In an inhomogeneous isotropic medium we consider the linearized acoustic wavefield equations, for example, Fokkema & van den Berg
(1993),

∂k p(x, t) + ρ(x)∂tvk(x, t) = fk(x, t), (1)

and

∂kvk(x, t) + κ(x)∂t p(x, t) = q(x, t), (2)

where eq. (1) is the equation of motion and eq. (2) constitutes the deformation rate equation. The Cartesian coordinates x = (x 1, x 2, x 3)
define a position in the 3-D Euclidean space R

3. The time coordinate is defined by the real line, t ∈ R. Einstein’s summation convention is
assumed for repeated subscripts. Latin subscripts (except t) take the values 1, 2 and 3, whereas Greek subscripts take the values 1 and 2. The
symbol ∂ k denotes the partial derivative with respect to xk , whereas ∂ t denotes the partial derivative with respect to t. The wavefield quantity
p constitutes the pressure, vk constitutes the kth component of the particle velocity, κ is the compressibility and ρ the volume density of mass,
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fk signifies the kth component of the volume source density of volume force, and q represents the volume source density of volume injection
rate. The causal wavefield quantities, p and vk , are subject to the initial conditions

p(x, t) = 0 for t < 0,

vk(x, t) = 0 for t < 0.
(3)

Application of the Fourier transform,

ĝ(x, ω) =
∫ ∞

−∞
exp(−iωt)g(x, t) dt, (4)

to eqs (1) and (2) yields

∂k p̂(x, ω) + iωρ(x)v̂k(x, ω) = f̂k(x, ω), (5)

and

∂k v̂k(x, ω) + iωκ(x) p̂(x, ω) = q̂(x, ω), (6)

in which ω denotes the angular frequency, i denotes the imaginary unit and the symbol ˆ is used to denote frequency domain quantities.

2.2 The acoustic vectorial wavefield equation

We regard the vectorial wavefields quantities as a function of x = (xT, x 3), in terms of the transverse vector coordinate xT = (x 1, x 2) and
the longitudinal scalar coordinate x3. The orientation of the Cartesian reference frame is fixed by choosing the longitudinal coordinate x3 to
coincide with the general wavefield direction (Fishman & McCoy 1984a,b). With surface seismic measurements the longitudinal direction is
chosen to be vertical and measures depth, whereas, for example, with crosswell seismic measurements and ocean acoustics, the longitudinal
direction is the interwell distance and range direction, respectively. To accommodate such a directional preference the vectorial wavefield
equation are derived. To this end the transverse particle velocity components v̂1 and v̂2 are eliminated from the wavefield eqs (5) and (6),
obtaining

∂3 p̂ + iωρv̂3 = f̂ 3, (7)

∂3v̂3 + iωK̂ p̂ = q̂ − (iω)−1 ∂α

(
ρ−1 f̂ α

)
, (8)

in which the operator K̂ is given by,

K̂ = κ + ω−2∂α

(
ρ−1∂α.

)
. (9)

Combining eqs (7) with (8) results in the first-order ordinary differential equation with respect to x3,

∂3F̂ + ÂF̂ = N̂, (10)

see e.g. de Hoop (1992) and Wapenaar (1996b). The wavefield vector F̂, the acoustic system operator Â and the source vector N̂ are given by

F̂ =
(

p̂

v̂3

)
, Â =

(
0 iωρ

iωK̂ 0

)
and N̂ =


 f̂ 3

q̂ − (iω)−1 ∂α

(
ρ−1 f̂ α

)

 , (11)

respectively. The wavefield vector eq. (10) applies to those points where the medium parameters κ and ρ are smooth, that is, infinitely
differentiable with respect to the spatial coordinates. At interfaces x3 is constant, for which the medium parameters are discontinuous with
respect to x3, the wavefield vector equation must be supplemented with the boundary condition,

F̂ is continuous across the interface. (12)

2.3 Scattering formalism

Consider the planar surface ∂D
sct = {(xT, x3)| xT ∈ R

2, x3 = x sct
3 }, which divides R

3 into two half spaces: the scattering domain, D
sct, for

which x 3 >x sct
3 , and the domain D

sct′ = R
3 \ {∂D

sct ∪ D
sct}, for which x 3 < x sct

3 (Fig. 1). In R
3 we consider the following wavefields equation

for F̂tot = F̂tot(x; xS, ω),

∂3F̂tot + ÂF̂tot = N̂tot, (13)

with source vector

N̂tot(x; xS, ω) =
(

0
q̂(ω)δ(x − xS)

)
, (14)

in which the source is a Dirac distribution with support at xS ∈ D
sct′ , and with source spectrum q̂.
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Figure 1. Scattering configuration with the medium parameters defined in terms of background medium parameters and a perturbation. The perturbations are
in domain D

sct. Wavefield decomposition and source position xS are in domain D
sct′ .

Introducing the perturbations {�ρ, �κ}, the background medium parameters {ρb, κb}, characterizing the background medium, are
defined with respect to the actual medium parameters {ρ, κ}, according to

{ρ, κ} =
{

{ρb, κb} in D
sct′ ,

{ρb, κb} + {�ρ, �κ} in D
sct.

(15)

Accordingly, following standard scattering theory, the actual wavefield F̂tot of eq. (13), also denoted as the total wavefield, is decomposed into
an incident wavefield F̂inc = F̂inc(x; xS, ω), and a scattered wavefield F̂sct = F̂sct(x; xS, ω), as

F̂tot = F̂inc + F̂sct. (16)

The incident wavefield is governed by the background medium, and originates from the same source (eq. 14) as the total wavefield, according
to

∂3F̂inc + ÂbF̂inc = N̂tot. (17)

The scattered wavefields is then given by

∂3F̂sct + ÂbF̂sct = N̂sct, (18)

in which the contrast sources are obtained as

N̂sct(x; xS, ω) =
{

O x ∈ D
sct′

−(Â − Âb)F̂tot(x; xS, ω), x ∈ D
sct,

(19)

in which O is the null two-vector.

2.4 Green’s functions

Following Fokkema & van den Berg (1993) (for the scalar form) and Haines & de Hoop (1996) (for the vectorial form) we introduce, with
respect to the background medium, the volume-injection Green’s wavefield Ĝq,b = Ĝq,b(x; x′, ω), with wavefield equation

∂3Ĝq,b + ÂbĜq,b = N̂q,b, (20)

and with wavefield and source vectors,

Ĝq,b =
(

Ĝq,b

�̂
q,b
3

)
and N̂q,b =

(
0

δ (x − x′)

)
, (21)

respectively. The wavefield vector Ĝq,b is causally related to a Dirac distribution with support at x = x′. Similarly, we introduce the force
source Green’s wavefield equation for Ĝ f,b = Ĝ f,b(x; x′, ω),

∂3Ĝ f,b + ÂbĜ f,b = N̂ f,b, (22)

with wavefield and source vectors,

Ĝ f,b =
(

Ĝ f,b
3

�̂
f,b

33

)
and N̂ f,b =

(
δ (x − x′)

0

)
, (23)

respectively. The subscripts of the Green’s functions denote the longitudinal direction of either the particle velocity vector or the force source
vector.

3 A C O U S T I C R E C I P RO C I T Y T H E O R E M S

The acoustic reciprocity theorems of the time-convolution and time-correlation types are introduced (de Hoop 1995). The theorems are given in
the frequency domain. Hence, a convolution of two wavefield quantities in the time domain becomes a multiplication in the frequency domain,
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whereas a correlation transforms to a multiplication of a wavefield quantity with a complex conjugate one. The time-convolution type reciprocity
theorem represents a bilinear form with respect to the two wavefield vectors. Bilinear forms and some of their properties are discussed in Ap-
pendix A. Accordingly, the time-correlation type reciprocity theorem is formalized as a sesquilinear form and some of its properties are given in
Appendix B.

