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An earth model is used in a collaborative environment in which some members provide information for

its construction and others utilize the result. Validating an earth model by simulating a migration image

is an important step. However, the high computational cost of generating 3D synthetic data, followed by

the process of migration, limits the number of scenarios that can be validated. To overcome this

computational cost, a novel strategy is used where a migration image is simulated by filtering a model

with a spatial resolution filter. One of the key properties of this approach is that the model that

describes a target-zone is decoupled from the macro-velocity model that is used to compute the spatial

resolution filters. Consequently, different models can be filtered with the same resolution filter. For a

horizontally layered medium, the Gazdag phase-shift operators are used to construct a common-offset

spatial resolution filter to simulate the phase of 2D primary reflection data. To approximate a spatial

resolution filter in a laterally variant medium, ray trace information is used as an illumination

constraint. Additionally, the influence of seismic uncertainties on the shape of a spatial resolution filter

and the resulting migration image are simulated. These filters enhance an iterative earth modeling

approach.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Seismic exploration activities can be subdivided into acquisi-
tion, seismic processing and interpretation. In the first stage, a
network of sensors records the space–time response of the
subsurface due to seismic waves generated by a controlled
source. The source has a particular signature and frequency
content. Next, computer algorithms are used to process the
recorded data, where the principal processing step is known as
migration. At this stage a seismic depth image of the target-zone
is obtained. For an extensive overview of the different seismic
processing steps we refer to Yilmaz (2001). Finally, in the
interpretation stage, structural information can be obtained from
the migration image. For an extensive overview of 3D seismic
interpretation techniques we refer to Brown (2004). Seismic
interpretation is not a trivial task, because of the relatively low
resolution of the migration image. For example, a migration image
has a typical vertical resolution of 25 m, a horizontal resolution of
50 m, and has an extensive spatial coverage (covering many km2

with typical sampling distances 12.5–37.5 m in the lateral
ll rights reserved.

rg/CGEditor/index.htm.

peus).

264, N-0240, Oslo, Norway.
dimension). The resolution of a migration image is controlled by
the acquisition parameters, the seismic processing parameters,
the overburden properties, the accuracy of the velocity model that
was used to migrate the real data and the depth range of the
target-zone. To understand the imprint of these effects in a
migration image, migrated data are simulated by generating 3D
synthetic data, followed by the process of migration. However,
this approach has a very high computational cost. Therefore, it is
not often used to validate an earth model. The current industry
practice of simulating seismic data in the depth domain for earth
modeling is the so-called 1D convolution model. In this approach
a 1D wavelet, which matches the source, is used to filter an earth
model to simulate a migration image. For example it is used in
geological modeling by Pratson and Gouveia (2002) or Braaksma
et al. (2006). This method is computationally very fast. Unfortu-
nately, it assumes that the earth is locally horizontally layered.
Therefore, the simulation result only expresses the vertical
resolution of a migration image correctly for horizontal layers
and does not account for the lateral resolution aspects of the
migration process.

Recent research shows that a migration image can be
simulated accurately and computationally efficiently by filtering
a model with a spatial resolution filter (Schuster and Hu, 2000;
Gjøystdal et al., 2002, 2007; Lecomte et al., 2003; Toxopeus et al.,
2003a). The real migration image is obtained with a background
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velocity model. This model is also used to compute a spatial
resolution filter. The spatial resolution filter expresses the effects
of the acquisition parameters, seismic processing parameters and
the overburden. As a consequence, the simulated migration image
can be compared directly to the migrated data. Under the
assumption that the background velocity model remains un-
changed, the spatial resolution filter stays constant and can be re-
used to simulate migration images of different geological
scenarios (Toxopeus et al., 2008).