3.1 Time-convolution type reciprocity theorem

Using eqs (A1) and (A2), given two wavefield F̂A and F̂B , associated with acoustic states A and B, respectively, the following bilinear form is
defined

〈F̂A(x, ω), JF̂B(x, ω)〉b
def=

∫
xT∈R2

(F̂A)t(xT, x3, ω)JF̂B(xT, x3, ω) dxT. (24)

Both acoustic states are governed by the wavefield vector eq. (10). The standard alternating matrix operator J is given by

J =
(

O I
−I O

)
, (25)

with O and I representing the scalar null and scalar identity operators, respectively. Comparing the right-hand sides of eqs (24) and (A1), the
former equation has the extra parameters x3 and ω. The left-hand side of eq. (24) employs notation (A2), and the function arguments (xT, x 3,
ω) are abbreviated to (x, ω), while it is understood that the integration is with respect to xT, and x3 is a parameter of the bilinear form. Taking
the derivative of the left-hand side of eq. (24) with respect to the longitudinal coordinate x3, yields

∂3〈F̂A, JF̂B〉b = 〈
∂3F̂A, JF̂B

〉
b
+ 〈

F̂A, J∂3F̂B
〉
b
. (26)

Substitution of eq. (10), for both states A and B, into the right-hand side of eq. (26), using bilinearity and the transposition operation (A3),
leads to

∂3〈F̂A, JF̂B〉b = −〈F̂A, [ (ÂA)tJ + JÂB ]F̂B〉b + 〈N̂A, JF̂B〉b + 〈F̂A, JN̂B〉b. (27)

The contrast operator in the first term on the right-hand side of this last equation is, using eq. (11), given by

(ÂA)tJ + JÂB =
(

iω[K̂B − (K̂A)t] O
O −iω(ρB − ρ A)I

)
. (28)

Using eqs (A4) and (A5), using skew-symmetry of ∂α in eq. (9), one can show that K̂ is symmetric with respect to the bilinear form of
scalar-valued functions,

K̂ = K̂t. (29)

Hence, Â is symplectic,

ÂtJ = −JÂ. (30)

Using the symplectic property we can write

(ÂA)tJ + JÂB = J(ÂB − ÂA) = J�Â. (31)

Integration of eq. (27) with respect to x3, from x0
3 to x1

3, with x0
3 < x1

3, using eq. (31), yields the reciprocity theorem of the time-convolution
type,

〈F̂A, JF̂B〉b

(
x3 = x1

3

) − 〈F̂A, JF̂B〉b

(
x3 = x0

3

) = −
∫ x1

3

x3=x0
3

〈F̂A, J�ÂF̂B〉b dx3 +
∫ x1

3

x3=x0
3

[〈N̂A, JF̂B〉b + 〈F̂A, JN̂B〉b

]
dx3; (32)

see Wapenaar (1996b) and Haines & de Hoop (1996). In this last equation the left-hand side represents the boundary interaction between the
two wavefields, whereas the two integrals on the right-hand side depend explicitly on the media and the sources, respectively.

3.2 Time-correlation type reciprocity theorem

According to eq. (B1), given two wavefields F̂A and F̂B , associated with acoustic states A and B, respectively, the following sesquilinear form
is defined

〈F̂A(x, ω), KF̂B(x, ω)〉s
def=

∫
xT∈R2

(F̂A)† (xT, x3, ω) KF̂B (xT, x3, ω) dxT.

(33)

The self-adjoint matrix operator K is given by

K =
(
O I
I O

)
. (34)
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Taking the derivative of the left-hand side of eq. (33) with respect to the longitudinal coordinate x3, and substituting eq. (10), for both states,
using sesquilinearity and the adjoint operation (B5), leads to

∂3〈F̂A, KF̂B〉s = −〈F̂A, [(ÂA)†K + KÂB ]F̂B〉s + 〈N̂A, KF̂B〉s + 〈F̂A, KN̂B〉s. (35)

The contrast operator in the first term on the right-hand side of this last equation is given by

(ÂA)†K + KÂB =
(

iω[ K̂B − (K̂A)† ] O
O iω(ρB − ρ A)I

)
. (36)

Taking identical states in eq. (35), that is, A = B, using the self-adjointness of K in eqs (B7) and (B8), yields the quadratic form

〈F̂, (Â†K + KÂ)F̂〉s which is real. (37)

Because for a lossless medium K̂ of eq. (9) is a real operator it is also self-adjoint with respect to a sesquilinear form of scalar-valued functions,

K̂ = K̂†, (38)

and

Â†K = −KÂ. (39)

This is consistent with Wapenaar (1996b) who showed that, employing a compact domain, K̂ is a self-adjoint operator using boundary
conditions at x2

1 + x2
2 → ∞. Using this property we can write

(ÂA)†K + KÂB = K(ÂB − ÂA) = K�Â. (40)

Integration of eq. (35) with respect to x3, from x0
3 to x1

3, with x0
3 < x1

3, using eq. (40), yields the reciprocity theorem of the time-correlation
type,

〈F̂A, KF̂B〉s

(
x3 = x1

3

) − 〈F̂A, KF̂B〉s

(
x3 = x0

3

) = −
∫ x1

3

x3=x0
3

〈F̂A, K�ÂF̂B〉s dx3 +
∫ x1

3

x3=x0
3

[〈N̂A, KF̂B〉s + 〈F̂A, KN̂B〉s

]
dx3; (41)

see Wapenaar (1996b) and Haines & de Hoop (1996).

3.3 Source–receiver reciprocity

The domain of application of the reciprocity theorem of eq. (32) is bounded by the surfaces at x0
3 and x1

3. By taking the limits, x0
3 → −∞ and

x1
3 → ∞, the domain of application can be enlarged to cover the whole R

3. Assume that the medium parameters of States A and B are equal
in R

3. We have ρ A = ρB and κ A = κ B , and hence, �Â of eq. (31) becomes the matrix null operator, and consequently, the first integral on
the right-hand side of eq. (32) vanishes. Taking the above limits, using time-domain causality, and assuming that for large |x 3| the respective
far-field wavefields radiate in an homogeneous medium, the two boundary integrals on the left-hand side of eq. (32) vanish. Hence, eq. (32)
becomes∫

x3∈R

[〈N̂A, JF̂B〉b + 〈F̂A, JN̂B〉b

]
dx3 = 0. (42)

Let the wavefield of State A be described by eqs (20) and (21) with x′ = xS, and let the wavefield of State B also be described by these same
equations, but with x′ = xR. Application of these two states to eq. (42) yields,

Ĝq,b(xR; xS) = Ĝq,b(xS; xR). (43)

Alternatively, keep State A as above and let the wavefield of State B be described by eqs (22) and (23) with x′ = xR. eq. (42) then yields

�̂
q,b
3 (xR; xS) = −Ĝ f,b

3 (xS; xR). (44)

These Source–receiver reciprocities for the Green’s functions (Fokkema & van den Berg 1993) will be needed in the following boundary
integral representations.

4 WAV E F I E L D D E C O M P O S I T I O N

Using the reciprocity theorem of the time-convolution type, integral representations are derived for the first component of the wavefield
vectors of the incident, scattered and total wavefields. Taking appropriate limits, these representations are used to derive D-t-N operators,
which transform the first component of the wavefield vectors to the second component. Composition/decomposition and reflection operators
are expressed in terms of these D-t-N operators.
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4.1 Boundary integral representations

4.1.1 Incident wavefield

To arrive at a boundary integral representation of the incident wavefield with respect to a single planar surface, the reciprocity theorem of the
time-convolution type (32) is applied to the domain D

a = {(x′
T, x ′

3)| x′
T ∈ R

2, x0
3 < x ′

3 < x1
3 }. Take for State A the volume-injection Green’s

wavefield of eq. (20), with source at (xT, x3) ∈ R
3, that is, Ĝq,b = Ĝq,b(x′; x). Take for State B the incident wavefield of eq. (17), with source

at (xS
T, xS

3), i.e. F̂inc = F̂inc(x′; xS), and with xS
3 < x0

3. Hence, the source of the incident wavefield is outside D
a. Employing the causality

radiation condition, as in Section 3.3, the contribution of the first bilinear form on the left-hand side of eq. (32) vanishes as x1
3 → ∞. Because

both wavefields radiate through the same background medium the first integral on the right-hand side of eq. (32) also vanishes. In terms of
scalar-valued functions eq. (32) becomes

H
(
x3 − x0

3

)
p̂inc(x; xS) = 〈

Ĝq,b(x′; x), v̂inc
3 (x′; xS)

〉
b

(
x ′

3 = x0
3

) − 〈
�̂

q,b
3 (x′; x), p̂inc(x′; xS)

〉
b

(
x ′

3 = x0
3

)
, (45)

in which we used the Heaviside function,

H (x3) =




0, x3 < 0,
1
2 x3 = 0,

1, x3 > 1.

(46)

In eq. (45) we used the short-hand notation (24), that is, the integration is over x′
T at x ′

3 = x0
3. Because the value of x ′

3 is now fixed to one
level of integration, and to emphasize that the level of integration is considered a variable, we will replace x0

3 by x ′
3, and write

H (x3 − x ′
3) p̂inc(x; xS) = 〈

Ĝq,b(x′; x), v̂inc
3 (x′; xS)

〉
b
− 〈

�̂
q,b
3 (x′; x), p̂inc(x′; xS)

〉
b
, (47)

for xS
3 < x ′

3. Observe that the arguments of p̂inc on the left-hand side are the source positions of the wavefields on the right-hand side. The
particular value of H (x3 − x ′

3) depends on the source level x3 of the Green’s wavefield Ĝq,b with respect to the integration level x ′
3. At

the limiting value x 3 = x ′
3, the integral is a Cauchy principal value integral, in which the integration is over the pertaining boundary with the

symmetric exclusion of the singular point (Colton & Kress 1983; Fokkema & van den Berg 1993). Invoking the Source–receiver reciprocity
relations of eqs (43) and (44) in eq. (47), gives

H (x3 − x ′
3) p̂inc(x; xS) = 〈

Ĝq,b(x; x′), v̂inc
3 (x′; xS)

〉
b
+ 〈

Ĝ f,b
3 (x; x′), p̂inc(x′; xS)

〉
b
, (48)

In the latter representation of the incident wavefield the Green’s functions radiate from impulsive monopole and dipole sources located at the
boundary surface (Fokkema & van den Berg 1993).

4.1.2 Scattered wavefield

For the derivation of the boundary integral representation of the scattered wavefield eq. (32) is applied to the domain D
a of Section 4.1.1.

Take for State A the same volume-injection Green’s wavefield Ĝq,b as in Section 4.1.1 Take for State B the scattered wavefield of eq. (18),
i.e. F̂sct = F̂sct(x′; xS), with x sct

3 >x1
3. Hence the virtual contrast sources of the scattered wavefield are outside D

a. Using the causality
radiation condition the contribution of the second bilinear form on the left-hand side of eq. (32) vanishes as x0

3 → −∞. Taking into
account that both wavefields radiate through the background medium, using relations (43) and (44), yields, following similar steps as in
Section 4.1.1,

H
(
x ′

3 − x3

)
p̂sct(x; xS) = −〈

Ĝq,b(x; x′), v̂sct
3 (x′; xS)

〉
b
− 〈

Ĝ f,b
3 (x; x′), p̂sct(x′; xS)

〉
b
, (49)

for x ′
3 < x sct

3 . Because x ′
3 = x1

3, we replaced x1
3 by x ′

3 in this last equation. At the limiting value x 3 = x ′
3, the representation of eq. (49) is a

Cauchy principal value integral.

4.1.3 Total wavefield

For the derivation of the boundary integral representation of the total wavefield we use the domain of application D
a of Section 4.1.1 for

eq. (32). State A is taken to be the volume-injection Green’s wavefield Ĝq , of eq. (20), with source x ∈ R
3, that is Ĝq = Ĝq (x′; x). The

extra superscript b is omitted because the Green’s wavefield is taken with respect to the actual medium, as defined in eq. (15). We take
for State B the total wavefield of eq. (13), with xS

3 < x0
3, that is, F̂tot = F̂tot(x′; xS). Hence the source of the total wavefield is outside D

a.
Application of eq. (32), following the same steps as in Section 4.1.1, taking into account that both wavefields radiate through the actual medium,
yields

H (x3 − x ′
3) p̂tot(x; xS) = 〈

Ĝq (x; x′), v̂tot
3 (x′; xS)

〉
b
+ 〈

Ĝ f
3 (x; x′), p̂tot(x′; xS)

〉
b
, (50)

At x 3 = x ′
3 the integral is a Cauchy principal value integral.
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4.2 Dirichlet-to-Neumann operators

We proceed by defining the following single-layer potential boundary integral operator,

Ŝb f (xT, x3)
def= 2

〈
Ĝq,b(xT, x3; x′

T, x3), f (x′
T, x3)

〉
b
, (51)

and the double-layer potential boundary integral operator,

D̂bg(xT, x3)
def= 2

〈
Ĝ f,b

3 (xT, x3; x′
T, x3), g(x′

T, x3)
〉
b
, (52)

(Colton & Kress 1983), in which the functions f, g ∈ [L2(R2)]1, that is, elements of a Hilbert space of scalar-valued ([ ]1) functions on R
2(x3

is regarded as a parameter of the bilinear forms). The integrals in these last two definitions are Cauchy principal value integrals. Evaluating
the incident wavefield representation (48) and the scattered wavefield representation (49), at x 3 = x ′

3, using the operators (51) and (52), yields

(I − D̂b) p̂inc − Ŝbv̂inc
3 = 0, (53)

and

(I + D̂b) p̂sct + Ŝbv̂sct
3 = 0. (54)

With the vertical direction as longitudinal, these last two equations represent down-going and up-going wavefield conditions, respectively
(Weston 1988). The directionality is given with respect to the background medium, that is, down- and up-going are understood to be global
properties, in contrast to local wavefield splitting, e.g. de Hoop (1992, 1996) and Wapenaar (1996a), for which directionality is defined for a
constant x3. Assuming the existence of the inverse of Ŝb, we arrive at the following operators, at any level surface xS

3 < x 3 < x sct
3 ,

v̂inc
3 = Ŷd p̂inc, (55)

and

v̂sct
3 = Ŷu p̂sct, (56)

with

Ŷd = (Ŝb)−1(I − D̂b), (57)

and

Ŷu = −(Ŝb)−1(I + D̂b). (58)

The operators Ŷd and Ŷu are D-to-N operators that map the pressure functions, p̂inc and p̂sct, to the longitudinal component of the particle
velocity functions, v̂inc

3 and v̂sct
3 , respectively.

4.3 Decomposition operator

At any level surface, xS
3 < x 3 < x sct

3 , eqs (16), (55) and (56) yield the following wavefield composition operation

F̂tot = T̂bP̂b, (59)

with the wavefield vector of wavefield components and the composition matrix operator given by

P̂b =
(

p̂inc

p̂sct

)
and T̂b =

(
I I
Ŷd Ŷu

)
, (60)

respectively. The inverse operation, wavefield decomposition, is given by

P̂b = L̂bF̂tot, (61)

with

L̂b = (Ŷd − Ŷu)−1

(
−Ŷu I
Ŷd −I

)
. (62)

Observe that using eqs (57) and (58),

Ŷd − Ŷu = 2(Ŝb)−1, (63)

and, following Weston (1988), in terms of single- and double-layer potentials, we have

L̂b = 1

2

(
I + D̂b Sb

I − D̂b −Sb

)
. (64)

In Haines & de Hoop (1996) a similar decomposition is implemented, in terms of curvilinear coordinates, for the case of internal wavefields
inside a scattering domain.
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4.4 Reflection operator

We define the single-layer potential boundary integral operator

Ŝ f (xT, x3)
def= 2

〈
Ĝq (xT, x3; x′

T, x3), f (x′
T, x3)

〉
b
, (65)

and the double-layer potential boundary integral operator,

D̂g(xT, x3)
def= 2

〈
Ĝ f

3 (xT, x3; x′
T, x3), g(x′

T, x3)
〉
b
, (66)

in which the functions f, g ∈ [L2(R2)]1. These last singular integral operators are defined with respect to the actual medium in contrast to the
operators of eqs (51) and (52), which are defined with respect to the background medium. Evaluating the total wavefield representation (50),
at x 3 = x ′

3, using the operators (65) and (66), yields

(I − D̂) p̂tot − Ŝ v̂tot
3 = 0. (67)

This last equation represents the down-going wavefield condition for the total wavefield with respect to the actual medium. Assuming the
existence of the inverse of Ŝ, we obtain

v̂tot
3 = Ŷ p̂tot, (68)

with

Ŷ = Ŝ−1(I − D̂). (69)

The operator Ŷ constitutes the D-to-N map of the total wavefield. Combining the down-going wavefield condition of the incident wavefield
of eq. (53), with the up-going wavefield condition of the scattered wavefield of eq. (54), together with the wavefield composition of eq. (16),
yields

(I + D̂b) p̂tot + Ŝbv̂tot
3 = 2 p̂inc. (70)

Using eqs (58), (63) and (68) we obtain

p̂tot = T̂ p̂inc, (71)

in which the operator T̂ is given by

T̂ = (Ŷ − Ŷu)−1(Ŷd − Ŷu). (72)

The reflection operator R̂ is taken as

p̂sct = R̂ p̂inc. (73)

From the wavefield composition of eq. (16) we obtain

R̂ = T̂ − I. (74)

Hence,

R̂ = (Ŷ − Ŷu)−1(Ŷd − Ŷ). (75)

The reflection operator R̂ quantifies the spatial contrasts between the background medium and the actual medium, in terms of the D-t-N
operators of the incident, scattered and total wavefields. It is a global operator encompassing all contrasts for x 3 >x sct

3 (Fishman 1994; Lu
& McLaughlin 1996; Fishman et al. 1997, 1998). In these last references also the transmission problem is considered with the associated
global transmission operator, and its relation with the global reflection operator. In this paper we do not consider the transmission problem.
Our operator T̂ of eq. (72) is defined in D

sct′ , operating at the same level surface as the reflection operator (Fig. 2).