In this paper a forward modeling and migration scheme is
proposed for calculating spatial resolution filters in a velocity
model. For this purpose, we first show an example to illustrate
how we simulate a migration image by filtering an earth model
with a spatial resolution filter. This is followed by a discussion
about the Gazdag phase-shift operators and an implementation in
MATLAB. Next, we approximate a spatial resolution filter in a
laterally variant medium by using ray-trace information as
illumination constraint and demonstrate the influence of seismic
uncertainties. Finally, a common-offset spatial resolution filter is
computed. The presented examples are in 2D and simulate the
phase of primary reflection data only, however, the approach is
valid in 3D for an arbitrary elastic earth model. The numerical
implementation is done in MATLAB, so that it can be used as a
teaching tool as well (Toxopeus et al., 2003b).
2. Simulating a migration image

For seismic exploration on sea, a ship drags an airgun source
and a finite number of detectors (hydrophones) through the water
(a simplified 2D illustration is shown in Fig. 1). At regular
intervals, the source generates a wavefield. This wavefield travels
into the earth and partly reflects at different layers due to
impedance contrasts. Acoustic impedance is the product of
density and velocity, the ratio of the pressure to the volume
displacement at a given surface in a sound-transmitting medium
(Sheriff, 2001). The impedance contrast directly relates to the
reflection amplitude. At the surface, using different detector
positions, the reflected wavefield is recorded in time. Along the
course of the ship, the seismic experiment is repeated for many
source positions. A similar type of experiment can be performed
for exploration on land, with the airguns replaced by seismic
vibrators or dynamite and the hydrophones replaced by
geophones. For shallow targets on land, a ground penetrating
radar (GPR) that emits electromagnetic waves can also be used.
On a conceptional level, the acquired data of these wavefield
offset

c

recording aperture

x

y
z

t1 tn

Fig. 1. A schematic illustration of seismic data acquisition at two different times

(t1 and tn) on sea. A wave propagation velocity is denoted by c, % is a source at

different lateral positions and X is a detector. Arrows illustrate paths that a

primary wavefield travels between a source, a geological boundary (curved solid

line) and different detectors (hydrophones) in water.
experiments (seismic or electromagnetic) are described as

Real dataðxD;xS; tÞ ¼ Physical measurementfEarthg; ð1Þ

where xD and xS denote the 3D spatial coordinate vectors of the
detector and source positions, respectively, and t denotes time.
Similarly, the simulated seismic data are obtained by a forward
operator that acts on an earth model. The earth model is a
possible representation of the earth in terms of the parameters
dominating the measurements used, while the forward operator
resembles our description of the physical measurement,
according to

Simulated dataðxD;xS; tÞ ¼ Forward operatorfEarth modelðxÞg;

ð2Þ

where x denotes the spatial coordinate vector of position in the
earth model. From the seismic measurements, a structural depth-
image of the earth is obtained by using a migration operator. This
extends the relations to

Real migration imageðxÞ ¼Migration operatorfReal dataðxD;xS; tÞg;

Simulated migration imageðxÞ ¼Migration operator

fSimulated dataðxD;xS; tÞg: ð3Þ

The interpreter of the migration image is concerned with the
question how and to what extent geological details are visible in
the migration image. Ideally he or she should investigate the
following relations:

Real migration imageðxÞ ¼Migration operator

fPhysical measurementfEarthgg;

Simulated migration imageðxÞ ¼Migration operator

fForward operatorfEarth modelðxÞgg:

ð4Þ

These are the combined operations of the aforementioned
processes. Therefore, to simulate migrated data, a combined
operator is introduced to represent the two operators,

Simulated migration imageðxÞ ¼ Combined operatorfEarth modelðxÞg;

ð5Þ

where

Combined operatorf�g ¼Migration operatorfForward operatorf�gg:

ð6Þ

The combined operator is represented by a spatial resolution
filter that is obtained from computing the image of a single unit
strength scattering point in a background medium (the impulse
response is the filter). Eq. (5) describes an efficient way of
simulating a migration image. It can be used to validate different
earth model scenarios by comparing the simulated migration
images with the real migration image of Eq. (3).

In the literature, a spatial resolution filter is also known as a
point-spread function (PSF) (Devaney, 1984; Jansson, 1997;
Lecomte and Gelius, 1998; Gjøystdal et al., 2002), the Green’s
function for migration (Schuster and Hu, 2000) or resolution
function (Lecomte and Gelius, 1998). To illustrate the new
approach of simulating migrated data, a reflectivity model of an
extended wedge model is shown in Fig. 2(a). The model has
different dips. A wedge model is commonly used to study
petroleum reservoirs (Widess, 1973), the model represents a
common stratigraphic petroleum trap (Norman, 2001). The
simulated migration image, given a certain acquisition
configuration (seismic imprint), is shown in Fig. 2(b). The image
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Fig. 2. (a) Illustration of a model. (b) Simulating a depth-migration image by

filtering an earth model with a spatial resolution filter (c). Layers are blurred in

both vertical and horizontal directions, making them difficult to interpret

especially where they are close to each other. Additionally, the steepest dip is

suppressed, illustrated by an arrow. Similar effects occur in migrated real data and

hamper geological interpretation.
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is obtained using the spatial resolution filter shown in Fig. 2(c)
through a 2D spatial convolution with the reflectivity model.

In the following we briefly highlight four aspects of this new
concept of simulating migrated data. More background informa-
tion is found in Toxopeus et al. (2008). First, the spatial resolution
filter depends on depth and lateral position. Ideally, for each
subsurface point a new spatial resolution filter could be
computed. However, this is computationally too expensive.
Fortunately, for a small area, the spatial resolution filter can be
assumed constant. A target-oriented illumination analysis based
on ray-tracing, or the full-wave equation, could be used to
investigate the degree of lateral variation of the spatial resolution
filter. Examples are found in Lecomte (2006) and Yang et al.
(2008). Second, the spatial resolution filter can be decoupled from
the geologically more detailed earth model describing the target-
zone. The propagation model that is used to migrate the real data
is also used to compute the spatial resolution filter. This velocity
model is not changed and therefore the spatial resolution filter
can be re-used to validate different geological scenarios. Third, a
spatial resolution filter is computed in depth, because an earth
model is also built in depth. To compute a time-migration image,
a depth-to-time conversion can be performed. Finally, all effects
related to the acquisition and Earth surface can be properly
captured in the spatial resolution filter. As an initial approach, a
spatial resolution filter only simulates (the phase of) migrated
reflection data given an overburden model, and acquisition and
processing parameters. In the comparison between the real and
simulated data, it is tacitly assumed that all multiple scattering
events have been properly removed from the real data or imaged
to their correct position of origin. Removing multiple energy is of
great importance in seismic processing and the current industry
practice is to remove only the free surface scattering from the real
data; internal multiple scattering is only partly removed
(Verschuur et al., 1992; Hill et al., 1999; Matson and Dragoset,
2005).
3. Computing a spatial resolution filter in a horizontally
layered velocity model

Three approaches to calculating a spatial resolution filter are
found in the literature. The first approach assumes a homo-
geneous velocity model; Chen and Schuster (1999) presented a
closed-form expression for the zero-offset case. Second, for a 3D
elastic model, directional information can be derived using ray-
tracing (Lecomte and Gelius, 1998; Lecomte, 2008) or it is
obtained by a local plane-wave analysis (Xie et al., 2006). The
third approach uses the combined operator of relation (5). In the
following discussion, we will use this latter approach and further
restrict ourselves to the 2D case, a horizontally layered velocity
model and show examples for primary reflection data only. The
layered model is built from a velocity trace that is obtained from,
e.g., a borehole or from the migration velocity model that was
used to migrate the seismic real data. In each layer, the velocity is
constant and a wavefield is propagated in this layer by making use
of the Gazdag phase-shift operator (Gazdag, 1978). In the double-
Fourier domain, or kx;o domain it reads

~W
�
ðzm�1; zmÞ ¼ e�jkz jzm�1�zm j ð7Þ

with

kz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2

x

p
; k2

x rk2;

�j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x � k2
p

; k2
x 4k2;

(

where j¼
ffiffiffiffiffiffiffiffiffiffi
ð�1Þ

p
, k¼o=c, o is the radial frequency, c is the

P-wave velocity and kx is the Fourier-transformed horizontal
spatial coordinate. The depth is denoted by z and zm denotes the
m th sample of the gridded input velocity trace.