5 S Y M M E T RY O F T H E D - T - N O P E R AT O R S

D-t-N operations for the monopole and dipole Green’s wavefield are derived. Using these D-t-N operations it is shown that the causality
boundary conditions, applied to arrive at the wavefield representations in Section 4.1, yield symmetry for the D-t-N operators of Sections 4.2
and 4.4.

Figure 2. The reflection operator R̂ and the operator T̂ are defined in D
sct′ . These operators account for the entire perturbation {�ρ, �κ} given in D

sct.

C© 2005 RAS, GJI, 163, 106–125



Acoustic reflectivity 115

5.1 D-t-N operators of the Green’s functions

Because the incident and Green’s wavefields of eqs (17) and (20), respectively, are linearly related to their source, we have, comparing these
equations

F̂inc = q̂Ĝq,b. (76)

In accordance with the incident wavefield, the volume injection Green’s wavefield {Ĝq,b, �̂
q,b
3 } is a down-going wavefield, obeying the down-

going wavefield condition of eq. (53), when its source position x is above its evaluation position x′, that is, x 3 < x ′
3. Using eqs (76) and (55)

we obtain

�̂
q,b
3 (x′; x) = ŶdĜq,b(x′; x), x3 < x ′

3. (77)

Substituting the Source–receiver reciprocity relation (44), yields

Ĝ f,b
3 (x; x′) = −ŶdĜq,b(x′; x), x3 < x ′

3. (78)

Analogously, one can show that the volume-injection Green’s wavefield {Ĝq,b, �̂
q,b
3 } is an up-going wavefield, obeying the up-going wavefield

condition of eq. (54), for a source position x below its evaluation position x′,

�̂
q,b
3 (x′; x) = ŶuĜq,b(x′; x), x3 > x ′

3. (79)

Again, substituting (44), yields

Ĝ f,b
3 (x; x′) = −ŶuĜq,b(x′; x), x3 > x ′

3. (80)

Eqs (78) and (80) constitute the D-t-N operations for the Green’s wavefields, as these appear in the wavefield representations of the incident
and scattered wavefields of eqs (48) and (49).

5.2 Symmetry

In Section 4.1.1, a radiation condition is applied to arrive at a representation for the incident wavefield. Omitting the source coordinate xS this
radiation conditions can be expressed as〈
Ĝq,b(x; x′), v̂inc

3 (x′)
〉
b
+ 〈

Ĝ f,b
3 (x; x′), p̂inc(x′)

〉
b

= 0, (81)

with x 3 < x ′
3. Substituting the D-t-N operations of eq. (55) and eq. (78) yields

〈Ĝq,b(x; x′), Ŷd p̂inc(x′)〉b − 〈ŶdĜq,b(x′; x), p̂inc(x′)〉b = 0. (82)

Using Source–receiver reciprocity (43) for Ĝq,b in the first term of the left-hand side of eq. (82), and generalizing to an appropriately chosen
subspace of functions f, g ∈ [L2(R2)]1, we obtain, according to eq. (A4), the symmetry,

Ŷd = (Ŷd)t, (83)

with respect to the chosen function space. Consequently, we can regard Ŷd in the first bilinear form on the left-hand side of eq. (82), as either
operating to the right on p̂inc or operating to the left on Ĝq,b. In both cases Ŷd operates on the transverse coordinate x′

T, representing the
transverse evaluation coordinate of p̂inc and the transverse source coordinate of Ĝq,b.

The radiation condition applied in Section 4.1.2, to obtain the representation of the scattered wavefield, is〈
Ĝq,b(x; x′), v̂sct

3 (x′)
〉
b
+ 〈

Ĝ f,b
3 (x; x′), p̂sct(x′)

〉
b

= 0, (84)

with x 3 >x ′
3. Substituting the D-t-N operations of eqs (56) and (80) yields

〈Ĝq,b(x; x′), Ŷu p̂sct(x′)〉b − 〈ŶuĜq,b(x′; x), p̂sct(x′)〉b = 0. (85)

Using Source–receiver reciprocity (43) for Ĝq,b in the first term of the integrand of eq. (85), and generalizing to an appropriately chosen
subspace of functions f, g ∈ [L2(R2)]1, gives the symmetry

Ŷu = (Ŷu)t, (86)

with respect to the chosen function space.
The radiation condition applied in Section 4.1.3, in the derivation of the representation of the total wavefield, is expressed as〈

Ĝq (x; x′), v̂tot
3 (x′)

〉
b
+ 〈

Ĝ f
3 (x; x′), p̂tot(x′)

〉
b

= 0, (87)

with x 3 < x ′
3. Substitute the D-t-N operations of eqs (68) and (78), the latter taken with respect to the actual medium instead of the background

medium. Following similar steps as the ones that lead to eq. (83), we obtain the symmetry

Ŷ = Ŷ t, (88)

with respect to the chosen function space. The symmetry of the D-t-N operators is a consequence of the applicability of the causality radiation
condition.
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6 F O RWA R D P RO PA G AT I O N

The symmetry of the D-t-N operators is used to derive down- and up-going forward propagators for the incident and scattered wavefield,
respectively. In terms of these operators the scattered wavefield is represented by Berkhout’s WRW model, in which the reflectivity operator is
a global operator with respect to the x3-coordinate. Employing reciprocity, a symmetry relation can be derived between the down-going and
the up-going propagators.

6.1 Incident wavefield

To arrive at a propagator for the incident wavefield, take in eq. (48) x 3 > x ′
3, and substitute the D-t-N operations of eqs (55) and (80). We

obtain, omitting the source coordinate xS,

p̂inc(x) = 〈Ĝq,b(x; x′), Ŷd p̂inc(x′)〉b − 〈ŶuĜq,b(x′; x), p̂inc(x′)〉b. (89)

Using symmetry (86) and eq. (63), defining the inverse of the single-layer potential operator as,

Ŷb def= (Ŝb)−1, (90)

yields

p̂inc(x) = 2〈Ĝq,b(x; x′), Ŷb p̂inc(x′)〉b. (91)

Observe that, using eqs (83) and (86), the right-hand side of eq. (63) is symmetric, and hence eq. (90) gives

Ŷb = (Ŷb)t. (92)

Defining the propagator for the function f ∈ [L2(R2)]1 as

Ŵd(x3; x ′
3) f (xT, x ′

3)
def= 2

〈
Ĝq,b(xT, x3; x′

T, x ′
3), Ŷb f (x′

T, x ′
3)

〉
b
, x3 > x ′

3, (93)

we can write eq. (91) as

p̂inc(xT, x3) = Ŵd(x3; x ′
3) p̂inc(xT, x ′

3). (94)

This last equation represents a forward propagation of the incident wavefield from the level surface at x ′
3 to x3. The propagator Ŵd constitutes

a one-parameter operator because it only depends on x3, whereas x ′
3 is furnished by the function it operates on. The x ′

3 argument is included
in the propagator’s definition in order to be able to consider it, inappropriately, isolated from its associated function.

6.2 Scattered wavefield

Take in eq. (49) x 3 < x ′
3, and substitute the D-t-N operations of eqs (56) and (78). We obtain, omitting the source coordinate xS,

p̂sct(x) = −〈Ĝq,b(x; x′), Ŷu p̂sct(x′)〉b + 〈ŶdĜq,b(x′; x), p̂sct(x′)〉b. (95)

Using symmetry (83), using eqs (63) and (90), and defining the propagator for g ∈ [L2(R2)]1,

Ŵu(x3; x ′
3)g(xT, x ′

3)
def= 2

〈
Ĝq,b(xT, x3; x′

T, x ′
3), Ŷbg(x′

T, x ′
3)

〉
b
, for x3 < x ′

3, (96)

yields

p̂sct(xT, x3) = Ŵu(x3; x ′
3) p̂sct(xT, x ′

3). (97)

In this last equation, the scattered wavefield is forward propagated from level surface x ′
3 to level surface x3.

6.3 Semi-group

Taking the limit x ′
3 ↑ x 3 in eq. (93) and taking the limit x ′

3 ↓ x 3 in eq. (96), using the same limiting operations for the single-layer potential
that led to the Cauchy principal values in eqs (48) and (49), using eqs (51) and (90), we obtain the useful identity operator according to

I f (xT, x3) = 2
〈
Ĝq,b(xT, x3; x′

T, x3), Ŷb f (x′
T, x3)

〉
b
, (98)

and

Ŵd (x3; x3) = Ŵu (x3; x3) = I. (99)

For x 3 < x ′
3 < x ′′

3, one can show that

Ŵd(x ′′
3 ; x3) = Ŵd(x ′′

3 ; x ′
3)Ŵd(x ′

3; x3), (100)

Ŵu(x3; x ′′
3 ) = Ŵu(x3; x ′

3)Ŵu(x ′
3; x ′′

3 ). (101)

Because the one-parameter families of operators Ŵd and Ŵu satisfy the identity property of eq. (99) and the transitivity property of eqs (100)
and (101), they constitute semigroups of operators (Pazy 1983; Goldstein 1985).
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Figure 3. Depiction of the WRW model in which, from the right to the left, the operator Ŵd propagates the incident wavefield from the source level surface,
x 3 = xS

3 , to the level of the scattering medium surface, x 3 = x sct
3 , the reflection operator R̂ transforms, at the scattering medium surface, the incident wavefield

to the scattered wavefield, and the operator Ŵu propagates the scattered wavefield to the recording level surface, x 3 = xR
3 , which in this figure is equal to the

source level surface.