For upward propagating waves, the operator of Eq. (7) is used
to propagate the wavefield P at depth zm one layer higher:

~P
�
ðzm�1Þ ¼

~W
�
ðzm�1; zmÞ

~P
�
ðzmÞ: ð8Þ

Eq. (8) is used in a recursive scheme to propagate the
wavefield from zM to z0. The recursion starts at the depth level
for which one wants to derive the spatial resolution filter (zM),
with ~P

�
ðkx; zM ;oÞ ¼ SðoÞ, SðoÞ being the source spectrum, and

ends at the acquisition level z0, giving the impulse response of the
source at zM .

We assume that a migration image approximates migrated
zero-offset data. Zero-offset data are obtained by moving a
coinciding source and detector along the acquisition surface
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detector. An arrow illustrates paths that a primary wavefield travels between a
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Fig. 4. An overview of wave-propagation in double-Fourier domain. A horizontal

axis displays wavenumber (kx) and vertical axis angular frequency (o¼ 2pf ). Solid

lines (denoted by �903 and 903) mark boundary between propagating and

evanescent part of a wavefield. A dashed lines indicate minimum and maximum

angles of wave propagation (j1 and j2). These angles are in general less than 903

due to a limited recording aperture and effects of overburden. A signal of artificial

source has a frequency content that is marked by omin to omax. To reduce

computational costs only gray filled region is computed.
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(Fig. 3(a)). This recording geometry is not realizable in practice for
seismic exploration. However, we still need to migrate the
recorded data to zero-offset to get the reflectors at proper dips
and collapse hyperbolic events of scattering objects to ‘‘points’’.
We consider an alternative modeling approach that approximates
zero-offset data, the so-called exploding reflector modeling
approach (Loewenthal et al., 1976; Yilmaz, 2001). In this
approach, sources are placed at the reflectors and the source
strengths are chosen proportional to the reflection coefficients.
The propagation velocity in the model taken to be half the actual
velocity. Hence, we replace k¼o=c by k¼ 2o=c. When all sources
‘‘explode’’ simultaneously, data are obtained that resemble zero-
offset data (Fig. 3(b)). To obtain forward modeled data for a spatial
resolution filter, one source with unit strength is placed in a
background model.

This is step one in the computation of a spatial resolution filter.
To obtain the filter, the forward modeled impulse response is
migrated. The inverse wavefield extrapolator ( ~F

�
¼ 1= ~W

�
) forms

the basis for migration. To obtain a stable inverse wavefield
extrapolator, the complex conjugate of the forward operator is
taken according to / ~F

�
S¼ ð ~W

�
Þ
�. Physically, this means that
only the propagating wave region (for which k2
x rk2) is used

(as indicated in Fig. 4). Hence,

/ ~P
�
ðzmÞS¼/ ~F

�
ðzm; zm�1ÞS/ ~P

�
ðzm�1ÞS; ð9Þ

where

/ ~F
�
ðzm; zm�1ÞS¼ eþ jk�z jzm�zm�1 j ð10Þ

with

k�z ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2

x

p
; k2

x rk2;

j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x � k2
p

; k2
x 4k2

(
ð11Þ

and / ~P
�
S is the backward propagated wavefield.

The migration image is obtained by evaluating the wavefield in
the space–time domain at t¼ 0 for all depth levels. In the double-
Fourier domain this is done by a summation over all frequency
components for each kx. Finally, the spatial resolution filter is
obtained by an inverse Fourier transformation from the wave-
number (kx) to the space domain,

Spatial resolution filterðx; zÞ ¼R

Z kx ¼ 1

kx ¼ �1

e�jkxx

Z omax

omin

/ ~P
�
ðkx; z;oÞSdodkx;

ð12Þ

where x; z denote the spatial coordinates of a point in the earth
model. We take only the real part (R) of the equation, because the
real part is used as the imaging condition for zero-offset data. For
more extensive details of wavefield propagation we refer to
Berkhout (1987) and Wapenaar and Berkhout (1989).