6.4 WRW model

Using the reflection operator of eq. (73), and using eqs (94) and (97) can be expressed, in terms of the ‘WRW model’ of Berkhout (1985), as

p̂sct
(
xT, xR

3 ; xS
) = Ŵu

(
xR

3 ; x sct
3 )R̂Ŵd(x sct

3 ; xS
3

)
p̂inc

(
xT, xS

3 ; xS
)
. (102)

The radiation in eq. (102) is downward from the source level at xS
3 to the boundary of the scattering domain at x sct

3 , and subsequently, after
reflection, upward from x sct

3 to the receiver surface at xR
3 (Fig. 3). In order to obtain the initial condition for the incident wavefield we consider,

using eq. (76),

p̂inc
(
xT, x3; xS

T, xS
3

) = q̂
〈
Ĝq,b

(
xT, x3; x′

T, xS
3

)
, δ

(
x′

T − xS
T

)〉
b
. (103)

Taking the limit x 3 → xS
3 , using the single-layer potential of eqs (51) and (90), we obtain the incident wavefield at its source level surface,

p̂inc
(
xT, xS

3 ; xS
T, xS

3

) = 1

2
q̂ (Ŷb)−1δ

(
xT − xS

T

)
. (104)

The reflection operator R̂ in eq. (102) contains all the interactions of the incident wavefield with the scattering domain. It is therefore a global
operator with respect to the x3-coordinate. On the contrary, the reflection operator in the WRW model of Berkhout (1985) is local in x3, and
the total scattering is represented by an integral with respect to the x3-coordinate.

6.5 Propagator reciprocity

Including the source coordinate of the incident wavefield in eq. (91), we write

p̂inc(x; xS) = 2〈Ĝq,b(x; x′), Ŷb p̂inc(x′; xS)〉b, for x3 > x ′
3. (105)

Using symmetry (92) in this last equation yields,

p̂inc(x; xS) = 2〈ŶbĜq,b(x′; x), p̂inc(x′; xS)〉b. (106)

Using Source–receiver reciprocity (eq. 43) for the incident pressure wavefields on the left- and right-hand sides of this last equation, and
changing the order of the bilinear form, using its symmetry, yields

p̂inc(xS; x) = 2
〈
p̂inc(xS; x′), ŶbĜq,b(x′; x)

〉
b
. (107)

Similar to eq. (105), for which we identified a propagator in Section 6.1, which acts on the evaluation depth coordinate, we can devise a
propagator from eq. (107), which operates on the source depth coordinate. In eq. (105) Ŷb is operating from the left on p̂inc resulting in the
left-propagator in eq. (94). In eq. (107), with Ŷb acting from the right on p̂inc (see Section 5.2), we obtain the propagator which operates on
the source coordinate from the right,

p̂inc(xS; xT, x3) = p̂inc
(
xS; xT, x ′

3

)
Ŵu

(
x ′

3; x3

)
. (108)

Because x 3 > x ′
3, the propagator in this last equation is the propagator Ŵu of eq. (96), in contrast to eq. (105), for which we identified the

propagator Ŵd of eq. (93). Using eqs (94) and (108), and Source–receiver reciprocity, yields

Ŵd(x3; x ′
3) p̂inc

(
xT, x ′

3; xS
) = p̂inc

(
xS; xT, x ′

3

)
Ŵu(x ′

3; x3), for x3 > x ′
3. (109)

Hence, downward propagation of the receivers of the down-going incident wavefield from x ′
3 to x3 equals downward propagation of the sources

of the reciprocal up-going incident wavefield from x ′
3 to x3. One can easily show that, using eq. (A3), this operator reciprocity is formalized

by the symmetry[
Ŵd(x3; x ′

3)
]t = Ŵu(x ′

3; x3). (110)

Similarly, one can derive

p̂sct
(
xS; xT, x3

) = p̂sct
(
xS; xT, x ′

3

)
Ŵd(x ′

3; x3), (111)

and

Ŵu(x3; x ′
3) p̂sct

(
xT, x ′

3; xS
) = p̂sct

(
xS; xT, x ′

3

)
Ŵd(x ′

3; x3), for x3 < x ′
3. (112)
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The propagation of the sources as well as the receivers enables to propagate an entire experiment from one level to another by deploying both
right- and left-operators, respectively, on a wavefield. This procedure is commonly referred to as redatuming.

7 R E F L E C T I O N K E R N E L

In the following analysis, the kernel of the reflection operator is derived. Using the identity operator of eq. (98) the scattered wavefields
representation is given by the following singular bilinear form,

p̂sct(x; xS) = 2
〈
Ĝq,b(x; x′), Ŷb p̂sct(x′; xS)

〉
b
, for x3 = x ′

3. (113)

Using Source–receiver reciprocity for the scattered wavefield on the right-hand side of this last equation yields

p̂sct(x; xS) = 2
〈
Ĝq,b(xS; x′), Ŷb p̂sct(x′; x)

〉
b
. (114)

Using symmetry (92), interchanging the order of the bilinear form, and using Source–receiver reciprocity for the scattered wavefield inside
the bilinear form, yields

p̂sct(x; xS) = 2〈 p̂sct(x; x′), ŶbĜq,b(x′; xS)〉b. (115)

Using eqs (76) and (73) gives for the reflection operator

R̂ p̂inc(xT, x3; xS) = 2q̂−1
〈
p̂sct(xT, x3; x′

T, x3), Ŷb p̂inc
(
x′

T, x3; xS
)〉

b
. (116)

Writing Ŷb as a left operator on p̂sct, using symmetry (92), the kernel of R̂ is given by

R̂(xT, x3; x′
T, x3) = 2q̂−1Ŷb p̂sct(x′

T, x3; xT, x3). (117)

The kernel of the reflection operator is represented by the scattered wavefield at (x′
T, x 3), due to an incident wavefield source at (xT, x 3). This

scattered wavefield is deconvolved with the source function, and normalized by the inverse single-layer potential operator (eq. 90), which
makes the reflection kernel effectively a dipole wavefield. We can think of the scattered wavefield associated with the reflection kernel, as
given by eq. (117), as related to a virtual experiment. The real experiment is then a redatumed version of the virtual experiment, where source
and receiver have been propagated upward from the scatterer boundary. Using eqs (97) and (111) this redatuming procedure is given by

p̂sct
(
xT, xR

3 ; x′
T, xS

3

) = Ŵu
(
xR

3 ; x sct
3

)
p̂sct

(
xT, x sct

3 ; x′
T, x sct

3

)
Ŵd

(
x sct

3 ; xS
3

)
. (118)

In imaging one exploits the causal relation between the incident and the scattered wavefield by inverting this last equation, in order to obtain
the reflection kernel at the boundary of the scattering domain at x 3 = x sct

3 . For this we need the inverse propagators that are derived in the next
section. Invoking causality, a reflectivity measure is obtained from the inverse propagated wavefield, by collecting the wavefield at zero time
in the time domain (Claerbout 1985). In de Bruin et al. (1990) non-coincident Source–receiver pairs yield an angle-dependent reflectivity, by
application of a Radon transform with respect to transverse receiver and source coordinates.

8 I N V E R S E P RO PA G AT I O N

To recover the acoustic reflectivity, represented by the kernel of the reflection operator, we need to propagate the sources and receivers of
the scattered wavefield back towards the reflector. Backward propagation is accomplished by inverse propagators in terms of sesquilinear
forms. Backward radiation from one level surface to another is an approximate operation requiring an imposed radiation condition. With this
radiation condition we associate with the inverse propagator the adjoint of the forward propagator.

8.1 Wavefield decomposition

To derive a boundary integral representation of the scattered wavefield in terms of a sesquilinear form (Appendix B) we proceed by considering
the domain of application as D

a = {(x′
T, x ′

3)| x′
T ∈ R

2, x0
3 < x ′

3 < x1
3 }. Taking the same states as in Section 4.1.2, application of the reciprocity

theorem of the time-correlation type of eq. (41), yields

p̂sct = p̂sct,d + p̂sct,u, (119)

with

p̂sct,d(x) = 〈
Ĝq,b(x; x′), v̂sct

3 (x′)
〉
s

(
x ′

3 = x1
3

) − 〈
Ĝ f,b

3 (x; x′), p̂sct(x′)
〉
s

(
x ′

3 = x1
3

)
, (120)

and

p̂sct,u(x) = −〈
Ĝq,b(x; x′), v̂sct

3 (x′)
〉
s

(
x ′

3 = x0
3

) + 〈
Ĝ f,b

3 (x; x′), p̂sct(x′)
〉
s

(
x ′

3 = x0
3

)
, (121)

in which x ∈ D
a. Eq. (119) constitutes a wavefields decomposition. The integral representations of the wavefield components contain anticausal

Green’s functions, verified by the property that complex conjugation of a Fourier transformed real-valued wavefield amounts to a time reversal
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in the time domain. The wavefield decomposition is not a decomposition in terms of down- and up-going components, as defined in Section 4.2,
that is, the components of eqs (120) and (121) do not satisfy eqs (53) and (54), or eqs (55) and (56), respectively. These components satisfy
other wavefields conditions, corresponding to other D-t-N operations, as will be shown later. Because of the anticausality of the Green’s
wavefields causality radiation conditions do not apply at infinity in the case of time-correlation representations (Bojarski 1983). Taking in this
last equation the limiting operations,

lim
x1

3 ↓x3

p̂sct,d and lim
x0

3 ↑x3

p̂sct,u, (122)

of the single- and double-layer potentials, taking into account the 1
2 p̂sct contribution of the latter (Colton & Kress 1983; Fokkema & van den

Berg 1993), taking the complex conjugate, and using the operators of eqs (51) and (52), yields(
p̂sct,d ∗

p̂sct,u ∗

)
= 1

2

(
I − D̂b Ŝb

I + D̂b −Ŝb

) (
p̂sct ∗

v̂sct
3

∗

)
. (123)

Inversion gives, using the D-t-N operators of eqs (57) and (58),(
p̂sct ∗

v̂sct
3

∗

)
=

(
I I

−Ŷu −Ŷd

) (
p̂sct,d ∗

p̂sct,u ∗

)
. (124)

Writing

v̂sct
3 = v̂

sct,d
3 + v̂

sct,u
3 , (125)

we take

v̂
sct,d
3

∗ = −Ŷu p̂sct,d ∗
, (126)

and

v̂
sct,u
3

∗ = −Ŷd p̂sct,u ∗
. (127)

Using the symmetries of eqs (83) and (86), and (B10), we obtain the D-t-N operations for the wavefield components with respect to the
time-correlation type reciprocity theorem.

v̂
sct,d
3 = − Ŷu †

p̂sct,d, (128)

and

v̂
sct,u
3 = − Ŷd †

p̂sct,u. (129)

8.2 Boundary integral representations

Substituting the wavefield decomposition of eqs (119) and (125) into eq. (120), using sesquilinearity, yields

p̂sct,d(x) = 〈
Ĝq,b(x; x′), v̂sct,d

3 (x′)
〉
s
− 〈

Ĝ f,b
3 (x; x′), p̂sct,d(x′)

〉
s
+ 〈

Ĝq,b(x; x′), v̂sct,u
3 (x′)

〉
s
− 〈

Ĝ f,b
3 (x; x′), p̂sct,u(x′)

〉
s
, for x3 < x ′

3. (130)

Substituting the D-t-N operations of eqs (78) and (129) into the last two sesquilinear forms on the right-hand side of this last equation, gives,
using eq. (B5),

〈Ĝq,b, − Ŷd †
p̂sct,u〉s − 〈−ŶdĜq,b, p̂sct,u〉s = 0. (131)

Hence, we obtain the radiation condition〈
Ĝq,b(x; x′), v̂sct,u

3 (x′)
〉
s
− 〈

Ĝ f,b
3 (x; x′), p̂sct,u(x′)

〉
s
= 0, for x3 < x ′

3, (132)

Similarly, substituting the wavefield decomposition of eqs (119) and (125) into eq. (121), using sesquilinearity, yields

p̂sct,u(x) = −〈
Ĝq,b(x; x′), v̂sct,d

3 (x′)
〉
s
+ 〈

Ĝ f,b
3 (x; x′), p̂sct,d(x′)

〉
s
− 〈

Ĝq,b(x; x′), v̂sct,u
3 (x′)

〉
s
+ 〈

Ĝ f,b
3 (x; x′), p̂sct,u(x′)

〉
s
, for x3 > x ′

3. (133)

Substituting the D-t-N operations of eqs (80) and (128) into the first two sesquilinear forms on the right-hand side of this last equation, gives

−〈
Ĝq,b, −Ŷu† p̂sct,d

〉
s
+ 〈 − ŶuĜq,b, p̂sct,d

〉
s
= 0. (134)

Hence, we obtain the radiation condition〈
Ĝq,b(x; x′), v̂sct,d

3 (x′)
〉
s
− 〈

Ĝ f,b
3 (x; x′), p̂sct,d(x′)

〉
s
= 0, for x3 > x ′

3. (135)

The radiation conditions of eqs (132) and (135) follow from the symmetry of the D-t-N operators Ŷd and Ŷu, as these are used to derive the
D-t-N operations of eqs (128) and (129).

Substituting the radiation conditions of eqs (132) and (135), and the first limiting operation of eq. (122), into eq. (130), yields the
representation for p̂sct,d, as

H (x ′
3 − x3) p̂sct,d(x) = 〈

Ĝq,b(x; x′), v̂sct,d
3 (x′)

〉
s
− 〈

Ĝ f,b
3 (x; x′), p̂sct,d(x′)

〉
s
. (136)
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Again, substituting the radiation conditions of eqs (132) and (135), and the second limiting operation of eq. (122), into eq. (133), yields the
representation for p̂sct,u, as

H (x3 − x ′
3) p̂sct,u(x) = −〈

Ĝq,b(x; x′), v̂sct,u
3 (x′)

〉
s
+ 〈

Ĝ f,b
3 (x; x′), p̂sct,u(x′)

〉
s
. (137)

8.3 Propagators

We proceed by substituting the D-t-N operations of eqs (78) and (128), in eq. (136), with x 3 < x ′
3,

p̂sct,d(x) = 〈
Ĝq,b(x; x′), −Ŷu† p̂sct,d(x′)

〉
s
+ 〈

ŶdĜq,b(x′; x), p̂sct,d(x′)
〉
s
, for x3 < x ′

3. (138)

Using eqs (B5), (63) and (90), we obtain

p̂sct,d(x) = 2
〈
Ĝq,b(x; x′), Ŷb† p̂sct,d(x′)

〉
s
, (139)

Observe that eq. (139) has a similar form as eq. (91). Taking the complex conjugate of eq. (139), using symmetry (92) and eq. (B10), yields,
in terms of a bilinear form

p̂sct,d ∗
(x) = 2

〈
Ĝq,b(x; x′), Ŷb p̂sct,d∗

(x′)
〉
b
. (140)

Hence, using eq. (96), we have

p̂sct,d ∗
(xT, x3) = Ŵu(x3; x ′

3) p̂sct,d∗
(xT, x ′

3). (141)

Again, taking the complex conjugate, using eqs (B10) and (110), we arrive at

p̂sct,d (xT, x3) = [Ŵd(x ′
3; x3)]† p̂sct,d

(
xT, x ′

3

)
, for x3 < x ′

3. (142)

In eq. (142) the wavefield p̂sct,d is backward propagated from level surface x ′
3 to level surface x3, using the adjoint of the forward propagator

Ŵd. The kernel of the adjoint propagator is given by eq. (139), which, when evaluated in the time domain, is given in terms of an anticausal
Green’s wavefield.

Similarly, as above, substituting the D-t-N operations of eqs (80) and (129), in eq. (137), with x 3 > x ′
3, using eqs (B5), (63) and (90), we

obtain

p̂sct,u(x) = 2〈Ĝq,b(x; x′), Ŷb †
p̂sct,u(x′)〉s. (143)

Following the same steps as above one can easily show that

p̂sct,u (xT, x3) = [
Ŵu

(
x ′

3; x3

) ]†
p̂sct,u(xT, x ′

3), for x3 > x ′
3. (144)

In this last equation the wavefield p̂sct,u is backward propagated from level surface x ′
3 to level surface x3, using the adjoint of the forward

propagator Ŵu.