Finally, we remark that the Gazdag operators are not
commonly used in the seismic industry to migrate real data,
because they fail to properly image complex velocity structures,
as for example, in a salt body. Depth migration and modeling
algorithms for a complex velocity model are freely available from,
for example, Colorado School of Mines (Seismic Un*x Stockwell,
1999; Forel et al., 2006) and the University of Calgary (CREWES
project Margave, 2001). By replacing the one-way Gazdag
operators by spatially variant one-way operators that are valid
for a more complex velocity model, a more accurate spatial
resolution filter can be computed using the same two steps.

3.1. Numerical implementation

Consider the following four features of the Gazdag phase-shift
operator that make an implementation computationally efficient.
First, if the square root in the phase-shift operator becomes
imaginary the wavefield is evanescent (exponentially decaying).
Therefore, the phase-shift operator is only applied if the wavefield
is propagating (i.e., for real-valued square-root). The minimum and
maximum angles of wave propagation (j1 and j2) mark the
boundaries (Fig. 4). These are less than 903 due to a limited
recording aperture and effects of the overburden. In the wave-
number domain, the minimum and maximum angles of wave
propagation restrict the domain as k1okxok2, with
k1;2 ¼ ksinðj1;2Þ. Second, the signal of the controlled source has a
particular frequency content from omin to omax, where o¼ 2pf

and f is the frequency. This means that in the frequency range up to
the Nyquist frequency, not all frequency components need to be
calculated. Only the gray filled region in Fig. 4 needs to be
evaluated. Third, note that applying the phase-shift operator is a
linear process. The phase-shift operator can be re-used to
propagate the wavefield one depth-level if the velocity is constant.
Finally, either a loop over o or kx is removed by making use of the
matrix multiplication possibilities which are specific to MATLAB.

Modeling is performed on a discretized kx�axis, after an
inverse Fourier transform. This gives periodic results in the spatial
domain. These periodic effects can be partly avoided by enlarging
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the modeling domain, and after inverse Fourier transform only
selecting the least disturbed spatial domain of interest in the
middle of the spatial period. As a rule of thumb it is usually
sufficient to enlarge the recording aperture by a factor of two.
Another well known technique is to taper the edges of the
forward modeled data at each depth-level (Cerjan et al., 1985).
The computational costs of the modeling algorithm are then
increased, because applying the tapers requires an inverse- and a
forward spatial Fourier transform at each depth-step.
3.2. Algorithms

Input to the forward algorithm is a gridded velocity trace, the
depth of the unit strength point scatterer, and information on the
acquisition and processing parameters. The main acquisition
parameter is the recording aperture. It is used to truncate the
forward modeled data to the acquisition aperture. One of the
main processing parameters is the total number of samples
(denoted by nt), which is computed by dividing the total
recording time by the time sampling (denoted by dt). Addition-
ally, information on the minimum and maximum angles of wave
propagation is used to constrain the shape of the spatial
resolution filter. A specifically shaped source wavelet is convolved
Fig. 5. Classic implementation of zero-offset seismic modeling using one-way forward

operator is used as one-way operator. A þ and � sign denotes forward and backward

Fig. 6. Classic implementation of migrating seismic data using a one-way operator (rel

modeled data of a point scatterer results in a spatial resolution filter. A þ and � sign
with the modeled data after forward modeling. All these input
parameters should resemble the acquisition and processing
parameters of the real data as closely as possible in order to
simulate a migration image that can be directly compared to a
real migration image.

The P-wave velocity is divided by two and is used to model
primary zero-offset reflection data. The classic algorithm for
forward modeling using the Gazdag one-way operator (relation
(8)) is illustrated in Fig. 5. The primary reflection data are
truncated to their original recording aperture. On a trace-by-trace
basis, a specific source wavelet is convolved with the data by a
multiplication in the frequency domain. The classic algorithm for
migrating seismic data using the Gazdag one-way operator
(relations (9) and (12)) is illustrated in Fig. 6. Note that the
depth loop ends at a larger depth (zdÞ than the depth (zdÞ of the
point scatterer, to obtain a two-sided spatial resolution filter.
4. Approximating the spatial resolution filter in a laterally
variant medium

A point scatterer is located in a model with a velocity of
2000 m/s at x¼ 1500 m, z¼ 2000 m. A zero-offset acquisition
setup is placed symmetrically over the location. The total
operator and exploding reflector concept (relation (8)). In this paper the Gazdag

propagations, respectively.

ations (9) and (12)). In this paper the Gazdag operator is used. Migrating forward

denotes forward and backward propagations, respectively.
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Fig. 7. Different spatial resolution filters at position x¼ 1500 m, z¼ 2000 m. (a) Spatial resolution filter derived in a homogeneous model of 2000 m/s. (b) Spatial resolution

filter in simple salt model using x�o operators. (c) A local constant velocity spatial resolution filter in simple salt model. (d)–(f) Double-Fourier transformed results of

figure (a)–(c). (g)–(i) Schematically illustrate measured minimum and maximum angles of wave propagation in double-Fourier domain.
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recording aperture is 3000 m. The source signature is a Ricker
wavelet with a sampling of 4 ms. The signal of the wavelet is
characterized by a center frequency at 25 Hz. Using the Gazdag
phase-shift operator a spatial resolution filter is computed
(Fig. 7(a)). Next, a water layer and a strong velocity contrast are
added the model, which creates the simple-salt-model shown in
Fig. 8(a). These structures are for example found in the Gulf of
Mexico (Jackson et al., 1994). Note that the phase-shift approach
is not valid in the laterally variant medium. Therefore, the spatial
resolution filter is computed using space–frequency domain
operators. These are valid in a complex velocity medium
(Thorbecke et al., 2004). This spatial resolution filter is shown in
Fig. 7(b). We refer to this filter as the reference case. Although the
same acquisition setup is used, the shape of the spatial resolution
filters obtained from the homogenous and complex model, differs
significantly (Figs. 7(a) and (b)). This has an important influence
on the interpretation of the simulated migration images. The
shape of the spatial resolution filter determines which reflectors
are suppressed and which remain on a migration image (Lecomte,
2008; Toxopeus et al., 2008). To approach the reference case using
the Gazdag phase-shift operator, an additional constraint is
needed. This information is obtained by ray-tracing (Lambará
et al., 1996), through a smoothed version of the velocity model
(Fig. 8(b)). We find that the minimum and maximum angles of
wave propagation as seen by ray-tracing are j1 � � 353 and
j2 � 153, which is illustrated in Fig. 8(b). These angles are used as
a constraint to the forward modeling of the Gazdag operators in a
layered velocity model constructed with the aid of the velocity
trace at x¼ 1500 m ofthe simple salt model. This spatial resolution
filter is shown in Fig. 7(c). We name it a local constant-velocity
spatial resolution filter, because the spatial resolution filter is
obtained under a ‘‘local constant-velocity’’ assumption. The filter
shows a strong resemblance (regarding the phase) with the
reference result. However, as indicated by the black arrows in
Figs. 7(b) and (c), the shape of the filter is slightly different from
the reference case. This is also expressed in the double-Fourier
domain, where the minimum and maximum angles of wave
propagation for the x�o spatial resolution filter are j1 � � 353

and j2 � 103. Thus, the j�range obtained by ray-tracing is about
53 too wide. Another difference between the two is that in the
double-Fourier domain the reference filter shows an amplitude
dip between the minimum and maximum angles of wave
propagation, indicated by the double arrow in Fig. 7(e). Initially,
for the local constant velocity spatial resolution filter it is
assumed that between j1 and j2 all angles are present, an
amplitude dip is not taken into account. However, constructing a
spatial resolution filter is a linear process. In order to take the
amplitude dip into account, two spatial resolution filters can be
computed such that an ‘‘illumination gap’’ is created when the
filters are added. Note that a spatial resolution filter in a laterally
variant model is constructed directly from directional information
obtained from either ray-trace information (Lecomte and Gelius,
1998; Lecomte, 2008) or by a local plane-wave analysis of a one-
way wavefield (Xie et al., 2006). Finally, the spatial resolution
filter is used to simulate a migration image of a model with two
dips at 7153 and 7453 (Fig. 9). The resulting image only shows
one reflector, the other reflectors are suppressed, which hampers
geological interpretation in a complex setting and shows the need
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Fig. 10. (a) Simulating seismic uncertainties by filtering an earth model (Fig. 2(a))