8.4 Focussing

In order to make the scattered wavefield one-directional with respect to a sesquilinear form we assume in eq. (119) the approximation,{
p̂sct, v̂sct

3

} ≈ {
p̂sct,u, v̂

sct,u
3

}
. (145)

Hence, we enforce on the scattered wavefield the radiation condition,〈
Ĝq,b(x; x′), v̂sct

3 (x′)
〉
s
− 〈

Ĝ f,b
3 (x; x′), p̂sct(x′)

〉
s
= 0, for x3 < x ′

3. (146)

Given approximation (145), we obtain from eq. (137) the integral representation for the scattered wavefield with respect to the reciprocity
theorem of the time-correlation type,

H (x3 − x ′
3) p̂sct(x) = −〈

Ĝq,b(x; x′), v̂sct
3 (x′)

〉
s
+ 〈

Ĝ f,b
3 (x; x′), p̂sct(x′)

〉
s
. (147)

Approximation (145) yields the D-t-N operation

v̂sct
3 = − Ŷd †

p̂sct. (148)

Also, eq. (144) gives,

p̂sct(xT, x3) = [
Ŵu(x ′

3; x3)
]†

p̂sct(xT, x ′
3), for x3 > x ′

3. (149)

Hence, using eq. (97) we obtain[
Ŵu(x ′

3; x3)
]−1 = [

Ŵu(x ′
3; x3)

]†
; (150)

I.e. Ŵu is an unitary operator, meaning that the inverse propagator is equal to the adjoint of the associated forward propagator. By neglecting
the contribution from the sesquilinear form (120) in eq. (119) we obtain a correlation type representation of the scattered wavefield in terms of
a single integral. In this way, uni-directionality of the scattered wavefield is enforced with respect to the background medium. In general, the
two contributions of eq. (119) make it meaningless to assign a direction to the scattered wavefield with respect to the background medium. This
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means that Huygens’ principle, which states that an infinitesimal change in a wavefield can be constructed from infinitesimal contributions
from secondary sources along a single surface, is not valid for these representations. Wapenaar (1992) associates the negligence of one surface
integral with the erroneous handling of the evanescent wavefield, in the case of an homogeneous medium. In Berkhout (1985), eq. (150)
is called the matched filter approach to inverse propagation. Using reciprocity, following the same analysis as in Section 6.5 with respect
to a sesquilinear form instead of a bilinear form, yields, under approximation (145), the adjoint propagator which operates on the source
coordinates from the right, for x 3 > x ′

3,

p̂sct
(
xS; xT, x3

) = p̂sct
(
xS; xT, x ′

3

)[
Ŵd

(
x3; x ′

3

) ]†
, (151)

This last equation and eq. (111) gives the unitary property[
Ŵd

(
x3; x ′

3

)]−1
=

[
Ŵd

(
x3; x ′

3

)]†
. (152)

Using eqs (150) and (152), and eq. (118), focussing is achieved, under approximation (145), according to

p̂sct
(
xT, x sct

3 ; x′
T, x sct

3

) = [
Ŵu

(
xR

3 ; x sct
3

)]†
p̂sct

(
xT, xR

3 ; x′
T, xS

3

)[
Ŵd

(
x sct

3 ; xS
3

)]†
. (153)

In this last equation the source of the incident wavefield which gives rise to the scattered wavefield is back-propagated to the scatterer surface,
while the scattered wavefield is evaluated at the same level. As a consequence, the scattered wavefield focuses on its sources located at the
scatterer boundary. Using eq. (117) we obtain the kernel of the reflection operator, which is a function of the perturbations of eq. (15).

9 F U N DA M E N TA L S O L U T I O N

To extrapolate the incident and scattered wavefields, using eqs (94) and (97), respectively, we need to, according to eqs (93) and (96), compute
the Green’s function Ĝq,b for x 3 > x ′

3 and x 3 < x ′
3, respectively. We will follow the fundamental solution approach (Pazy 1983; Krueger

& Ochs 1989; Haines & de Hoop 1996; Wapenaar 1996a; Fishman et al. 1997; Grimbergen et al. 1998; Fishman 2004). The fundamental
solutions yield product integrals for the propagators. The associated D-t-N operators are solutions of an operator Riccati equation (Haines &
de Hoop 1996; Lu & McLaughlin 1996; Fishman et al. 1997, 1998).

9.1 Product integral

Substituting the D-t-N operators of eqs (77) and (79) into eq. (20), for vanishing sources, and defining,

P̂d def= iωρbŶd, (154)

P̂u def= iωρbŶu, (155)

yields for Ĝq,b = Ĝq,b(xT, x3; x′
T, x ′

3) the following evolution equations,

∂3Ĝq,b + P̂dĜq,b = 0, x3 > x ′
3, (156)

∂3Ĝq,b + P̂uĜq,b = 0, x3 < x ′
3, (157)

respectively. The initial condition at x 3 = x ′
3, is given by, using eqs (76) and (104),

Ĝq,b
(
xT, x ′

3; x′
T, x ′

3

) = (2Ŷb)−1δ(xT − x′
T). (158)

In order to solve eq. (156), from the source level xS
3 to the scattering boundary level x sct

3 , we follow Dollard & Friedman (1979) and Goldstein
(1985), omitting any discussion on required norms in a Banach space. Following Goldstein (1985), consider the partition π of the interval
[xS

3 , x sct
3 ], and select a value zj in each mutually disjunct partition interval, according to

π : xS
3 = x0

3 < x1
3 < . . . < xn

3 = x sct
3 , z j ∈ (

x j−1
3 , x j

3

]
, j = 1, . . . , n. (159)

Approximate, in eq. (156), Ĝq,b by Ĝq,b
n ,

∂3Ĝq,b
n + P̂d,j

π Ĝq,b
n = 0, in

(
x j−1

3 , x j
3

]
, j = 1, . . . , n, (160)

with initial condition given by eq. (158), for x ′
3 = x0

3,

Ĝq,b
n

(
xT, x0

3 ; x′
T, x0

3

) = Ĝq,b
(
xT, x0

3 ; x′
T, x0

3

)
. (161)

The ‘step operator’ P̂d,j
π is defined, through the kernel of P̂d, by the constant value zj in each partition interval (x j−1

3 , xj
3];

P̂d,j
π f (xT, x3)

def= 〈
P̂d(xT, z j ; x′

T, z j ), f (x′
T, x3)

〉
b
, x3 ∈ (

x j−1
3 , x j

3

]
, j = 1, . . . , n. (162)

Hence, P̂d,j
π is x3-invariant within a partition interval. Exploiting this invariance, taking �x j

3 = x j
3 − x j−1

3 , j = 1, . . . , n, eq. (160) is solved
for the first interval of the partition π , using eq. (161), as

Ĝq,b
n

(
xT, x1

3 ; x′
T, x0

3

) = exp(−�x1
3 P̂d,1

π )(2Ŷb)−1δ(xT − x′
T). (163)
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Using this last equation as the initial value, we can solve eq. (160) for the second interval of π ,

Ĝq,b
n

(
xT, x2

3 ; x′
T, x1

3

) = exp
(−�x2

3 P̂d,2
π

)
Ĝq,b

n

(
xT, x1

3 ; x′
T, x0

3

)
. (164)

Continuing we obtain, as a solution for eq. (160), the ordered product

Ĝq,b
n

(
xT, xn

3 ; x′
T, x0

3

) =
n∏

j=1

exp
(−�x j

3 P̂d,j
π

)
(2Ŷb)−1δ(xT − x′

T), (165)

in which
n∏

j=1

exp
(−�x j

3 P̂d,j
π

) = exp
(−�xn

3 P̂d,n
π

)
. . . exp

(−�x1
3 P̂d,1

π

)
. (166)

The function Ĝq,b
n is called a Peano polygonal approximation (Goldstein 1985). One can show that (Dollard & Friedman 1979; DeWitt-Morette

et al. 1979; Goldstein 1985) when the length of the longest subinterval of the partition, m(π ) = max j (�x j
3), goes to zero, while n goes to

infinity, we obtain, for x0
3 = xS

3 and xn
3 = x sct

3 ,

Ĝq,b
(
xT, x sct

3 ; x′
T, xS

3

) =
xsct

3∏
xS

3

exp
(−dx3P̂d

)
(2Ŷb)−1δ(xT − x′

T), (167)

with the product integral defined as

xn
3∏

x0
3

exp
(−dx3P̂d

) def= lim
m(π )→0

n∏
j=1

exp
(−�x j

3 P̂d,j
π

)
. (168)

Hence, using eq. (167) in eq. (93), the propagator for the down-going wavefield is given by

Ŵd
(
x sct

3 ; xS
3

) =
xsct

3∏
xS

3

exp
(−dx3P̂d

)
. (169)

Likewise, starting with eq. (157), one can derive for the propagator of eq. (96) the product integral from the scattering boundary to the receiver
level,

Ŵu
(
xR

3 ; x sct
3

) =
xR

3∏
xsct

3

exp
(−dx3P̂u

)
. (170)

eqs (169) and (170) show that the WRW model of eq. (102) can be given as the product of a product integral, a reflection operator and another
product integral.