with a suboptimal focused spatial resolution filter (figure (b)). A filter is computed

using a forward model with c¼ 2000 m=s and migration model with c¼ 1850 m=s.
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for an improved survey design in order to illuminate the
subsurface. A real data example that uses a local constant-
velocity spatial resolutionfilter to validate a geological model is
shown in Toxopeus et al. (2008).
Compare Figs. 2(b) and figure (a) and observe that migration image is more

smeared and shifted upwards.
4.1. Studying seismic uncertainties

In the previous discussion it has been shown that the shape of
a spatial resolution filter is mainly controlled by the source
wavelet and the maximum angle of wave propagation. However,
it was tacitly assumed that all seismic processing steps could be
ideally performed. For example, to properly perform migration, a
velocity model of the subsurface is needed, and the effect of
statics has to be removed from the recorded data (Yilmaz, 2001).
The examples in this section demonstrate how seismic uncertain-
ties influence the shape of a spatial resolution filter and
consequently a migration image.
4.1.1. Influence of the background velocity model

Finding a background velocity model to properly migrate the
recorded seismic data is not an easy task. Migrating seismic
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recordings with a wrong velocity model results in events that are
not properly focused and not positioned at the proper spatial
position, both laterally and vertically (Toxopeus et al., 2008). A
migration velocity model that is 10% lower than the modeling
velocity produces a suboptimally focused spatial resolution filter.
By filtering the earth model of Fig. 2(a) with the suboptimal-
focused spatial resolution filter (Fig. 10(a)), a suboptimal-focused
migration image is simulated (Fig. 10(b)). The filter is also known
as a migration frown (Zhu et al., 1998). The suboptimally focused
migration image is more smeared and the depth position of the
target zone is wrong compared to the focused migration image
(compare Figs. 2(b) and 10(b)).

4.1.2. Influence of statics

In practice, a static correction is applied to the seismic
recordings to correct for the effects of, e.g., variations of elevation
(Sheriff, 2001). In order to simulate the effect of not correctly
removing statics on migrated data, the forward modeled data
(obtained as illustrated in Fig. 5) are trace-by-trace randomly
shifted by 0 or 74 ms. The time-shifts represent statics. The
shifted data are migrated (as shown in Fig. 6). The resulting
spatial resolution filter is shown in Fig. 11. The filter shows a
number of migration tails that have not properly canceled out
against each other (Hagedoorn, 1954). This filter can be used to
simulate a migration image that shows how statics may hamper
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Fig. 11. A spatial resolution filter after statics are introduced.
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Fig. 12. Simulated migration image of a wedge model without (a), and with statics (b). A

(c) A difference image between (a) and (b).
interpretation of (time-lapse) seismic measurements. An example
of a migration image of a wedge model with and without statics is
shown in Figs. 12(a) and (b), respectively. The difference image
shows that uncertainties are introduced in the interpretation of
the top or base if statics are not corrected handled in the input
data or migration (Fig. 12(c)).
5. A common-offset spatial resolution filter

Different stacks of common-offset data (Fig. 1), commonly
denoted as mid, near and far, provide amplitude information in
fluid and rock classification (Yilmaz, 2001; Avseth et al., 2003). In
order to simulate amplitude information of a migration image, a
proper reflectivity model and spatial resolution filter are needed.
The reflectivity model is obtained by calculating the incident
angle associated with the offset. A quick approach would be to use
Snell’s law to find the incidence angle on a trace-by-trace basis,
which is a common technique to transform an offset- to angle-
image. A spatial resolution filter for a specific offset is computed
using the following steps. First, instead of using half the modeling
velocity, the initial modeling velocity is used as input to the
presented forward modeling algorithm. This results in propagat-
ing primary data for a given buried point scatterer location. These
data are denoted as one-way time data. An example for a
homogeneous velocity model of 2000 m/s and a point scatterer
at a depth at 1500 m is shown in Fig. 13(a). Next, one offset is
chosen and the associated source (S) and detector (D) paths are
selected from the modeled data. By convolving the two selected
one-way datasets (one for the source- and one for the receiver-
offset), two-way data for one common-offset is computed
(Fig. 13(b)). Note that this method is valid for an arbitrary
elastic model (Deregowski and Rocca, 1981)). Finally, these data
are convolved on a trace-by-trace basis with a specific source
signature that resembles the artificial source of the real seismic
experiment.

Migrating common-offset data using the one-way Gazdag
operator is not straightforward. A diffraction-summation type
migration method or an approximation, i.e., the stationary phase,
can be used to perform common-offset migration (Popovici, 1994;
Yilmaz, 2001). Here we migrate the input data using two-way
operators, where we make use of the fact that the migration
operator is laterally invariant in a layered medium (Streich et al.,
2007). The depth-loop is limited to a depth-range around the
depth location of the unit point scatterer. To migrate common-
offset data, a similar illustration as shown in Fig. 6 is used, but the
one-way operator is replaced by a two-way Gazdag operator.
Alternatively, a common-offset spatial resolution filter in a
700 700

sition [m] Lateral position [m]

+0.3 -0.3

0

spatial resolution filter with statics is shown in Fig. 11. A colorbar is shown in 2(b).
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model with P-wave velocity of 2000 m/s. A detector, a source and a midpoint position are denoted by D, S, and m, respectively for a selected offset (h). (b) A common-offset

data are simulated by convolving different source and detector paths.
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laterally variant model can be constructed directly from direc-
tional information obtained from either ray-trace information
(Lecomte and Gelius, 1998; Lecomte, 2008) or by a local plane-
wave analysis of a one-way wavefield (Xie et al., 2006).

In a homogeneous model with a P-velocity of 2000 m/s, a
common-offset spatial resolution filter is computed at a depth of
2000 m. The offset is fixed at 1500 m, and the result after forward
modeling and migration using the proposed algorithms, is
shown in Fig. 14(a). For reference, a prestack depth-migration
algorithm based on space–frequency operators is used to
migrate the same forward data on a trace-by-trace basis
(Fig. 14(b)). The match regarding the phase between the two
spatial resolution filters is high (compare Figs. 14(a) and (b)).
Finally, for the same aperture, a zero-offset spatial resolution
filter is computed (Fig. 14(c)). The minimum and maximum
angles of wave propagation are almost 903.
6. Conclusions and discussion

For the validation of a geological model, we simulate a
migration image by filtering the model with a spatial resolution
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filter. The spatial resolution filter is re-used to test different
geological scenarios. A computationally efficient numerical
implementation to simulate the phase of 2D primary reflection
data, using one-way (Gazdag) wave propagators, was proposed to
compute a zero-offset spatial resolution filter. In this fast
approach the effect of seismic uncertainties could be easily
included. These filters enable validation of different earth models.
Note that amplitude effects were not studied and can also not be
studied using the Gazdag operator. To approximate a zero-offset
spatial resolution filter in a laterally invariant medium, ray-trace
information is used as a constraint on the minimum and
maximum angles of wave propagation. This latter spatial resolu-
tion filter is named a local constant velocity spatial resolution
filter, because the spatial resolution filter is computed under a
‘‘local constant velocity’’ assumption. A comparison with a
reference case shows that the shape is reasonably well approxi-
mated, however, the limitations of ray-tracing should be kept in
mind. A common-offset spatial resolution filter in a layered
medium was computed making use of the fact that the Gazdag
phase-shift operators are shift invariant. The filters show a strong
phase resemblance with the reference results. It has been
demonstrated how seismic uncertainties caused by errors in
migration velocities and statics change the shape of the spatial
resolution filter and thus the migration image. Finally, note that
the used Gazdag operators can be replaced by spatially variant
one-way operators that are valid for a more complex velocity
model. Additionally, other computationally more efficient im-
plementations exist based on using directional information to
construct (offset-dependent) spatial resolution filters directly.
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