9.2 Riccati equation

To compute P̂d or P̂u we eliminate �̂
q,b
3 from eq. (20) yielding,

∂2
3 Ĝq,b − 1

ρb

(
∂3ρ

b
)
∂3Ĝq,b + ω2ρbK̂bĜq,b = 0. (171)

Substituting eqs (156) and (157), one can show that the operators P̂ ′ = P̂d and P̂ ′ = P̂u are solutions of the non-linear Riccati equation,

∂3P̂ ′ − (P̂ ′)2 − 1

ρb

(
∂3ρ

b
)
P̂ ′ − ω2ρbK̂b = O. (172)

Substituting eqs (154) and (155) in this last equation gives the Riccati equation,

i

ω
∂3Ŷ ′ + Ŷ ′ρbŶ ′ − K̂b = O, (173)

with D-t-N operator solutions Ŷ ′ = Ŷd and Ŷ ′ = Ŷu. The initial conditions of Ŷd and Ŷu, are furnished by the radiation conditions of the
down-going and up-going wavefields, towards plus and minus infinity, respectively, where the medium is longitudinal-invariant. Implementing
longitudinal-invariance in the Riccati eq. (173),

(ρbŶ ′)2 − ρbK̂b = O, (174)

in which ρbK̂b represents the Helmholtz operator, yields the initial values, Ŷ ′ = Ŷd
0 and Ŷ ′ = Ŷu

0 , as

Ŷd
0 = −Ŷu

0 = (ρb)−1(ρbK̂b)
1
2 . (175)

The Riccati eq. (173) and its initial condition in (175) have been obtained in many contexts, in particular, by Haines & de Hoop (1996),
Fishman et al. (1997, 1998), and Lu & McLaughlin (1996). The operator Ŷd is solved upward, whereas Ŷu is solved downward. Using
eqs (154) and (155), Ŵd and Ŵu are solved downward and upward, respectively, in the reverse direction of the associated D-t-N operators
(Haines & de Hoop 1996).
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1 0 C O N C L U S I O N S

Implementing bilinear and sesquilinear forms allowed us to describe the forward- and inverse-scattering problem, in terms of the WRW model,
analogously. Using time-domain causality and reciprocity theorems, operator symmetries are derived from radiation conditions, which enable
to express this model in a concise way. Scattering from an acoustic contrast is represented by a reflection operator, and left- and right-operating
propagators, in terms of the D-t-N operator of the total wavefield and the D-t-N operators of its two-way wavefield components. By solving
for the D-t-N operators of the wavefields components, which are solutions of an operator Riccati equation, the inverse-scattering problem can
be resolved. Hence, the D-t-N operators are central to the two-way WRW model.

The family of propagators, forming a semi-group, are recursive in the propagation direction, which, in the limit, is represented by a
product integral. Because of the semi-group property, the propagators have no inverse that collapse a wavefield back on its source, due to the
inapplicability of a radiation condition for anticausal wavefield solutions to the Helmholtz equation. Therefore, wavefields representations
with respect to a sesquilinear form can not be marched from one level surface to another according to Huygens’ principle. By applying a
wavefield decomposition in wavefield components that can be marched with respect to a single surface an approximate inverse propagator is
derived by equating the wavefield with one of its wavefield components. For this we need to neglect one boundary integral which is equivalent
to enforcing a radiation condition. The propagator becomes an unitary operator, meaning that the inverse propagator is equal to the adjoint of
the forward propagator. In this way Huygen’s principle, as a means to march a wavefield forward becomes applicable to the inverse problem,
where a wavefield component is marched backward, hence, transforming an initial-value problem to a final-value problem.

According to our model imaging represents evaluating the scattered wavefield at the scattering boundary, while moving the illuminating
source also to it. This redatuming procedure is then accomplished by adjoint propagators operating from the left and right on the back-scattered
wavefield.
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Haines, A.J. & de Hoop, M.V., 1996. An invariant embedding analysis
of general wave scattering problems, J. Math. Physics, 37(8), 3854–
3881.

Krueger, R.J. & Ochs, R.L., 1989. A Green’s function approach
to the determination of internal fields, Wave Motion, 11, 525–
543.

Lang, S., 1993. Algebra, 3rd edn, Addison-Wesley Publishing Company,
MA, USA.

Lu, Y.Y. & McLaughlin, J.R., 1996. The Riccati method for the Helmholtz
equation, J. acoust. Soc. Am., 100(3), 1432.

Pazy, A., 1983. Semigroups of linear operators and applications to partial
differential equations, Springer-Verlag, New York, USA.

Le Rousseau, J.H. & de Hoop, M.V., 2001. Modeling and imaging with
the scalar generalized-screen algorithms in isotropic media, Geophysics,
66(5), 1551–1568.

Wapenaar, C.P.A., 1992. The infinite aperture paradox, Journal of Seismic
Exploration, 1, 325–336.

Wapenaar, C.P.A., 1996a. One-way representations of seismic data, Geophys.
J. Int., 127, 178–188.

Wapenaar, C.P.A., 1996b. Reciprocity theorems for two-way and one-way
wave vectors: a comparison, J. acoust. Soc. Am., 100(6), 3508–3518.

Wapenaar, C.P.A. & Grimbergen, J.T.L., 1996. Reciprocity theorems for
one-way wave fields, Geophys. J. Int., 127, 169–177.

Weston, V.H., 1988. Factorization of the wave equation in a nonplanar strat-
ified medium, J. Math. Physics, 29(1), 36–45.

A P P E N D I X A : B I L I N E A R F O R M S

Consider the bilinear form f : [L2(R2)]α × [L2(R2)]α → C, associated with the linear map B : [L2(R2)]α → [L2(R2)]α ,

f (F, G)
def=

∫
xT∈R2

Ft (xT) BG (xT) dxT. (A1)

The bilinear form f constitutes a Cartesian product of two Hilbert spaces into the complex plane C. Each Hilbert space [L2(R2)]α is a set of
square-integrable (L2) functions F, G ∈ [L2(R2)]α , defined on the transverse coordinate space R

2. For α = 1 the functions are scalars, whereas
for α = 2 the functions are vectors with two components. The superscript t denotes transposition of the vector F. Bilinearity means that we
have linearity in the first variable F and linearity in the second variable G (Lang 1993). The bilinear form f associated with the operator B is
symbolized as

f (F, G) = 〈F, BG〉b . (A2)

Given the bilinear form f and its associated linear operator B there exists a unique linear map Bt : [L2(R2)]α → [L2(R2)]α , the transpose of
B, such that

〈F, BG〉b = 〈BtF, G〉b. (A3)

Whenever,

B = Bt, (A4)

B is said to be symmetric with respect to f . If

B = −Bt (A5)

B is said to be skew-symmetric or alternating with respect to f . For skew-symmetric B we have

〈F, BF〉b = 0, ∀ F ∈ [L2(R2)]α, (A6)

and

〈F, BG〉b = − 〈G, BF〉b , ∀ F, G ∈ [L2(R2)]α. (A7)

A P P E N D I X B : S E S Q U I L I N E A R F O R M S

Consider the sesquilinear form g : [L2(R2)]α × [L2(R2)]α → C, associated with the linear map B : [L2(R2)]α → [L2(R2)]α ,

g (F, G)
def=

∫
xT∈R2

F† (xT) BG (xT) dxT. (B1)

The superscript † denotes the product operation of transposition, signified by t, and complex conjugation, signified by ∗. Sesquilinearity means
that, ∀ F, F1, F2, G ∈ [L2(R2)]α and ∀a ∈ C, we have antilinearity in the first variable, that is,

g (F1 + F2, G) = g (F1, G) + g (F2, G) ,

g (aF, G) = a∗g (F, G) , (B2)

and linearity in the second variable (Lang 1993). The sesquilinear form g associated with B is symbolized as

g (F, G) = 〈F, BG〉s . (B3)
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Observe that a sesquilinear form can be expressed as a bilinear form according to

〈F, BG〉s = 〈F∗, BG〉b . (B4)

Given the linear operator B and its associated sesquilinear form g there exists a unique linear map B† : [L2(R2)]α → [L2(R2)]α , the adjoint
of B, such that

〈F, BG〉s = 〈B†F, G〉s. (B5)

Whenever,

B = B†, (B6)

B is said to be self-adjoint or hermitian with respect to g. For self-adjoint B we have

〈F, BF〉s is real, ∀ F ∈ [L2(R2)]α, (B7)

and

〈F, BG〉s = 〈G, BF〉∗
s , ∀ F, G ∈ [L2(R2)]α. (B8)

Using eqs (A3), (B4) and (A5), we have

〈BtF∗, G〉b = 〈F∗, BG〉b = 〈F, BG〉s = 〈B†F, G〉s = 〈(B†F)∗, G〉b. (B9)

Hence,

B†F = (BtF∗)∗, (B10)

gives a relation between the transpose and the adjoint of an operator.
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